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Amplitudes from the Nodal Sphere

Exercise 1 CHY amplitudes

The first few exercises are a warm-up to get you familiar with the CHY representation.

(a) Holomorphic δ-functions: Let z ∈ C be our complex coordinate, and define

δ̄(z) :=
1

2πi
∂̄

(
1

z

)
=

1

2πi
dz̄ ∂z̄

(
1

z

)
.

Show that δ̄(z) acts like a holomorphic version of the standard Dirac δ-function by integrating
it against a holomorphic test function f(z), i.e. for a region Ω containing the origin, show
that ∫

Ω
δ̄(z) ∧ f(z)dz = f(0) .

(b) Scattering equations and the measure: Show that the n scattering equations

Ei :=
∑
j 6=i

ki · kj
σij

, (1)

transform covariantly under Möbius transformations on the support of momentum conserva-
tion. From this, we conclude that only n − 3 of these constraints are independent, and you
should calculate the Jacobian JSE of fixing this symmetry,∏

′δ̄(Ej) := JSE
j1j2j3

∏
j 6=j1,2,3

δ̄(Ej) ,

as well as the Jacobian J from the measure. Putting this all together, we find the following
gauge-fixed form for the full CHY-measure;

dµCHY
n :=

∏n
i=1 σi

vol SL(2,C)

∏
′δ̄(Ej) = Ji1i2i3 J

SE
j1j2j3

∏
i 6=i1,i2,i3

dσi
∏

j 6=j1,2,3

δ̄(Ej) .

(c) Three-particle amplitudes: We can now easily verify the 3-particle amplitudes. Recall the
CHY formula

An =

∫
dµCHY

n In , (2)

with
IBAS
n = Cn C̃n , IYM

n = Cn Pf ′M , Igrav
n = Pf ′M Pf ′M̃ .

Check that this gives the correct 3-particle amplitudes in all three theories.
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We’re now going to do something that may look ambitious for an exercise: we’ll prove the CHY
amplitude representation. Of course we will not be able to fill in all the details here, but we’ll be
able to follow the main idea of the proof. Even more importantly, it’ll allow us to draw conclusions
about extensions of this worldsheet formula to loop representation in Exercise 2.

How do you go about proving a formula like (2)? Our main tool will be the BCFW recursion

An =
∑

L,states

1

K2
L

AnL+1(zL)AnR+1(zL) , (3)

where the sum runs over factorization channels L (with 1 ∈ L) such that K̂L is on-shell,

K̂L =
∑
i∈L

ki + zLq , zL = −
K2
L

2KL · q
.

We have chosen the deformation k̂1 = k1 + zq, k̂n = kn − zq, and the reference vector q has to
satisfy q2 = k1 · q = kn · q = 0.1 Moreover, we used the notation nL = |L|, and nR = n − nL.
You have met this recursion already in both Henriette’s and Jacob’s lectures, so its usefulness here
will not come as a surprise. However, instead of using it as a constructive tool for calculating a
given amplitude, here we will use it to prove the CHY representation inductively. In part (c) of the
exercise, you already checked that it reproduces the correct 3-particle ‘seed’ amplitudes; all that
remains to show is that the CHY formula satisfies (3).

(d) BCFW recursion in the CHY language: Instead of proving that the CHY formulæ satisfy
(3) directly, it will be easier to check the two properties used the derivation of the BCFW
recursion: (i) factorization, and (ii) . . . What is this second property? 2

For factorization, argue that it is sufficient to investigate the behaviour of the CHY formulæ
close to a boundary of the moduli space, where a subset of punctures collide, see fig. 1.

(e) Scattering equations and ∂M̂0,n: Let’s look at one specific divisor on the boundary of the

moduli space where a subset L of the punctures ‘bubbles off’, M0,nL+1 ×M0,nR+1 ⊂ ∂M̂0,n.
We can parametrize Riemann surfaces close to this boundary component by

σi = σL + εxi , i ∈ L . (4)

Here σL labels the ‘junction point’ between the two spheres, and xi serve as coordinates on
the new sphere, see fig. 1. Show that the scattering equations then relate this boundary
component to the singular kinematic configuration K2

L = 0, i.e. show

K2
L ∼ ε with KL =

∑
i∈L

ki .

Bonus: One loop: It is now straightforward to extend this argument to one loop: show that

the one-loop scattering equations E
(1)
A on the nodal sphere relate boundaries of the moduli

space (parametrized as above) to singular kinematic configurations

ε ∼ K2
L for σ+, σ− ∈ ΣR

ε ∼ 2` ·KL +K2
L for σ+ ∈ ΣL , σ− ∈ ΣR .

