[Amplitude] Bootstrap

Lance Dixon (SLAC)

"The Amplitude Games" Mainz Institute for Theoretical Physics 19-20 July, 2021

Those who explore an unknown world are travelers without a map: the map is the result of the exploration. The position of their destination is not known to them, and the direct path that leads to it is not yet made.

Hideki Yukawa

Not the conformal bootstrap

• Constraining allowed CFTs using crossing symmetry, positivity,...

Not the S-matrix bootstrap

• Constraining allowed S-matrices for massive theories using unitarity, crossing symmetry,...

Córdova, He, Kruczenski, Vieira, 1909.06495

Amplitude bootstrap

- Pick a specific theory (often planar N=4 SYM!)
- Explore its nontrivial scattering amplitudes in great detail (high loop order) by:
- 1. making assumptions about their functional dependence
- 2. writing an ansatz (guess) as a linear combination of such functions
- 3. constraining the ansatz with known (or suspected) properties until it's uniquely determined
- 4. checking the answer further with known constraints
- 5. computing the amplitude explicitly wherever possible

e.g. 6 gluon scattering to 7 loops

Caron-Huot, LD, Dulat, von Hippel, McLeod, Papathanasiou, 1903.10890

Mainz - Lect. 1 - 2021/07/19

Rich theoretical "data" mine

- Rare to have perturbative results to 7 loops
- Usually high loop order \rightarrow single numbers such as β functions or anomalous dimensions
- Here we have analytic functions of 2,3,6 variables
- Many limits to study (and exploit)

Outline

Lecture 1:

- 1. General properties of N=4 SYM amplitudes
- 2. A new bootstrapping arena, form factors **Lecture 2**:
- 1. Generalized polylogarithms and symbols
- 2. IR divergences and BDS(-like) normalizations
- 3. Branch cuts, pair relations and space construction **Lecture 3**:
- 1. Finding the amplitude in the space with the aid of (multiple) final entry conditions, and the FFOPE
- 2. Form factor results

Lecture 4:

- 1. 6 gluon scattering and hexagon functions
- 2. 7 gluon scattering and heptagon functions

Lecture 1

Different routes to perturbative amplitudes

L. Dixon Amplitude Bootstrap

N=4 SYM particle content

Brink, Schwarz, Scherk; Gliozzi, Scherk, Olive (1977)

all in adjoint representation of G

Mainz - Lect. 1 - 2021/07/19

QCD vs. N=4 SYM

- QCD has gluons and quarks in fundamental rep. of $SU(N_c)$
- Replace quarks with 4 copies of fermions in adjoint rep. (gluinos) and add 6 real adjoint scalars
- Feynman vertices:

QCD vs. N=4 SYM at tree level

At tree-level essentially identical

000

N=4 SYM very special

- At one loop, cancellation of loop momenta in numerator
 → only scalar box integrals

 Bern, LD, Dunbar, Kosower, hep-ph/9403226
- Weight 2 functions dilogs. For example,

$$\int_{3}^{1} = \text{Li}_{2}\left(1 - \frac{s_{123}}{s_{12}}\right) + \text{Li}_{2}\left(1 - \frac{s_{123}}{s_{23}}\right) + \frac{1}{2}\ln^{2}\left(\frac{s_{12}}{s_{23}}\right) + \cdots$$

 QCD results also contain single log's and rational parts from (tensor) triangle + bubble integrals

$$\int_{3}^{1} \sum_{2}^{1} = \frac{1}{\epsilon} - \ln(s_{123})$$

Higher loops

- Much evidence that N=4 SYM amplitudes have "uniform weight (transcendentality)" 2L at loop order L.
- \rightarrow A fundamental bootstrapping assumption
- Weight ~ number of integrations, e.g.

$$\ln(s) = \int_{1}^{s} \frac{dt}{t} = \int_{1}^{s} d\ln t \qquad 1$$

$$\text{Li}_{2}(x) = -\int_{0}^{x} \frac{dt}{t} \ln(1-t) = \int_{0}^{x} d\ln t \cdot [-\ln(1-t)] \qquad 2$$

$$\text{Li}_{2}(x) = \int_{0}^{x} \frac{dt}{t} \ln(1-t) = \int_{0}^{x} d\ln t \cdot [-\ln(1-t)] \qquad 2$$

$$\operatorname{Li}_{n}(x) = \int_{0}^{x} \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$
 n

L. Dixon Amplitude Bootstrap

Mainz - Lect. 1 - 2021/07/19 15

Planar limit

- In the large N_c limit, $N_c \rightarrow \infty$ for gauge group $G = SU(N_c)$, only planar Feynman diagrams contribute
- Therefore the only important kinematic invariants are color-adjacent, can be written in terms of dual variables x_i^{μ} :

$$(k_i + k_{i+1} + \dots + k_{j-1})^2 = (x_i - x_j)^2 \equiv x_{ij}^2$$

More amazingly, planar N=4 SYM has a dual conformal symmetry, generated by translations + boosts + dual inversion:

$$x_i^{\mu} \rightarrow \frac{x_i^{\mu}}{x_i^2} \qquad \Rightarrow \qquad x_{ij}^2 \rightarrow \frac{x_{ij}^2}{x_i^2 x_j^2}$$

