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2d HPLs
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Gehrmann, Remiddi, hep-ph/0008287 

Space graded by weight n.  Every function F obeys:

𝜕𝐹(𝑢, 𝑣)

𝜕𝑢
=
𝐹𝑢

𝑢
−

𝐹𝑤

1 − 𝑢 − 𝑣
−
𝐹1−𝑢

1 − 𝑢
+
𝐹1−𝑤

𝑢 + 𝑣

where 𝐹𝑢, 𝐹𝑣 , 𝐹𝑤 , 𝐹1−𝑢, 𝐹1−𝑣 , 𝐹1−𝑤 are weight n-1 2d HPLs.

To bootstrap Hggg amplitude beyond 2 loops, find as small a

subspace of 2d HPLs as possible, construct it to high weight.

𝜕𝐹(𝑢, 𝑣)

𝜕𝑣
=
𝐹𝑣

𝑣
−

𝐹𝑤

1 − 𝑢 − 𝑣
−
𝐹1−𝑣

1 − 𝑣
+
𝐹1−𝑤

𝑢 + 𝑣 𝑤 = 1 − 𝑢 − 𝑣



Generalized polylogarithms
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• Can be defined as iterated integrals, e.g.

𝐺 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑥 = න
0

𝑥 𝑑𝑡

𝑡 − 𝑎1
𝐺 𝑎2, … , 𝑎𝑛, 𝑡

• Or define differentially:     𝑑𝐹 = σ𝑠𝑘∈𝒮
𝐹𝑠𝑘 𝑑 ln 𝑠𝑘

• There is a Hopf algebra that “co-acts” on the 

space of polylogarithms, Δ: 𝐹 → 𝐹⨂𝐹
• The derivative 𝑑𝐹 is one piece of Δ: Δ𝑛−1,1𝐹 = σ𝑠𝑘∈𝒮

𝐹𝑠𝑘 ⨂ ln 𝑠𝑘

• so we refer to 𝐹𝑠𝑘 as a {n-1,1} coproduct of 𝐹
• 𝒔𝒌 are letters in the symbol alphabet  𝒮

Chen, Goncharov, Brown,…



Generalized polylogarithms (cont.)
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• The {n-1,1} coaction can be applied iteratively.

• Define the {n-2,1,1} “double” coproducts, 𝐹𝑠𝑘,,𝑠𝑗, 
via the derivatives of the {n-1,1} single coproducts 𝐹𝑠𝑗:

𝑑𝐹𝑠𝑗 ≡ σ𝑠𝑘∈𝒮
𝐹𝑠𝑘,,𝑠𝑗 𝑑 ln 𝑠𝑘

• And so on for the {n-m,1,…,1} mth coproducts of F.

• The maximal iteration, n times for a weight n function, is

the symbol,
𝒮 𝐹 = σ𝑠𝑖1 ,…,𝑠𝑖𝑛∈𝒮

𝐹𝑠𝑖1 ,…,𝑠𝑖𝑛 𝑑 ln 𝑠𝑖1 … 𝑑 ln 𝑠𝑖𝑛 ≡ σ
𝑠𝑖1 ,…,𝑠𝑖𝑛∈𝒮

𝐹𝑠𝑖1 ,…,𝑠𝑖𝑛 𝑠𝑖1⨂…⨂ 𝑠𝑖𝑛

where now 𝐹𝑠𝑖1 ,…,𝑠𝑖𝑛 are just rational numbers
Goncharov, Spradlin, Vergu, Volovich, 1006.5703



Exercise:  Verify that all 3 dihedral (cyclic) permutations of the 

(finite part of the) box integral

are in this space.

