[Amplitude] Bootstrap Lecture 3

Lance Dixon (SLAC)

"The Amplitude Games" Mainz Institute for Theoretical Physics 19-20 July, 2021

2d HPLs

Gehrmann, Remiddi, hep-ph/0008287

Space graded by weight *n*. Every function *F* obeys:

$\partial F(u,v)$	F^{u}	$F^{\boldsymbol{w}}$	F^{1-u}	F^{1-w}	
ди	\overline{u}	1-u-v	$\overline{1-u}$	$\frac{1}{u+v}$	
$\partial F(u,v)$	$-\frac{F^{\nu}}{\Gamma}$	F^{w}	F^{1-v}	F^{1-w}	
∂v	- v	1-u-v	1 - v	' u + v	w = 1 - u - v

where $F^{u}, F^{v}, F^{w}, F^{1-u}, F^{1-v}, F^{1-w}$ are weight *n*-1 2d HPLs.

To bootstrap *Hggg* amplitude beyond 2 loops, find as small a subspace of 2d HPLs as possible, construct it to high weight.

Symbol is too verbose → Nested representation better

loop order L	1	2	3	4	5	6	7	8
terms in $S[\mathcal{E}^{(L)}]$	6	12	636	11,208	$263,\!880$	4,916,466	97,594,968	???

- Define every function by its {n − 1,1} coproducts,
 i.e. its first derivatives.
- Also need to specify constants of integration at one point,

e.g.
$$(u, v, w) = (1, 0, 0)$$

Recall 1 and 2 loop results

 $S[\mathcal{E}^{(1)}] = (-1) b \otimes d + dihedral$

 $S[\mathcal{E}^{(2)}] = 4 \ b \otimes d \otimes d \otimes d + 2 \ b \otimes b \otimes b \otimes d + d \text{ ihedral}$

Final entry conditions

• Notice that, at least through 2 loops,

 $\mathcal{E}^a = \mathcal{E}^b = \mathcal{E}^c = 0 \tag{1}$

- Observed earlier for 2 loop remainder function *R* Brandhuber, Travaglini, Yang, 1201.4170
- Now, $\mathcal{E}^a = 0 \iff R^a = 0$

since Leibniz rule for derivatives applies to first coproducts, so $[FG]^s = F^sG + FG^s$ and therefore (at symbol level) $[\mathcal{E}^{(2)}]^a = [R^{(2)}]^a + \mathcal{E}^{(1)}[\mathcal{E}^{(1)}]^a$, etc.

- (1) also very similar to 6-gluon relation derived from dual superconformal invariance, the \bar{Q} equation Caron-Huot, He, 1112.1060
- Let's assume (1) holds to all loop orders!

Multiple final entry conditions

• Inspecting the double final entries (double coproducts) of $\mathcal{E}^{(2)}$ leads to the relations:

$$\mathcal{E}^{b,f} = \mathcal{E}^{b,d}, \ \mathcal{E}^{a,e} = \mathcal{E}^{a,f}, \ \mathcal{E}^{c,d} = \mathcal{E}^{c,e}$$
(2)

- Let's assume (2) holds to all loop orders!
- These are on top of the "generic" 21-pair relations.
- Then there are only 6 independent double coproducts, in 2 orbits under the dihedral group:

 $\mathcal{E}^{d,d}, \mathcal{E}^{e,e}, \mathcal{E}^{f,f}$ $\mathcal{E}^{b,d}, \mathcal{E}^{c,e}, \mathcal{E}^{a,f}$

Starting the bootstrap

 Although it's not exactly "fair", from higher loop investigations we also found 4 generic "triple" relations, and one other set of constraints at weight 4, obeyed by the space C needed by planar N=4 SYM:

weight n	0	1	2	3	4	5	6	7	8	9
symbols in \mathcal{M}	1	3	9	27	81	243	729	2187	6561	19683
symbols in \mathcal{C}	1	3	9	21	48	108	249	567	1290	????

- Whereas \mathcal{M} is the "right space" for QCD (at least through 2 loops). It has only the conditions $F^{d,e} = 0$ (+ dihedral)
- How many initial parameters do we need to get to 3 loops?
- Naively 249, since $\mathcal{E}^{(3)}$ has weight 6.