1For theories with spin, we need to impose further conditions on q. Of course, this plays an important role in
proving the CHY formulæ, but we won’t need the details in this exercise.

2Just identify the property, we will not prove it here. The calculation is straightforward but lengthy.
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ΣL ΣR

KK

`1`2

1

Figure 1: The boundary divisor M0,nL+1×M0,nR+1 ⊂ ∂M̂0,n. A subset I of the punctures colliding
as in (4) is equivalent to them ‘bubbling off’ on a separate sphere, here labeled ΣL. Our notation
conventions are x ∈ ΣL, and σ ∈ ΣR. In particular, the ‘junction point’ is σL from the perspective
of ΣR on the RHS, and x =∞ from ΣL.

(f) Bonus: Measure and integrand: Use your result of (e) to show that on the boundary

dµCHY
n = ε2(nL−1)dε

ε
δ̄
(
K2
L + εF

)
dµCHY

nL+1 dµ
CHY
nR+1 ,

where F is of order one in ε, and we won’t need its precise form. This tells us that the
amplitude vanishes on the boundary, unless we find a compensating factor

In = ε−2(nL−1)
∑

states

InL+1InR+1 , (5)

from the CHY integrand. Show that this relation holds for bi-adjoint scalar amplitudes, and
conclude that they therefore satisfy the BCFW recursion.3 In the course of this, we also learn
which poles contribute for partial amplitudes — can you give a simple criterion?

And a final bonus exercise: Scattering equations again: What we’ve seen above is that the
scattering equations relate boundaries of the moduli space to singular kinematics. But what about
the other way round? Is every solution to the scattering equations of the form (4) for K2

L ∼ ε?
How does this relate to the factorization argument in (e)?

3It is straightforward if lengthy to show that (5) also holds for integrands involving the reduced Pfaffian, which
completes the proof also for Yang-Mills theory and gravity.



The Amplitude Games
MITP Summer School 2021

Amplitudes from the Nodal Sphere
Homework Problems

Exercise 2 Scattering equations beyond one loop

For two loops, the scattering equations on the nodal sphere can be derived systematically: first
calculate the RNS ambitwistor string correlator on a genus-two Riemann surface, and then use
residue theorems to derive a formula on a bi-nodal sphere. However, we can also understand their
form from a more physical perspective: they have to encode the correct pole structure for the
linearized integrand representation. In this exercise, we work this out in more detail.

(a) Poles in the linear integrand representation: Of course we first have to understand what
poles actually appear in the linear integrand representation. For this, let us repeat the
residue theorem we discussed in the lectures, but now at two loops (and with an eye towards
a general formulation): consider first the following shift of the loop momenta

`I → `I + ηI for `I · ηJ = ki · ηJ = 0 .

Here I = 1, 2, and we take η to be a (d + 2)-dimensional vector. Now, whereas at one loop,
there was only one natural variable, η2 = z, here we have three,

z1 = η2
1 , z2 = η2

2 , z12 = η1 · η2 .

Nice integrand representations however will in general not come from this choice of variables,
but rather from linear combinations of them that are suited for the parametrization of the
Feynman diagram we started out with. To make this clear, consider the following diagram

ΣI ΣĪ

KK

`1`2

1

With loop momenta assigned as given, a good choice of variables for the residue theorem is

z1 = η2
1 , z2 = η2

2 , z3 =
(
η1 + η2

)2
= z1 + z2 + 2z12 .

Good here means that we can easily classify the types of poles that appear. For the scattering
equations at two loops, we will now want to perform two residue theorems, in z1 and z2. First,
make sure that you understand why we still had to specify all three variables z1,2,3. Then,
perform the residue argument for the diagram above (with trivial numerator and K2 6= 0),
and shift the loop momenta in the different terms such that you can extract an overall factor
of 1/(`21`

2
2). What poles do you find in the integrand?