Symbol alphabet for Hggg

L. Dixon    Amplitude Bootstrap Mainz - Lect. 2 - 2021/07/19 5

• Comparing

with 𝑑𝐹 = σ𝑠𝑘∈𝒮 𝐹
𝑠𝑘 𝑑 ln 𝑠𝑘

we see that 𝒮 = {𝑢, 𝑣, 𝑤, 1 − 𝑢, 1 − 𝑣, 1 − 𝑤}

𝜕𝐹(𝑢, 𝑣)

𝜕𝑢
=
𝐹𝑢

𝑢
−

𝐹𝑤

1 − 𝑢 − 𝑣
−
𝐹1−𝑢

1 − 𝑢
+
𝐹1−𝑤

𝑢 + 𝑣

𝜕𝐹(𝑢, 𝑣)

𝜕𝑣
=
𝐹𝑣

𝑣
−

𝐹𝑤

1 − 𝑢 − 𝑣
−
𝐹1−𝑣

1 − 𝑣
+
𝐹1−𝑤

𝑢 + 𝑣

Gehrmann, Remiddi, hep-ph/0008287 

𝑤 = 1 − 𝑢 − 𝑣

= Li2 1 −
1

𝑢
+ Li2 1 −

1

𝑣
+
1

2
ln2

𝑢

𝑣
+⋯



Iterative construction and “integrability”
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• Suppose we know all functions F at weight n-1, and

the dimension of this space is 𝑑𝑛−1.
• We can use the differential definition to construct  

all functions at the next weight up, n.  

• In the 2dHPL case, naively we get 𝑑𝑛 = 6𝑑𝑛−1
weight n functions, given that there are 

6 {n-1,1} coproducts 𝐹𝑢, 𝐹𝑣 , 𝐹𝑤 , 𝐹1−𝑢, 𝐹1−𝑣 , 𝐹1−𝑤

• But there is an integrability constraint, that the mixed

partial derivatives must be equal:

𝜕2𝐹(𝑢, 𝑣)

𝜕𝑢𝜕𝑣
=
𝜕2𝐹(𝑢, 𝑣)

𝜕𝑣𝜕𝑢



Homework
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• Use equality of the mixed partial derivatives to derive 

a set of linear constraints on the {n-2,1,1} “double” 

coproducts, 𝐹𝑠𝑘,,𝑠𝑗

• After looking at what multiplies the independent rational

functions of u and v, you should find 9 independent relations:

𝐹1−𝑢,1−𝑣 − 𝐹1−𝑣,1−𝑢 = 0,           and dihedral images (3 equations)

𝐹𝑢,𝑣 − 𝐹𝑣,𝑢 + 𝐹1−𝑤,𝑣 − 𝐹𝑣,1−𝑤 = 0, and dihedral images (6 eqns)

• Note that you might initially find linear combinations of these relations,

but they can be rearranged into this form.



Infrared divergences
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• All on-shell amplitudes in massless gauge theory

are infrared divergent due to soft gluon exchange,

and virtual collinear splitting.

• Soft divergences quite complicated “web” for n-point

amplitude because soft gluons can “see” all hard particles

1980s QCD factorization: Collins, Soper, Sterman, Mueller, Sen, Magnea, Korchemsky, …



• IR divergences simplify drastically in the planar limit: 

• The n (adjoint) hard particles generically have very different 

color indices on each side of their double-edged (‘t Hooft) 

color lines, defining n “wedges”:

• Each soft gluon can only be emitted 

and absorbed within a single wedge. 

• Collinear virtual emission can be 

assigned to wedges too.  

• Each wedge is very simple 

kinematically, depending only on 𝑠𝑖,𝑖+1
• It is the square root of a 2-point “Sudakov” form factor

• Furthermore, it is dual to a piece of the n-gon, containing a 

single vertex, or cusp.  

• Leading behavior ~ cusp anomalous dimension.

Planar IR divergences
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e.g. Bern, LD, Smirnov, hep-th/0505205

Korchemsky, Radyushkin

Magnea,

Sterman



BDS Ansatz
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Bern, LD, Smirnov, hep-th/0505205

For planar N=4 SYM n-point MHV amplitudes:

• 𝜆 = 𝑁𝑐𝑔𝑌𝑀
2 is the ‘t Hooft coupling

• 𝑀𝑛
1
(𝑙𝜖) is 1-loop MHV amplitude, in dimensional 

regularization with 𝐷 = 4 − 2𝑙𝜖

• Unusual dimension and 𝑓 𝑙 𝜖 ~ Γ𝑐𝑢𝑠𝑝 + 𝒪(𝜖) designed to 

reproduce Sudakov form factor for each wedge,  Magnea, Sterman

capture all IR divergences.  (Also proper collinear limits.)

• 𝐶(𝑙) is a constant for n = 4,5, as a consequence of

dual conformal invariance: no cross ratios on which to depend!

