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2d HPLs
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Gehrmann, Remiddi, hep-ph/0008287 

Space graded by weight n.  Every function F obeys:

𝜕𝐹(𝑢, 𝑣)

𝜕𝑢
=
𝐹𝑢

𝑢
−

𝐹𝑤

1 − 𝑢 − 𝑣
−
𝐹1−𝑢

1 − 𝑢
+
𝐹1−𝑤

𝑢 + 𝑣

where 𝐹𝑢, 𝐹𝑣 , 𝐹𝑤 , 𝐹1−𝑢, 𝐹1−𝑣 , 𝐹1−𝑤 are weight n-1 2d HPLs.

To bootstrap Hggg amplitude beyond 2 loops, find as small a

subspace of 2d HPLs as possible, construct it to high weight.

𝜕𝐹(𝑢, 𝑣)

𝜕𝑣
=
𝐹𝑣

𝑣
−

𝐹𝑤

1 − 𝑢 − 𝑣
−
𝐹1−𝑣

1 − 𝑣
+
𝐹1−𝑤

𝑢 + 𝑣 𝑤 = 1 − 𝑢 − 𝑣



Symbol is too verbose 

→ Nested representation better

• Define every function by its 𝑛 − 1,1 coproducts, 

i.e. its first derivatives.

• Also need to specify 

constants of integration 

at one point, 

e.g. 𝑢, 𝑣, 𝑤 = (1,0,0)
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Recall 1 and 2 loop results
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𝑆 ℰ 1 = (−1) 𝑏⨂𝑑 + dihedral

𝑆 ℰ 2 = 4 𝑏⨂𝑑⨂𝑑⨂𝑑 + 2 𝑏⨂𝑏⨂𝑏⨂𝑑 + dihedral



Final entry conditions

• Notice that, at least through 2 loops,  

ℰ𝑎 = ℰ𝑏 = ℰ𝑐 = 0 (1)
• Observed earlier for 2 loop remainder function R

Brandhuber, Travaglini, Yang, 1201.4170

• Now,  ℰ𝑎= 0 ⇔ 𝑅𝑎= 0

since Leibniz rule for derivatives applies to first coproducts, 

so [𝐹𝐺]𝑠 = 𝐹𝑠𝐺 + 𝐹𝐺𝑠 and therefore (at symbol level)

[ℰ(2)]𝑎= [𝑅(2)]𝑎+ℰ(1)[ℰ(1)]𝑎, etc.

• (1) also very similar to 6-gluon relation derived from dual 

superconformal invariance, the ത𝑄 equation                   
Caron-Huot, He, 1112.1060 

• Let’s assume (1) holds to all loop orders!
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Multiple final entry conditions

• Inspecting the double final entries (double 

coproducts) of ℰ(2) leads to the relations:

• Let’s assume (2) holds to all loop orders!

• These are on top of the “generic” 21-pair relations.

• Then there are only 6 independent double 

coproducts, in 2 orbits under the dihedral group: 

ℰ𝑑,𝑑 , ℰ𝑒,𝑒 , ℰ𝑓,𝑓

ℰ𝑏,𝑑 , ℰ𝑐,𝑒 , ℰ𝑎,𝑓
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ℰ𝑏,𝑓 = ℰ𝑏,𝑑 , ℰ𝑎,𝑒= ℰ𝑎,𝑓 , ℰ𝑐,𝑑 = ℰ𝑐,𝑒 (2)



Starting the bootstrap

• Although it’s not exactly “fair”, from higher loop 

investigations we also found 4 generic “triple” relations, and 

one other set of constraints at weight 4, obeyed by the 

space 𝒞 needed by planar N=4 SYM:

• Whereas ℳ is the “right space” for QCD (at least through 2 

loops).  It has only the conditions 𝐹𝑑,𝑒 = 0 (+ dihedral)

• How many initial parameters do we need to get to 3 loops?

• Naively 249, since ℰ(3) has weight 6.
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Starting at lower weight

• But we don’t need to construct the full weight 6 space for  

3 loops, if we adopt the double final entry conditions (2).

• We only need the 48-dimensional weight 4 space, once 

each to parametrize ℰ 3 𝑑,𝑑 , ℰ 3 𝑏,𝑑,  

so 48 * 2 = 96 initial parameters. 

• The other double coproducts follow from dihedral 

transformations and/or linear relations. 

• Once we impose pair relations in the 4-5 slot, dihedral, 

and branch cut conditions, only 9 parameters survive.

• Requiring ℰ 𝑢𝑖 → exp[
Γcusp

4
ℰ(1)] in the collinear limit then 

fixes all but 1 of these.  Still need a little more data!
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Near-collinear limit = OPE limit

• Amplitude boundary data: (near)collinear 

limits, related to an OPE for Wilson loops

• Until recently, no OPE for form factors
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Flux tubes at finite coupling
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Alday, Gaiotto, Maldacena,  Sever, Vieira,  1006.2788; 

Basso, Sever, Vieira, 1303.1396, 1306.2058, 1402.3307, 1407.1736, 1508.03045

BSV+Caetano+Cordova, 1412.1132, 1508.02987

• Tile n-gon with pentagon transitions 𝒫.

