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1 Monodromy relations among open-string tree amplitudes

In this exercise, you will be guided to derive the monodromy relations among color-ordered open-string

amplitudes Atree
open(1, 2, . . . , n;α′) that are universally valid for bosonic strings and superstrings [1, 2].

The external states are taken to be massless such that sij = 2α′ki · kj according to the conventions

in the lecture. The goal is to relate different color orderings or integration regions for the punctures

z2, z3, . . . , zn−2 in an SL2-frame where (z1, zn−1, zn) = (0, 1,∞). This will be achieved by exploiting that

the underlying correlator among vertex operators is meromorphic except for the universal Koba–Nielsen

factor
∏n

1≤a<b |zab|sab with zab = za−zb.
At 4 points with s = 2α′k1 ·k2 and t = 2α′k2 ·k3, the above SL2-frame yields color-ordered amplitudes

Atree
open(2, 1, 3, 4;α′)←→

∫ 0

−∞
dz2 |z2|s |1− z2|t f(z2)

Atree
open(1, 2, 3, 4;α′)←→

∫ 1

0

dz2 |z2|s |1− z2|t f(z2) (1)

Atree
open(1, 3, 2, 4;α′)←→

∫ ∞
1

dz2 |z2|s |1− z2|t f(z2) ,

where the polarization dependent rational function f(z2) is determined by the contractions among the

vertex operators, and its detailed form will not be needed in the following.

The proof of the monodromy relations is based on applying Cauchy’s theorem to the meromorphic

function F (z2) = (z2)s(1− z2)tf(z2) with rational f(z2):∮
C

dz2 F (z2) = 0 . (2)

The integration contour C is depicted in figure 1 below and consists of a semi-circle C∞ at infinity as well

as the real axis with the following shorthands

C2134 = (−∞, 0) , C1234 = (0, 1) , C1324 = (1,∞) . (3)

(Strictly speaking, the Cijkl should be infinitesimally displaced from the real axis by some positive imag-

inary part iε to avoid tentative poles of f(z2) at z2 = 0 and z2 = 1.)

(i) Assuming that the semi-circle C∞ does not contribute to
∮
C dz2 F (z2) and using the representation

F (z2) =


eiπs |z2|s |1− z2|t f(z2) : z2 ∈ C2134
|z2|s |1− z2|t f(z2) : z2 ∈ C1234

e−iπt |z2|s |1− z2|t f(z2) : z2 ∈ C1324
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Figure 1: The contour C consists of the semicircle C∞ drawn in blue and subsets C2134, C1234, C1324 of the

real line drawn in red.

of the above integrand F (z2), explain why Cauchy’s theorem implies that

eiπs
0∫

−∞

dz2 |z2|s |1−z2|t f(z2) +

1∫
0

dz2 |z2|s |1−z2|t f(z2) + e−iπt
∞∫
1

dz2 |z2|s |1−z2|t f(z2) = 0 .

(ii) Assuming that color-ordered amplitudes Atree
open(i, j, k, l;α′) are real, deduce that

cos(πs)Atree
open(2, 1, 3, 4;α′) +Atree

open(1, 2, 3, 4;α′) + cos(πt)Atree
open(1, 3, 2, 4;α′) = 0

sin(πs)Atree
open(2, 1, 3, 4;α′)− sin(πt)Atree

open(1, 3, 2, 4;α′) = 0 .

(iii) By isolating the leading orders in α′, conclude that color-ordered tree amplitudes among non-abelian

gauge bosons satisfy the Kleiss–Kuijf relations

Atree
YM(2, 1, 3, 4) +Atree

YM(1, 2, 3, 4) +Atree
YM(1, 3, 2, 4) = 0

and the Bern–Carrasco–Johansson (BCJ) relations

(k1 + k2)2Atree
YM(2, 1, 3, 4)− (k2 + k3)2Atree

YM(1, 3, 2, 4) = 0 .