BDS
BDS



• Starting at n = 6, BDS ansatz for MHV amplitudes

needs correction, define a remainder function:

• Dual conformal invariance 

→𝑅𝑛 only depends on 3n-15 cross ratios 𝑢𝑖
• Collinear properties of 𝒜𝑛

BDS are “correct”

→𝑅𝑛 → 𝑅𝑛−1 smoothly as any two gluons become collinear
• In particular, 𝑅6 → 𝑅5 = 0. Similarly for Hggg remainder 𝑅

Remainder function
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lim
𝜖→0

𝒜𝑛
MHV(𝑠𝑖,𝑖+1, 𝜖)

𝒜𝑛
BDS(𝑠𝑖,𝑖+1, 𝜖)

≡ exp[𝑅𝑛(𝑢𝑖)]

Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465;

Drummond, Henn, Korchemsky, Sokatchev, 0803.1466



Remainder function issues
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• Despite the nice collinear properties of the remainder

function, it does not have the nicest causal (branch cut) 

properties, leading it to live in “too big” a space of 

functions.

• Not good for bootstrapping.

• Problem is that BDS ansatz exponentiates the

full one-loop amplitude. The perturbative expansion of 

the exponential at two loops includes [𝑀𝑛
(1)
]2, and this 

quantity violates certain causal “Steinmann” relations



Steinmann relations

• Amplitudes should not have overlapping branch cuts:
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Steinmann, Helv. Phys. Acta (1960) Bartels, Lipatov, Sabio Vera, 0802.2065

can’t apply to

2 particle cuts in

massless case 

because they are 

not independent
Disc𝑠234 Disc𝑠123𝒜6 = 0



BDS-like normalization

• Inspecting the 1-loop 6-gluon amplitude, it splits into a 

part with no 3-particle cuts (only ln 𝑠𝑖,𝑖+1), and a          

finite dual conformal part:

𝑀6
1

𝜖 = ෡𝑀6
1

𝜖 + ℰ6
1
(𝑢, 𝑣, 𝑤)

෡𝑀6
(1)

𝜖 =෍

𝑖=1

6

[−
1

𝜖2
(1 − 𝜖 ln 𝑠𝑖,𝑖+1) − ln 𝑠𝑖,𝑖+1 ln 𝑠𝑖+1,𝑖+2 +

1

2
ln 𝑠𝑖,𝑖+1 ln 𝑠𝑖+3,𝑖+4 + 𝜁2]

ℰ6
1
= Li2 1 −

1

𝑢
+ Li2 1 −

1

𝑣
+ Li2 1 −

1

𝑤
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• So we can normalize by the more minimal ansatz,

𝒜6
BDS−like = 𝒜6

treeexp[෍

𝑙=1

∞

[
𝜆

8𝜋2
]2(𝑓 𝑙 𝜖 ෡𝑀6

1
𝑙𝜖 + 𝐶 𝑙 )]

Alday, Gaiotto, Maldacena, 0911.4708

i index is mod 6



BDS-like normalized amplitude ℰ

• For 6 gluons, best to work with:

because it obeys

• There’s also a Steinmann-preserving 7-gluon normalization.  
LD, Drummond, Harrington, McLeod, Papathanasiou, Spradlin, 1612.08976 

• For 3-point “Hggg” form factor ℱ3, there are no Steinmann 

relations to preserve, but we can still expect a more 

minimal normalization to simplify things.

L. Dixon    Amplitude Bootstrap Mainz - Lect. 2 - 2021/07/19 15

ℰ6 𝑢𝑖 = lim
𝜖→0

𝒜6(𝑠𝑖,𝑖+1, 𝜖)

𝒜6
BDS−like(𝑠𝑖,𝑖+1, 𝜖)

= exp[
Γcusp

4
ℰ6
(1)

+ 𝑅6]

Disc𝑠234 Disc𝑠123ℰ6 = 0

Caron-Huot, LD, von Hippel, McLeod, 1609.00669

from 𝑓 𝑙 (𝜖 → 0)



BDS-like normalization for ℱ3

• Inspecting the 1-loop amplitude, 

𝑀3
1

𝜖 = ෡𝑀3
1

𝜖 + ℰ
1
(𝑢, 𝑣, 𝑤)