• **Exercise**: verify " \Rightarrow "

L. Dixon Amplitude Bootstrap

Dual conformal invariance from AdS/CFT + T-duality

T-duality symmetry of string theory

Alday, Maldacena, 0705.0303

► kµ

kμ

- Exchanges string world-sheet variables σ, τ
- $X^{\mu}(\tau, \sigma) = x^{\mu} + k^{\mu}\tau$ + oscillators

$$\rightarrow X^{\mu}(\tau, \sigma) = x^{\mu} + k^{\mu}\sigma + \text{oscillators}$$

- Strong coupling limit of planar N=4 SYM is semi-classical limit of string theory: world-sheet stretches tight around minimal area surface in AdS.
- Boundary determined by momenta of external states: light-like polygon with null edges = momenta k^μ

Amplitudes = Wilson loops

Alday, Maldacena, 0705.0303 Drummond, Korchemsky, Sokatchev, 0707.0243 Brandhuber, Heslop, Travaglini, 0707.1153 Drummond, Henn, Korchemsky, Sokatchev, 0709.2368, 0712.1223, 0803.1466; Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

L. Dixon Amplitude Bootstrap

 Polygon vertices x_i are not positions but dual momenta,

$$x_i - x_{i+1} = k_i$$

 Transform like positions under dual conformal symmetry

Duality verified to hold at weak coupling too

The [Dual] Conformal Group

 $SO(4,2) \supset SO(3,1)$ [rotations+boosts] + translations+dilatations + special-conformal

- 15 = 3 + 3 + 4 + 1 + 4
- The nontrivial generators are special conformal K^{μ}
- Correspond to inversion translation inversion
- To obtain a [dual] conformally invariant function $f(x_{ij}^2)$ just have to check invariance under inversion,

$$x_i^\mu \to x_i^\mu / x_i^2$$

Dual conformal invariance

Wilson *n*-gon invariant under inversion: $x_i^{\mu} \rightarrow \frac{x_i^{\mu}}{x_i^2}, \quad x_{ij}^2 \rightarrow \frac{x_{ij}^2}{x_i^2 x_i^2}$ ۲

$$x_{ij}^2 = (k_i + k_{i+1} + \dots + k_{j-1})^2 \equiv s_{i,i+1,\dots,j-1}$$

Fixed, up to functions of invariant cross ratios:

$$u_{ijkl} \equiv \frac{x_{ij}^2 x_{kl}^2}{x_{ik}^2 x_{jl}^2}$$

•
$$x_{i,i+1}^2 = k_i^2 = 0 \rightarrow$$
 no such variables for $n = 4,5$

$$u = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2} = \frac{s_{12}s_{45}}{s_{123}s_{345}}$$

$$v = \frac{s_{23}s_{56}}{s_{234}s_{123}}$$

$$w = \frac{s_{34}s_{61}}{s_{345}s_{234}}$$

Amplitude Bootstrap L. Dixon

Mainz - Lect. 1 - 2021/07/19

Solving for Planar N=4 SYM Amplitudes

Images: A. Sever, N. Arkani-Hamed

Bootstrapping arenas

- It has proved possible to bootstrap, so far:
 6 gluon amplitudes through 7 loops, and
 7 gluon amplitudes through 4 loops.
- The number of variables is different in QCD and in planar N=4 SYM due to dual conformal symmetry.
- Before describing how to bootstrap all-gluon amplitudes, we will introduce a simpler kinematic setup with even fewer kinematic variables, where QCD and planar N=4 SYM are even more closely related.

"Higgs" amplitudes and N=4 form factors

LD, A. McLeod, M. Wilhelm, 2012.12286 + in progress also with Ö. Gürdoğan

 Higgs production at LHC is dominantly via gluon fusion, mediated by a top quark loop.