• Quantum integrability → compute pentagons exactly in       

’t Hooft coupling

• 4d S-matrix as expansion (OPE) in number of flux-tube 

excitations = series expansion around near collinear limit



The new FFOPE

• Form factors are Wilson loops in a periodic space, due to 

injection of operator momentum

Brandhuber, Spence, Travaglini, Yang, 1011.1899

• Besides pentagon transitions 𝒫, this program needs an 

additional ingredient, the form factor transition ℱ
Sever, Tumanov, Wilhelm, 2009.11297, 2105.13367
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𝒫

𝒫

ℱ



OPE is expansion around collinear limit
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𝑢 =
𝑠12
𝑠123

=
1

1 + 𝑆2 + 𝑇2

𝑣 =
𝑠23
𝑠123

=
𝑇2

1 + 𝑇2
→ 0

𝑤 = 1 − 𝑢 − 𝑣 → 1 − 𝑢

FFOPE computes “framed” (IR finite) Wilson loop, 

related to R by    𝒲3 = exp[
Γcusp

4
𝒲3

1
+ 𝑅] where

Flux tube representation

leads to 𝑇2 = 𝑣1 terms as series expansion in 𝑆 around 𝑆 = 0

𝑆 = 𝑒𝜎 , 𝑇 = 𝑒−𝜏



Near-collinear limit from bulk

• Integrate up functions in limits with simpler 

function space, using coproduct representations 

→ first derivatives

• 𝑣 → 0 limit:

→ 𝑣 dependence is trivial, ∝ 𝑣𝑚ln𝑘𝑣
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𝜕𝐹(𝑢,𝑣)

𝜕𝑢
=

𝐹𝑢

𝑢
−

𝐹𝑤

1−𝑢−𝑣
−

𝐹1−𝑢

1−𝑢
+

𝐹1−𝑤

𝑢+𝑣
≈

𝐹𝑢+𝐹1−𝑤

𝑢
−

𝐹𝑤+𝐹1−𝑢

1−𝑢

𝜕𝐹(𝑢, 𝑣)

𝜕𝑣
=
𝐹𝑣

𝑣
−

𝐹𝑤

1 − 𝑢 − 𝑣
−
𝐹1−𝑣

1 − 𝑣
+
𝐹1−𝑤

𝑢 + 𝑣
≈

𝐹𝑣

𝑣
−

𝐹𝑤

1 − 𝑢
− 𝐹1−𝑣 +

𝐹1−𝑤

𝑢

𝐻𝑤 𝑢 , 𝑤𝑖∈ {0,1}
u dependence is 1d HPLs;

integrate up just using HPL definitions



General form in near collinear limit

• Leading power (𝑇2), with 𝑥 = −𝑆2, can be decomposed as:

• Three loop, leading log “target”:

• Matching near-collinear limit of ansatz fixes the last parameter.
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Parameters left, bootstrapping in 𝒞
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very

recently 

made it 

to L = 8

using 𝒞

amazingly 

little OPE 

data 

needed

for L = 8 !



Number of (symbol-level) linearly independent 

𝑛, 1, … , 1 coproducts  (2𝐿 − 𝑛 derivatives)

• N=4 form factors belong to much smaller space 

𝒞 ⊂ ℳ than QCD amplitudes (48 < 81).

• Amplitude obeys multiple-final-entry relations
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Some numerics
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simplest line, analytically

𝐻𝑤 𝑢 , 𝑤𝑖∈ {0,1}

other lines are 𝐻𝑤, 𝑤𝑖∈ {−1,0,1}

computationally more difficult: 314≫ 214
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Amplitude real here; shapes very similar!

Euclidean Region



Normalization factor at peak

• Planar N=4 has no renormalons or instantons   →
perturbation theory has finite radius of convergence, = 1/16 for cusp 

anomalous dimension 

• Expect successive loop-order ratios to go to -16 eventually.  

• Bit of overshoot here for 6/5 and 7/6 …
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gg→ Hg kinematics (𝑚𝐻
2 > 0)
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Imaginary parts open up in physical scattering region, 

and are bigger than real part at large loop orders



Space-like Higgs, e.g. Hg → gg
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Approaches forward/Regge limit as 
𝑠23

𝑚𝐻
2 = 𝑣 → ∞

for fixed 𝑢 =
𝑠12

𝑚𝐻
2 , but no large logs in R, only in BDS-like ansatz.



Real “impact factor” appears in 

space-like Regge limit, 𝑣 → ∞
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Nontrivial 

function of 

𝑢 =
𝑠12

𝑚𝐻
2



Hggg Form Factor Conclusions

• The simplest bootstrapping problem, given the 

FFOPE data; feasible even to 8 loops

• Would be great to see if 

N=4 result = [max. transcendental part of QCD]

at 3 loops too!

• Illustrates general bootstrapping strategy: 

an Amplitude Game that is literally a Word Game!
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Extra Slides

L. Dixon    Amplitude Bootstrap Mainz - Lect. 3 - 2021/07/20 24



L. Dixon    Amplitude Bootstrap Mainz - Lect. 3 - 2021/07/20 25

Successive loop ratios on Euclidean symmetric line



Example 1: Harmonic Polylogarithms 

of one variable (HPLs {0,1})

• Subsector of hexagon functions.  

• Gen’lize classical polylogs: 

• Define HPLs by iterated integration:

• Or by derivatives

• Symbol letters:

• Weight n = length of binary string 

• Number of functions at weight n = 2L:    22L
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Remiddi, Vermaseren, hep-ph/9905237



Values of HPLs {0,1} at u = 1

• Classical polylogs

evaluate to Riemann zeta values 

• HPL’s evaluate to nested sums called multiple zeta values 

(MZVs):

Weight    n = n1 + n1 + … + nm

• MZV’s obey many identities, e.g. stuffle

• All reducible to Riemann zeta values until weight 8.  

Irreducible MZVs:   
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