෡𝑀3
(1)

𝜖 =෍

𝑖=1

3

[−
1

𝜖2
(1 − 𝜖 ln 𝑠𝑖,𝑖+1) −

1

2
ln2 𝑠𝑖,𝑖+1] +

9

2
𝜁2 +෍

𝑖=1

3

[ln2𝑢𝑖 − ln𝑢𝑖 ln 𝑢𝑖+1]

ℰ
1
= 2 [ Li2 1 −

1

𝑢
+ Li2 1 −

1

𝑣
+ Li2 1 −

1

𝑤
]
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and we normalize by,

ℱ3
BDS−like = ℱ3

treeexp[෍

𝑙=1

∞

[
𝜆

8𝜋2
]2(𝑓 𝑙 𝜖 ෡𝑀3

1
𝑙𝜖 + 𝐶 𝑙 )]

ℰ 𝑢𝑖 = lim
𝜖→0

ℱ3 (𝑠𝑖,𝑖+1, 𝜖)

ℱ3
BDS−like(𝑠𝑖,𝑖+1, 𝜖)

= exp[
Γcusp

4
ℰ(1) + 𝑅]

i index is mod 3



Relation between 𝑅, ℰ

ℰ 𝑢𝑖 = exp[
Γcusp

4
ℰ(1) + 𝑅]

• In collinear limit,     ℰ 𝑢𝑖 → exp[
Γcusp

4
ℰ(1)]

• Cusp anomalous dimension known to all loop orders (by 

inverting a semi-infinite matrix 𝕂, not in closed form) 
Beisert, Eden, Staudacher, hep-th/0610251

Γcusp

4
= 𝑔2 − 2𝜁2𝑔

4 + 22𝜁4𝑔
6 − 219𝜁6 + 8𝜁3

2 𝑔8 +⋯

where 𝑔2 ≡
𝜆

16𝜋2

• At symbol level, all zeta values vanish,

ℰ 𝑢𝑖 = exp 𝑔2ℰ 1 + 𝑅 = 1 + 𝑔2 ℰ 1 + 𝑔4[𝑅 2 +
1

2
ℰ 1 )2 +⋯

• So       ℰ 2 = 𝑅 2 +
1

2
[ℰ(1)]2 , etc.
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Inspecting the 2 loop symbol
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• Symbol of the infrared finite “remainder function”

from Brandhuber, Travaglini, Yang, 1201.4170 

• It is not that complicated (84 terms), but every pair of 

adjacent letters appears.  

• So let’s convert to ℰ 2 = 𝑅 2 +
1

2
[ℰ(1)]2



A better alphabet
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• Motivated by a similar change of variables in the 

6 gluon case   Caron-Huot, LD, von Hippel, McLeod, 1609.00669

(which exposes the Steinmann relations there), 

we also switch to the alphabet

𝒮′ = { 𝑎 =
𝑢

𝑣𝑤
, 𝑏 =

𝑣

𝑤𝑢
, 𝑐 =

𝑤

𝑢𝑣
, 𝑑 =

1−𝑢

𝑢
, 𝑒 =

1−𝑣

𝑣
, 𝑓 =

1−𝑤

𝑤
}

• We find that the symbol of the one- and two-loop 

amplitudes simplify remarkably, down to just 1 and 2 terms, 

plus dihedral images(!!!): 

𝑆 ℰ 1 = (−1) 𝑏⨂𝑑 + dihedral

𝑆 ℰ 2 = 4 𝑏⨂𝑑⨂𝑑⨂𝑑 + 2 𝑏⨂𝑏⨂𝑏⨂𝑑 + dihedral



Exercise(s)

L. Dixon    Amplitude Bootstrap Mainz - Lect. 2 - 2021/07/19 20

• From

compute the symbol by taking derivatives, first in the alphabet

and then convert it to       𝒮′ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}

• You can also derive relations between coproducts in 

different alphabets using the chain rule: 