(b) Two-loop scattering equations I: Consider now the following generalization of the tree-level
scattering equations to the bi-nodal sphere,

EI± =
∑
J 6=I±

LI±J
σI±J

±
n∑
i=1

2`I · ki
σI±i

, Ei =
∑
J±

±2`J · ki
σiJ±

+
∑
j 6=i

2ki · kj
σij

Here, the sums J run over the nodal points 1±, 2±; and LIJ = L(IJ) are parameters that
we want to determine. Since these equations are defined on the (bi-nodal) sphere, we still
want them to transform covariantly under Möbius transformations as in exercise 1 (b). What
condition does this impose on the parameters L?
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(c) Two-loop scattering equations II: We will now fix the remaining freedom we have in the
scattering equations by requiring that they encode the correct pole structure for a linearized
integrand. For this, we first need to extend the relation we found in exercise 1 (e) to these
more general scattering equations. Show that the scattering equations now relate a boundary
divisor M0,ñL+1 ×M0,ñR+1 to the following kinematic configuration4

s̃L :=
∑

I±,J±∈L

LI±J± +
∑
I±∈L

(
± 2`I ·KL

)
+K2

L . (6)

Here, we used the notation ñ = n+4 to include the nodal points. Next consider the following
boundary components L, where i and j are arbitrary external particles:

(i) L = {1+, 1−, i, j} and L = {2+, 2−, i, j}
(ii) L = {1+, 2+}

By demanding that s̃L agrees with the expected propagators K2
L for factorization channels

involving only external momenta, and agrees with the ‘linear’ propagators found in (a), de-
termine from this the form of the two-loop scattering equations. Part (i) also gives you a
physical interpretation for why we found the linear integrand representation at one loop!

(d) Bonus: Unphysical poles: Now that we have understood the form of the scattering equations
at two loops, can we also say something about the other new ingredient we saw in the lectures;
the cross-ratio

c(2) =
σ1+2−σ1−2+

σ1+1−σ2+2−
,

appearing as a factor in the integrand? To see what role this plays, consider now the boundary
component L = {1+2−, i, j} of the moduli space. What pole do you find from (6) and your
explicit form of the two-loop scattering equations? As you can see, this has no equivalent in
the linear representation we discussed in part (a), and is thus unphysical. Can you understand
from our factorization discussion in exercise 1 (e) why this cross-ratio ensures that these poles

cannot appear? (Under reasonable assumptions for the two-loop integrand I(2)
n .)

There is one aspect that you may have noticed that I didn’t have time to mention in the lectures:
What if we had reversed the orientation of one of the loop momenta in our diagram? We could
have repeated all the same steps, but arrived at different scattering equations (and also a different
cross-ratio). Indeed, both of these give valid representations, and you can choose to work in either.

4This is the reason we took L(IJ) to be symmetric. While it’s a reasonable assumption when generalizing from
tree-level, most importantly it is what makes this calculation here feasible. If we relax our assumption and consider
generic LIJ , it is much more difficult to find the singular kinematic configuration corresponding to the boundary of
the moduli space. As far as I know, no-one even looked at this.
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Choose one of the exercises 3 and 4:

Exercise 3 Ambitwistor string CFT and the gluing operator

In this exercise, we’ll first verify some of the CFT calculations from the lectures.

(a) βγ-systems: Consider for now a general (bosonic) βγ-systems, with conformal weights hβ = h
and hγ = 1− h. Verify that the stress-energy tensor

T = −hβ∂γ + (1− h)(∂β)γ ,

has the expected OPEs with the fields β, γ, and calculate the central charge anomaly.

Bonus: Central charge anomaly: Use this to verify the critical dimensions in the three models
we discussed.

(b) BRST and vertex operators: Let us focus for now on the bi-adjoint scalar model. Recall that
in the BRST quantization, we introduced the BRST operator

Q =

∮
cT + c̃H .

Verify that after integrating out the Nakanishi-Lautrup fields, the effective BRST operator
takes the form

Qeff =

∮
cT +

c̃

2
P 2 ,

where T = TPX + Tbc + Tb̃c̃ is now the full chiral stress-energy tensor of the theory. Check
moreover the assertions from the lectures about the spectrum, i.e that for vertex operators
of the form

V (σ) = cc̃ w(σ) eik·X(σ) ,

w has to have conformal weight hw = (2, 0), and k2 = 0.

After this warm-up, we can now explore the nodal operator construction. Remember from the
lectures that the gluing operator encodes the target space propagator of the theory, and therefore
has to be non-local if we want to require BRST invariance. We constructed the gluing operator ∆
as

∆(σ+, σ−) =

∫
dd`

`2
W (σ+, σ−)

∑
states

O(σ+)O(σ−) .