Starting at lower weight

- But we don't need to construct the full weight 6 space for 3 loops, if we adopt the double final entry conditions (2).
- We only need the 48-dimensional weight 4 space, once each to parametrize
 ^{(3)d,d},
 ^{(3)b,d},
 ^{(3)b,d}
 ^{(3)b,d}

so 48 * 2 = 96 initial parameters.

- The other double coproducts follow from dihedral transformations and/or linear relations.
- Once we impose pair relations in the 4-5 slot, dihedral, and branch cut conditions, only 9 parameters survive.
- Requiring $\mathcal{E}(u_i) \to \exp[\frac{\Gamma_{\text{cusp}}}{4}\mathcal{E}^{(1)}]$ in the collinear limit then fixes all but 1 of these. Still need a little more data!

Near-collinear limit = OPE limit

- Amplitude boundary data: (near)collinear limits, related to an OPE for Wilson loops
- Until recently, no OPE for form factors

Flux tubes at finite coupling

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; Basso, Sever, Vieira, 1303.1396, 1306.2058, 1402.3307, 1407.1736, 1508.03045 BSV+Caetano+Cordova, 1412.1132, 1508.02987

- Tile *n*-gon with pentagon transitions \mathcal{P} .
- Quantum integrability → compute pentagons exactly in 't Hooft coupling
- 4d S-matrix as expansion (OPE) in number of flux-tube excitations = series expansion around near collinear limit

The new **FFOPE**

 Form factors are Wilson loops in a periodic space, due to injection of operator momentum

Brandhuber, Spence, Travaglini, Yang, 1011.1899

Besides pentagon transitions *P*, this program needs an additional ingredient, the form factor transition *F* Sever, Tumanov, Wilhelm, 2009.11297, 2105.13367

OPE is expansion around collinear limit

$$k_{2} \parallel k_{3} \qquad u = \frac{S_{12}}{S_{123}} = \frac{1}{1 + S^{2} + T^{2}} v = \frac{S_{23}}{S_{123}} = \frac{T^{2}}{1 + T^{2}} \rightarrow 0 w = 1 - u - v \rightarrow 1 - u$$

FFOPE computes "framed" (IR finite) Wilson loop, related to *R* by $W_3 = \exp[\frac{\Gamma_{cusp}}{4}W_3^{(1)} + R]$ where $W_3^{(1)} = 4\sigma^2 - 2\text{Li}_2(-e^{-2\tau}) + 2\text{Li}_2(-e^{-2\tau} - e^{2\sigma}) + 2\text{Li}_2(-e^{-2\tau} - e^{-2\sigma}(1 + e^{-2\tau})^2) + \frac{\pi^2}{3}$ Flux tube representation $W_3 = \sum_{\psi} e^{-E_{\psi}\tau + ip_{\psi}\sigma} \mathcal{P}(0|\psi)\mathcal{F}(\psi)$ leads to $T^2 = v^1$ terms as series expansion in *S* around S = 0

Near-collinear limit from bulk

- Integrate up functions in limits with simpler function space, using coproduct representations
 → first derivatives
- $v \rightarrow 0$ limit:

 $\frac{\partial F(u,v)}{\partial v} = \frac{F^{v}}{v} - \frac{F^{w}}{1-u-v} - \frac{F^{1-v}}{1-v} + \frac{F^{1-w}}{u+v} \approx \frac{F^{v}}{v} - \frac{F^{w}}{1-u} - F^{1-v} + \frac{F^{1-w}}{u}$

 $\rightarrow v$ dependence is trivial, $\propto v^m \ln^k v$

$$\frac{\partial F(u,v)}{\partial u} = \frac{F^u}{u} - \frac{F^w}{1 - u - v} - \frac{F^{1-u}}{1 - u} + \frac{F^{1-w}}{u + v} \approx \frac{F^u + F^{1-w}}{u} - \frac{F^w + F^{1-u}}{1 - u}$$

u dependence is 1d HPLs; integrate up just using HPL definitions

L. Dixon Amplitude Bootstrap

 $H_{\overrightarrow{w}}(u), \quad w_i \in \{0,1\}$

General form in near collinear limit

$$R^{(L)}(T,S) = \sum_{j=1}^{\infty} \sum_{k=0}^{L-1} T^{2j} \ln^{k} T R^{(L)}_{j,k}(S)$$