𝐹𝑢 = 𝐹𝑎 − 𝐹𝑏 − 𝐹𝑐 − 𝐹𝑑 𝐹1−𝑢 = 𝐹𝑑

+ dihedral images

𝒮 = {𝑢, 𝑣, 𝑤, 1 − 𝑢, 1 − 𝑣, 1 − 𝑤}



Many adjacency constraints!
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𝐹𝑑,𝑒 = 𝐹𝑒,𝑑 = 𝐹𝑒,𝑓 = 𝐹𝑓,𝑒 = 𝐹𝑓,𝑑 = 𝐹𝑑,𝑓 = 0

Hold for 2 loop QCD amplitudes too, planar and nonplanar!
LD, Mcleod, Wilhelm, 2012.12286

𝐹𝑎,𝑑 = 𝐹𝑑,𝑎 = 𝐹𝑏,𝑒 = 𝐹𝑒,𝑏 = 𝐹𝑐,𝑓 = 𝐹𝑓,𝑐 = 0

Latter are NEW: Hold for planar N=4 SYM to 8 loops!

LD, Gürdoğan, Mcleod, Wilhelm, to appear

Mnemonic for dihedral symmetry; 

6 dashed lines indicate 12 forbidden pairs.



Pair recap for planar N=4 SYM
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• There are 9 integrability relations. In the alphabet 𝒮′,
6 of them become the antisymmetric parts of the 12 relations

𝐹𝑑,𝑒 = 𝐹𝑒,𝑑 = 𝐹𝑒,𝑓 = 𝐹𝑓,𝑒 = 𝐹𝑓,𝑑 = 𝐹𝑑,𝑓 = 0

𝐹𝑎,𝑑 = 𝐹𝑑,𝑎 = 𝐹𝑏,𝑒 = 𝐹𝑒,𝑏 = 𝐹𝑐,𝑓 = 𝐹𝑓,𝑐 = 0

• The 3 remaining integrability relations are a bit longer:

𝐹𝑎,𝑏 − 𝐹𝑏,𝑎 + 𝐹𝑎,𝑐 − 𝐹𝑐,𝑎 = 0
𝐹𝑏,𝑐 − 𝐹𝑐,𝑏 + 𝐹𝑎,𝑐 − 𝐹𝑐,𝑎 = 0

𝐹𝑑,𝑏 − 𝐹𝑏,𝑑 + 𝐹𝑐,𝑑 − 𝐹𝑑,𝑐 + 𝐹𝑒,𝑐 −𝐹𝑐,𝑒 + 𝐹𝑎,𝑒 − 𝐹𝑒,𝑎

+𝐹𝑓,𝑎 − 𝐹𝑎,𝑓 + 𝐹𝑏,𝑓 − 𝐹𝑓,𝑏 + 4(𝐹𝑐,𝑏 −𝐹𝑏,𝑐) = 0

• Number of allowed pairs is 36 – 6 – 9 = 21  

(This number is saturated by 3 loops.)



• Quite generally, derivatives commute with branch cuts:
𝜕

𝜕𝑧
Disc𝑧=𝑧0𝑓 𝑧 = Disc𝑧=𝑧0

𝜕𝑓

𝜕𝑧
• Derivatives of higher weight functions must obey branch-

cut condition too.  At symbol level this means their first 

entries can only be 𝑢, 𝑣, 𝑤 , or   𝑎, 𝑏, 𝑐
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Branch cut conditions

All massless particles 

→all branch cuts start at 

origin in 𝑠𝑖,𝑖+1 , 𝑠123

→Branch cuts all start from 0 or ∞  in    𝑢 =
𝑠12

𝑠123
or  𝑣 or  𝑤

→Only 3 weight 1 functions, not 6: { ln 𝑢, ln 𝑣, ln𝑤 } ln(1 − 𝑢)



• In the form factor case, requiring no branch cut as 𝑢 → 1
for arbitrary 𝑣,𝑤 → 0 gives the condition (+ dihedral 

images):

𝐹1−𝑢 1, 𝑣, 𝑤 |𝑣,𝑤→0 = 0

• This condition is stronger than the first-entry condition.   