(iv) Generalize the integration contour C and the integrand Fopen(z2) → Fopen(z2, z3, . . . , zn−2) to an

n-point setting to derive the monodromy relation

0 = e2πiα
′k1·k2Atree

open(2, 1, 3, . . . , n;α′) +Atree
open(1, 2, 3, . . . , n;α′)

+ e−2πiα
′k2·k3Atree

open(1, 3, 2, 4, . . . , n;α′) + e−2πiα
′k2·(k3+k4)Atree

open(1, 3, 4, 2, . . . , n;α′)

+ . . .+ e−2πiα
′k2·(k3+k4+...+kn−1)Atree

open(1, 3, 4, . . . , n− 1, 2, n;α′)

and deduce the n-point BCJ relations

k1 · k2Atree
YM(2, 1, 3, . . . , n) =

n−1∑
j=3

k2 · (k3+k4+ . . .+kj)A
tree
YM(1, 3, . . . , j, 2, j + 1, . . . , n) .

Note: By combining all permutations of the monodromy- and BCJ relations, color-ordered n-point

tree amplitudes in string and gauge theory can be reduced to a basis of dimension (n−3)!.

(v) In a formal α′-expansionAtree
open(1, 2, . . . , n;α′) =

∑∞
m=0(α′)mAtree

(m)(1, 2, . . . , n) of the open-superstring

tree amplitude with Atree
(1) = 0, explain why the α′3-order Atree

(3) obeys the BCJ- and KK-relations

of field-theory amplitudes Atree
SYM. There is no need to know about the explicit form of Atree

(3) . Since

the property Atree
(1) = 0 of superstring amplitudes does not hold for the open bosonic string, only a

subsector of the α′3 order in tree amplitudes of open bosonic strings obey field-theory relations.
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Note: Based on standard transcendentality conjectures on multiple zeta values, the argument in

(v) can be extended and refined to deduce that the entire single-valued open-superstring amplitude

svAtree
open obeys BCJ- and KK-relations.

2 Chiral splitting and double periodicity on a torus

In this exercise, you will explore the double-periodicity properties of the (meromorphic) chiral amplitudes

F in the chiral-splitting approach to closed-string genus-one amplitudes. The underlying torus worldsheet

is parametrized through the parallelogram with corners 0, 1, τ+1, τ , where τ is the modular parameter

with Im τ > 0.

(i) Use one of the representations of the odd Jacobi theta function

θ1(z, τ) = 2iq1/8 sin(πz)

∞∏
n=1

(1− qn)(1− e2πizqn)(1− e−2πizqn) =
∑

r∈Z− 1
2

(−1)r−1/2e2πirzqr
2/2 (4)

with q = e2πiτ to derive the (pseudo-)periodicity properties

θ1(z+1, τ) = −θ1(z, τ) , θ1(z+τ, τ) = −e−iπτ−2πizθ1(z, τ) . (5)

(ii) Consider the chiral Koba–Nielsen factor for the integrand of n-point genus-one amplitudes

In(z, τ, `, k) = exp

(
iπτ`2 + 2πi

n∑
j=1

(kj · `) zj +

n∑
1≤a<b

ka · kb log θ1(zab, τ)

)
, (6)

where we are setting α′ = 1/2 for simplicity. Check that the B-cycle monodromies of In in one

puncture, say z1 → z1+τ , can be compensated by a shift of the loop momentum `. Explain why the

loop integral
∫

dD`
∣∣In(z, τ, `, k)

∣∣2 is well-defined on a torus, i.e. that the integral gives a doubly-

periodic function under z1 → z1+1 and z1 → z1+τ .

Note: Momentum conservation
∑n
j=1 kj = 0 and the on-shell condition k2j = 0 are understood to

hold throughout the exercise, and `, kj are all treated as real in the complex conjugate of In.

(iii) The chiral genus-one five-point amplitude takes the schematic form

F5(z, τ, `, k) = I5(z, τ, `, k)

(
2πitµ`

µ +

5∑
1≤a<b

tab ∂z log θ1(zab, τ)

)
(7)

with kinematic factors tµ and tab = −tba multilinear in the polarizations ε1, . . . , ε5. Which relation

between kµj tµ and tab has to be required such that
∫

dD`
∣∣F5(z, τ, `, k)

∣∣2 is well-defined on a torus?