• Leading power (T^2) , with $x = -S^2$, can be decomposed as:

$$R_{1,k}^{(L)} = \frac{(1-x)^2}{x} A_k^{(L)} + (1-x) B_k^{(L)} + C_k^{(L)}$$

• Three loop, leading log "target":

$$\begin{aligned} A_2^{(3)} &= -12 H_1 \ln^2(-x) - 32 \left[2 H_{1,1} + H_1 \right] \ln(-x) + 8 H_{0,0,1} - 128 H_{1,1,1} - 8 \zeta_2 \\ &- 64 H_{1,1} - 32 H_1 , \\ B_2^{(3)} &= 32 \ln(-x) , \\ C_2^{(3)} &= 12 \ln^2(-x) + 8 \zeta_2 + 24 , \end{aligned}$$

• Matching near-collinear limit of ansatz fixes the last parameter.

L. Dixon Amplitude Bootstrap

Mainz - Lect. 3 - 2021/07/20 14

Parameters left, bootstrapping in C

L	2	3	4	5	6	7	8	very
symbols in \mathcal{C}	48	249	1290	????	????	????	????	recently
dihedral symmetry	11	51	247	????	????	????	????	made it
(L-1) final entries	5	9	20	44	86	???	???	to $L = 8$
$L^{\rm th}$ discontinuity	2	5	17	38	75	???	??	using C
collinear limit	0	1	2	8	19	70	6	
OPE $T^2 \ln^{L-1} T$	0	0	0	4	12	56	0	amazingl
OPE $T^2 \ln^{L-2} T$	0	0	0	0	0	36	0	little OPE
OPE $T^2 \ln^{L-3} T$	0	0	0	0	0	0	0	data
OPE $T^2 \ln^{L-4} T$	0	0	0	0	0	0	0	needed
OPE $T^2 \ln^{L-5} T$	0	0	0	0	0	0	0	for $L = 8$

Number of (symbol-level) linearly independent $\{n, 1, ..., 1\}$ coproducts (2L - n derivatives)

weight n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
L = 1	1	3	1														
L=2	1	3	6	3	1												
L = 3	1	3	9	12	6	3	1										
L = 4	1	3	9	21	24	12	6	3	1								
L = 5	1	3	9	21	46	45	24	12	6	3	1						
L = 6	1	3	9	21	48	99	85	45	24	12	6	3	1				
L = 7	1	3	9	21	48	108	236	155	85	45	24	12	6	3	1		
L = 8	1	3	9	21	48	108	242	466	279	155	85	45	24	12	6	3	1

- N=4 form factors belong to much smaller space $C \subset M$ than QCD amplitudes (48 < 81).
- Amplitude obeys multiple-final-entry relations

Some numerics

simplest line, analytically $H_{\overrightarrow{w}}(u), \ w_i \in \{0,1\}$

I = decay / Euclidean

IIa,b,c = scattering / spacelike operator

IIIa,b,c = scattering / timelike operator

other lines are $H_{\overrightarrow{w}}$, $w_i \in \{-1,0,1\}$

computationally more difficult: $3^{14} \gg 2^{14}$

Mainz - Lect. 3 - 2021/07/20 17

Euclidean Region

Amplitude real here; shapes very similar!

Normalization factor at peak

L	$R^{(L)}(rac{1}{3},rac{1}{3},rac{1}{3})$	$R^{(L)}(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})/R^{(L-1)}(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
2	-0.148966439	_
3	-8.372052781	+56.20093
4	166.894338831	-19.93470
5	-2666.615691	-15.97787
6	40557.38379	-15.20931
7	-608664.5908	-15.00749

- Planar N=4 has no renormalons or instantons → perturbation theory has finite radius of convergence, = 1/16 for cusp anomalous dimension
- Expect successive loop-order ratios to go to -16 eventually.
- Bit of overshoot here for 6/5 and 7/6 ...