At symbol level it says that a 1 − 𝑢 anywhere in the 

symbol must be preceded by 𝑢, 1 − 𝑣, 𝑜𝑟 1 − 𝑤

• For 6 and 7 gluons, the appropriate first entry condition is 

enough, at symbol level.  
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Branch cut conditions



Heuristic view of space
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1

lnu lnv lnw

Li2(1-1/ui)   ln
2ui    lnui lnui+1 - z2

Li3(1-1/ui), true 2D HPLs, …

weight

1

4

3

2

0

…

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫
derivatives

𝜕𝐹(𝑢, 𝑣)

𝜕𝑢
=
𝐹𝑢

𝑢
−

𝐹𝑤

1 − 𝑢 − 𝑣
−
𝐹1−𝑢

1 − 𝑢
+
𝐹1−𝑤

𝑢 + 𝑣



Construction of space

• Weight 2: Must start with 𝑎, 𝑏, 𝑐 . 6 choices of letters in 

second slot before applying pair constraints.  

• First suppose second letter is also 𝑎, 𝑏, 𝑐 .  Then “longest” 

pair constraint collapses to 𝐹𝑏,𝑐 = 𝐹𝑐,𝑏.  Combining it with 

the other two long ones gives the dihedral images,     

𝐹𝑎,𝑏 = 𝐹𝑏,𝑎, 𝐹𝑐,𝑎 = 𝐹𝑎,𝑐.

• Solved by           𝑎⨂𝑎 = 𝑆
1

2
ln2𝑎 + cyclic       (3)

𝑎⨂𝑏 + 𝑏⨂𝑎 = 𝑆[ln 𝑎 ln 𝑏] + cyclic       (3)

• If last letter is 𝑑, “longest” pair constraint → 𝐹𝑏,𝑑 = 𝐹𝑐,𝑑

→ 𝑏⨂𝑑 + 𝑐⨂𝑑 = −2𝑢⨂
1−𝑢

𝑢
= 𝑆[2Li2 1 −

1

𝑢
] + cyclic   (3)

• Weight 2 space is 9 dimensional.
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Construction of space (cont.)

• Weight 3: Start with the 9 weight 2 symbol, and tack on all 

6 choices of letters in 3rd slot.  

• Apply pair constraints.

• Also apply branch cut constraints. (Satisfied at weight 2.)

• Finally there are some triple constraints.

• Solve on computer → weight 3 is 21 dimensional

• Promote to functions:  

At low weights, most are logs and 1d HPLs:

Symbol alphabet for 𝐻𝑤 𝑥 :    {𝑥, 1 − 𝑥}
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Construction of space (cont.)
Let 𝑢 = 𝑢1, 𝑣 = 𝑢2, 𝑤 = 𝑢3
• 3 weight 1 functions: ln 𝑢𝑖
• 9 weight 2 functions:

1

2
ln2

𝑢𝑖

𝑢𝑖+1
+ 𝜁2 ,

1

2
ln2

𝑢𝑖𝑢𝑖+1

𝑢𝑖+2
+ 𝜁2 , 𝐻0,1 (1 − 𝑢𝑖)

• 22 weight 2 functions:

+ two more complicated 3-orbits

+ 𝜁3 [need first at 6 loops!]
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Symbol is too verbose 

→ Nested representation better

• Define every function by its 𝑛 − 1,1 coproducts, 

i.e. its first derivatives.

• Also need to specify 

constants of integration 

at one point, 

e.g. 𝑢, 𝑣, 𝑤 = (1,0,0)
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Three-index tensors

• Function space defined by 

𝑑𝐹 = σ𝑠𝛼∈𝒮
𝐹𝑠𝛼 𝑑 ln 𝑠𝛼 or      Δ𝑛−1,1𝐹 = σ𝑠𝛼∈𝒮

𝐹𝑠𝛼 ⨂ ln 𝑠𝛼

• Let {𝑓𝑖
(𝑛)
} be a basis for the 𝑑𝑛 functions at weight n, and 

expand the derivatives of 𝑓𝑖
(𝑛)

in terms of 𝑓𝑖
(𝑛−1) : 

𝑑𝑓𝑖
(𝑛)

=෍

𝑗,𝛼

𝑇𝑖𝑗𝛼
(𝑛)
𝑓𝑗
(𝑛−1)

𝑑 ln 𝑠𝛼

• Tensors 𝑇𝑖𝑗𝛼
(𝑛)

∈ ℚ have dimension 𝑑𝑛 × 𝑑𝑛−1 × |𝒮|,    

fully characterize space at symbol level, and up to 

constants at function level.
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