Here, O(σ±) are the trivial off-shell extensions of the vertex operators with momentum ±`,

O(σ±) = cc̃ w(σ±) e±i`·X(σ±) ,

and encode the off-shell state flowing through the node. In the bi-adjoint scalar, we could implement
the sum over states very explicitly (how?), but since there are subtleties associated to the correlator
calculation, we won’t bother with this here.5 The non-local factor W takes the form

W (σ+, σ−) = exp

(
1

2π

∫
Σ

ẽ

2
`2ω2

+−(σ)

)
, with ω+−(z) =

σ−+ dσ

(σ − σ+) (σ − σ−)
.

5If you are interested: already at tree-level, we have to restrict (by hand) to the single-trace sector for current
algebras with level κ 6= 0. We find the same issue in these calculations, but now we have to restrict to single-trace
contributions after the sum over states. All of these subtleties disappear for the RNS model, but I didn’t want to
burden you with the extra fermions.
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We claim that this is precisely the factor needed to make ∆ BRST-invariant. Notice however the
explicit factor of ẽ. So if we want to check BRST invariance, we have to work with Q, not Qeff —
otherwise we would have already integrated out ẽ! This can in principle be done, but in practice
it is much more straightforward to quantize the theory in the presence of ∆, and derive a new
effective BRST operator Q∆

eff.

(c) BRST in presence of the nodal operator: Repeat the calculation for the effective BRST
operator, but now including the contribution from the gluing operator ∆. You should find

Q∆
eff =

∮
cT +

c̃

2

(
P 2 − `2ω2

+−(σ)
)
.

Convince yourself that the vertex operators remain in the BRST cohomology.

(d) Scattering equations on the nodal sphere: Repeat the analogue of our derivation for the
scattering equations, but now in the presence of the gluing operator. You should recover the
one-loop scattering equations discussed in the lecture,

E
(1)
A = ResσA

(
P 2 − `2ω2

+−
)
, A = 1, . . . , n,+,− .

You could now wonder about extensions of this to two loops — after all, we just discussed the
two-loop scattering equations in the last exercise! However, if even a brief look at our results there
should convince you that we cannot simply insert two copies of our gluing operator. So how could it
be modified? It’s not hard to see what the answer should be to get the correct scattering equations,
but why? This certainly goes well beyond BRST invariance. Moreover, where does the cross-ratio
c(2) come from? If you know how to solve any of these questions, you’re ahead of the field and
should publish your answer.
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Exercise 4 Ambitwistor strings in 4d

In this exercise, we’ll take a closer look at another incarnation of the ambitwistor string – the
4d twistor model.6 We’ll start by learning some basics about twistor space,7 which will allow us
to finally understand the origin of the name ‘ambitwistor’. We’ll then transform our ambitwistor
string action to twistor variables, and conclude by taking a closer look at what twistor theory tells
us about the vertex operators.

(a) Twistor space and the incidence relations: For our purposes, twistor space (for 4d Minkowski
space MC) will be an open subset PT ⊂ CP3, for which we introduce homogeneous coordinates
ZA. It will be convenient to split Z into two Weyl spinors of opposite chirality,

ZA = (µα̇, λα) .

To make this interesting and useful, we have to relate twistor space and space-time. To do
so, we impose the following ‘twistor correspondence’ relation between twistors Z and points
xαα̇ = xµσαα̇µ ∈MC;

µα̇ = xαα̇λα .

This non-local relationship is often referred to as the incidence relations. The goal of this
exercise is to understand these incidence relations in some detail: What do they tell us about
what a point x ∈ MC looks like in twistor space? What does a point in twistor space (i.e. a
fixed twistor Z) correspond to in space-time?

(b) Ambitwistor space in 4d: We can interpret twistors ZA as spinors for the conformal group
SO(6,C) ' SL(4,C). From this perspective, it is clear that there is a natural dual twistor
space PT∗ ⊂ CP3 as spinors of the opposite chirality WA := (λ̃α̇, µ̃

α). There is a natural inner
product between twistors and dual twistors, given by

Z ·W = [µλ̃] + 〈µ̃λ〉 ,

where we used the standard notation for Weyl spinor index contractions. Let us also introduce
dual incidence relations

µ̃α = −xαα̇λ̃α̇ .

We can now understand where the name ‘ambitwistor’ comes from: Show that in 4d, projective
ambitwistor space can be understood as the quadric Z ·W inside PT× PT∗, i.e.

PA =
{

(Z,W ) ∈ PT× PT∗
∣∣Z ·W = 0

}
.