Note: An explicit solution to the above requirements that integrates to the correct (parity-even part

of the) five-point amplitude can be constructed from the permutation-invariant t8-tensor

t8(f1, f2, f3, f4) = tr(f1f2f3f4)− 1

4
tr(f1f2)tr(f3f4) + cyc(f2, f3, f4) , (8)

where the traces are over the Lorentz indices of the linearized field strength fµνj = kµj ε
ν
j − kνj ε

µ
j . We

furthermore introduce a two-particle field-strength fµνij = −fµνji = −fνµij via

fµν12 = (k2 · ε1)fµν2 − (k1 · ε2)fµν1 + fµ1 λf
λν
2 − f

µ
2 λf

λν
1 (9)

which determines the kinematic factors in (7) to be

tµ = εµ1 t8(f2, f3, f4, f5) + (1↔ 2, 3, 4, 5)

t12 = t8(f12, f3, f4, f5) (10)
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3 Further reading [not part of the homework assignment]

This section gathers suggestions for further reading, where all page numbers refer to the scan of the

lecture notes.

• page 4: the Kawai-Lewellen-Tye formula between open- and closed-string tree-level amplitudes was

firstly derived in [3], related to monodromy relations in [4] and studied from the mathematical

perspective of twisted de Rham theory in [5]

• page 5: the original reference for chiral splitting is [6]

• page 5: the field-theory limit of string loop amplitudes can be elegantly analyzed in terms of tropical

geometry [7], also see [8] for a nice account on the role of the loop momentum

• page 5: an upcoming textbook on multiple zeta values can be accessed via [9], also see [10] for a

datamine of their Q-relations

• page 8: the Atree
SYM-representation of the n-point tree-level amplitude of the open superstring was

constructed in [11] and brought into KLT form in [12]

• page 8: an introductory reference on the motivic coaction of the disk integrals Fρ
σ is [13], also see

[14] for generalizations to unintegrated punctures as in the examples of Ruth’s lecture

• page 9: the interpretation of disk integrals as “Z-theory” amplitudes was discussed in [15, 16]

• page 10: different approaches to proving the relation J = svZ between disk and sphere integrals

can for instance be found in [17, 18]

• page 11: single-valued polylogarithms in one variable and several ones are constructed in [19] and

[20], respectively

• page 12: the web of double-copy relations involving tree amplitudes in different string theories can

be found in [21], also see [22] for a recent extension to tree amplitudes with one massive state

• page 13: at genus 3, the four-point closed-string amplitude has been computed in the low-energy

limit in [23], and a very recent proposal for the complete chiral amplitude based on ambitwistor-

string techniques can be found in [24]

• page 14: the appearance of D-dimensional box integrals from one-loop four-point string amplitudes

was already shown in the seminal paper [25] from 1982

• page 15: see [26] for a pedagogical account on elliptic multiple zeta values and iterated Eisenstein

integrals in string amplitudes; more recent techniques to perform all-order α′-expansions are based

on differential equations, either in τ [27] or in z [28]

• page 16: even though the prehistory reaches back to 1999, the notion of modular graph functions

or forms was introduced in 2015 [29]; an overview of the state of the art on modular graph forms

as of fall 2020 can be obtained from [30]

• homework problem 1: the loop-level analogue of the monodromy relations among Atree
open has been

studied from a variety of perspectives [31, 32, 33, 34, 35]

4



There are further lecture series on string amplitudes on the web:

• emphasis on multiloop amplitudes, supermoduli and modular graph forms (E. D’Hoker 2018)

https://qmap.ucdavis.edu/events/events-past-events/amplitudes-summer-school

• with emphasis on conformal-field-theory techniques (O. Schlotterer 2019)

https://indico.desy.de/event/22450/overview

For string theory in general, the lecture notes [36] are particularly suitable for introductory reading, and

useful textbooks include [37, 38, 39, 40, 41, 42, 43].
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[42] P. Di Francesco, P. Mathieu and D. Sénéchal, “Conformal field theory”, Springer 1997

[43] M. Ammon and J. Erdmenger, “Gauge / Gravity duality, foundations and applications”, Cambridge

University Press 2015

7