 $gg \rightarrow Hg$ kinematics $(m_H^2 > 0)$ 40 30 $\frac{\operatorname{Im} R^{(L)}(-u,-u,1+2u)}{\operatorname{Re} R^{(L)}(-1,-1,3)}$ 20 L = 6L = 110 0 2 8 10 6 u

Imaginary parts open up in physical scattering region, and are bigger than real part at large loop orders

Space-like Higgs, e.g. $Hg \rightarrow gg$ 5 -4 $\frac{\operatorname{Re} R^{(L)}(1, \nu, -\nu)}{\operatorname{Re} R^{(L)}(1, 1, -1)}$ L = 62 1 · 0000 0 0000 2 8 10 0 v $g \infty$ ത്ത g Approaches forward/Regge limit as $\frac{s_{23}}{m_H^2} = v \rightarrow \infty$ 2 for fixed $u = \frac{s_{12}}{m_u^2}$, but no large logs in *R*, only in BDS-like ansatz.

L. Dixon Amplitude Bootstrap

Mainz - Lect. 3 - 2021/07/20 21

Real "impact factor" appears in space-like Regge limit, $v \rightarrow \infty$

Hggg Form Factor Conclusions

- The simplest bootstrapping problem, given the FFOPE data; feasible even to 8 loops
- Would be great to see if
 N=4 result = [max. transcendental part of QCD]
 at 3 loops too!
- Illustrates general bootstrapping strategy: an Amplitude Game that is literally a Word Game!

Extra Slides

Successive loop ratios on Euclidean symmetric line

Example 1: Harmonic Polylogarithms of one variable (HPLs {0,1})

Remiddi, Vermaseren, hep-ph/9905237

- Subsector of hexagon functions.
- Gen'lize classical polylogs: $Li_n(u) = \int_0^u \frac{dt}{t} Li_{n-1}(t)$, $Li_1(t) = -\ln(1-t)$
- Define HPLs by iterated integration: $H_{0,\vec{w}}(u) = \int_0^u \frac{dt}{t} H_{\vec{w}}(t), \quad H_{1,\vec{w}}(u) = \int_0^u \frac{dt}{1-t} H_{\vec{w}}(t)$
- Or by derivatives

 $dH_{0,\vec{w}}(u) = H_{\vec{w}}(u) \ d\ln u \quad dH_{1,\vec{w}}(u) = -H_{\vec{w}}(u)d\ln(1-u)$

- Symbol letters: $S = \{u, 1 u\}$
- Weight n =length of binary string \vec{w}
- Number of functions at weight n = 2L: 2^{2L}

Values of HPLs {0,1} at *u* = 1

 $\operatorname{Li}_{n}(u) = \int^{u} \frac{dt}{dt} \operatorname{Li}_{n-1}(t) = \sum_{n=1}^{\infty}$ Classical polylogs • evaluate to Riemann zeta values

$$\operatorname{Li}_{n}(u) = \int_{0}^{\infty} \frac{1}{t} \operatorname{Li}_{n-1}(t) = \sum_{k=1}^{\infty} \frac{1}{k^{n}} = \zeta(n) \equiv \zeta_{n}$$

 HPL's evaluate to nested sums called multiple zeta values (MZVs): $\zeta_{n_1, n_2, \dots, n_m} = \sum_{k_1 > k_2 > \dots > k_m > 0}^{\infty} \frac{1}{k_1^{n_1} k_2^{n_2} \cdots k_m^{n_m}}$

Weight $n = n_1 + n_1 + \ldots + n_m$

MZV's obey many identities, e.g. stuffle

$$\zeta_{n_1}\zeta_{n_2} = \zeta_{n_1,n_2} + \zeta_{n_2,n_1} + \zeta_{n_1+n_2}$$

 All reducible to Riemann zeta values until weight 8. Irreducible MZVs: $\zeta_{5,3}, \zeta_{7,3}, \zeta_{5,3,3}, \zeta_{9,3}, \zeta_{6,4,1,1}, \dots$