Comparing this with the vector representation discussed in the lectures, what is the relation
between Pαα̇ and the twistors/dual twistors?

6At tree-level, this worldsheet model can be understood as a twisted version of the Berkovits-Witten twistor string,
which lies at the root of many beautiful results for N = 4 super Yang-Mills amplitudes. Historically, the twistor string
predates all of the models we discussed, and was certainly an important motivation for even considering worldsheet
models. If you are interested in learning more, reviews and the original papers can be found in the reference list.

7We will barely scratch the surface here. If you want to learn more, I can recommend Tim’s lecture notes, see the
list of references.
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(c) Ambitwistor string action: Using the relation for P you found in (b) as well as the incidence
relations, show that the kinematic term in the (bosonic) ambitwistor string action becomes8

S =

∫
W · ∂̄Z − eW · ∂Z .

To complete this to the full ambitwistor string, we still need to gauge the constraint Z ·W
which we assumed in deriving the relation between P and the twistor variables,

SA =

∫
W · ∂̄Z − eW · ∂Z + aZ ·W .

Assuming that twistors and dual twistors appear on an equal footing, what conformal weights
should we assign to the fields? 9

Congratulation, at this point you have derived the ‘bare’ action for the 4d ambitwistor string. For
the critical model describing N = 4 super Yang-Mills theory, we would need to (i) promote the
twistors to supertwistors and (ii) add a current algebra. However, instead of going through this
construction in detail, let us take a look at the basic structures we expect to find in vertex operators.

(d) Momentum eigenstates: It turns out that there are two types of vertex operators in this
model (corresponding to positive and negative helicity states),10

Vi =

∫
dsi
si

δ̄2
(
καi − siλα(σi)

)
w eisi[µ(σi)κ̃i]

Ṽi =

∫
dsi
si

δ̄2
(
κ̃α̇i − siλ̃α̇(σi)

)
w eisi〈µ̃(σi)κi〉 .

Here, the momentum of the particle is given in spinor-helicity notation by kαα̇i = καi κ̃
α̇
i . Show

that on the support of the delta-functions and the incidence relations, the exponential factors
indeed give the standard momentum eigenstate.

These vertex operators have in fact a very intuitive interpretation from twistor space: they are the
natural pull-back to the worldsheet of free fields! This relies on a particularly beautiful result, the
Penrose transform, which tells us that massless free fields on spacetime correspond to cohomology
classes on twistor space. If you are interested in learning more, Tim’s lecture notes are a great
place to start, and you’ll find a detailed discussion on momentum eigenstates in twistor space (in
the form of an exercise) at the end of section 3. Instead, we’ll look here at what the form of these
vertex operators implies for correlators and amplitudes in these models.

(e) Bonus: Reduced scattering equations: Consider now (schematically) a correlator of the form〈
k∏
i=1

Ṽi
n∏

p=k+1

Vp

〉
.

8I’ve dropped the overall factor of (2π)−1 for convenience later in the exercise
9For the twistor string, this is precisely the requirement we would change.

10As in the lectures, I’ve hidden some factors in w: it contains the current algebra contribution taja familiar from
the lectures, as well as some ghost and supersymmetry contributions.
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If we had done the calculation carefully, this would give an Nk−2MHV amplitude in maximal
super Yang-Mills. Even in our simplified format however, we can draw some important
conclusions. Assume that we have BRST-quantized the theory (or do it, if you feel ambitious),
and are left with a free action after gauge-fixing and integrating out all of our Nakanishi-
Lautrup fields, i.e. SA with e = a = 0 and additional ghost contributions. Assume further
that w is independent of all twistor and dual twistor variables. We can then perform the same
trick as in the lectures to integrate out the ZW -system. Follow this procedure, and derive in
this manner the reduced scattering equations for i = 1, . . . , k and p = k + 1, . . . , n;

si λ̃
α̇(σi) = κ̃α̇i , sp λ

α(σp) = καp ,

where

λ̃α̇(σ) =

n∑
p=k+1

sp κ̃
α̇
p

σ − σp
, λα(σ) =

k∑
i=1

si κ
α
i

σ − σi
.

Check that these imply the familiar scattering equations (1).

If we had gone through the above calculation with more care, we would have found the renown
RSVW formulæ (Roiban-Spradlin-Volovich-Witten) for maximal super Yang-Mills. However, the
whole calculation including the underlying twistor theory is easily enough to fill another lecture
series. I hope I managed here to give you at least a small taste, and enough background to explore
the literature on your own.