• Since $2m_{top} = 350 \text{ GeV}$

 $\gg m_{Higgs} = 125 \text{ GeV},$ we can integrate out the top quark to get a leading operator $HG^a_{\mu\nu}G^{\mu\nu}a$

"Higgs" amplitudes and N=4 form factors

- Higgs is a scalar, color singlet. In QCD its amplitudes with gluons are matrix elements of $G^a_{\mu\nu}G^{\mu\nu}a$ with on-shell gluons: "form factors"
- In N=4, this operator is part of the (BPS-protected) stress tensor supermultiplet, which also includes for example φ₁[†]φ₁ − φ₂[†]φ₂ (∈ 20 of SU(4)_R)
- *Hgg* "Sudakov" form factor is "too simple" to bootstrap; it has no kinematic dependence beyond overall $(-s_{12})^{-L\epsilon}$
- *Hggg* is "just right", depends on 2 dimensionless ratios

Hggg kinematics is two-dimensional

One loop integrals/amplitudes

A two-loop story

- Gehrmann et al. computed *Hggg* in QCD at 2 loops Gehrmann, Jaquier, Glover, Koukoutsakis, 1112.3554
- Soon after, Brandhuber et al. computed stress tensor 3-point form factor F₃ in N=4 SYM, Brandhuber, Travaglini, Yang, 1201.4170 saw that "maximally transcendental part" of QCD result (both (+++) and (-++)) was same as N=4 result
- This "principle of maximal transcendentality" Kotikov, Lipatov, Velizhanin, hep-ph/0301021, hep-ph/0611204
 works for DGLAP and BFKL anomalous dimensions, but not for generic scattering amplitudes.
 [Why does it work for this one??]

2d HPLs

Gehrmann, Remiddi, hep-ph/0008287

Space graded by weight *n*. Every function *F* obeys:

$\partial F(u,v)$	F^{u}	F^{W}	F^{1-u}	F^{1-w}	
ди	\overline{u}	1-u-v	$\overline{1-u}$	$\frac{1}{u+v}$	
$\partial F(u,v)$	$-\frac{F^{\nu}}{\Gamma}$	F^{w}	F^{1-v}	F^{1-w}	
∂v	- v	1-u-v	1 - v	' u + v	w = 1 - u - v

where $F^{u}, F^{v}, F^{w}, F^{1-u}, F^{1-v}, F^{1-w}$ are weight *n*-1 2d HPLs.

To bootstrap *Hggg* amplitude beyond 2 loops, find as small a subspace of 2d HPLs as possible, construct it to high weight.

Extra Slides

Example 1: Harmonic Polylogarithms of one variable (HPLs {0,1})

Remiddi, Vermaseren, hep-ph/9905237

- Subsector of hexagon functions.
- Gen'lize classical polylogs: $Li_n(u) = \int_0^u \frac{dt}{t} Li_{n-1}(t)$, $Li_1(t) = -\ln(1-t)$
- Define HPLs by iterated integration: $H_{0,\vec{w}}(u) = \int_0^u \frac{dt}{t} H_{\vec{w}}(t), \quad H_{1,\vec{w}}(u) = \int_0^u \frac{dt}{1-t} H_{\vec{w}}(t)$
- Or by derivatives

 $dH_{0,\vec{w}}(u) = H_{\vec{w}}(u) \ d\ln u \quad dH_{1,\vec{w}}(u) = -H_{\vec{w}}(u)d\ln(1-u)$

- Symbol letters: $S = \{u, 1 u\}$
- Weight n =length of binary string \vec{w}
- Number of functions at weight n = 2L: 2^{2L}

Values of HPLs {0,1} at *u* = 1

 $\operatorname{Li}_{n}(u) = \int_{0}^{u} \frac{dt}{t} \operatorname{Li}_{n-1}(t) = \sum_{k=1}^{\infty} \frac{u^{k}}{t^{k}}$ Classical polylogs • evaluate to Riemann zeta values

 HPL's evaluate to nested sums called multiple zeta values (MZVs): $\zeta_{n_1,n_2,\dots,n_m} = \sum_{k_1 > k_2 > \dots > k_m > 0}^{\infty} \frac{1}{k_1^{n_1} k_2^{n_2} \cdots k_m^{n_m}}$

Weight $n = n_1 + n_1 + \ldots + n_m$

MZV's obey many identities, e.g. stuffle

$$\zeta_{n_1}\zeta_{n_2} = \zeta_{n_1,n_2} + \zeta_{n_2,n_1} + \zeta_{n_1+n_2}$$

 All reducible to Riemann zeta values until weight 8. Irreducible MZVs: $\zeta_{5,3}, \zeta_{7,3}, \zeta_{5,3,3}, \zeta_{9,3}, \zeta_{6,4,1,1}, \dots$

Example 2: Single-valued harmonic polylogarithms of one complex variable

Brown, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 527

- Also a subsector of hexagon functions, in the "multi-Regge limit"
- 4 symbol letters: $S = \{z, 1-z, \overline{z}, 1-\overline{z}\}$
- But also require function to be real analytic in $(z,\overline{z})\in \mathbb{C}-\{0,1\}$
- Constrains the first entry of the symbol to be $z\overline{z} \leftrightarrow \ln |z|^2$ or $(1-z)(1-\overline{z}) \leftrightarrow \ln |1-z|^2$
- Brown: One SVHPL for each HPL
- Powerful constraint: $4^{2L} \rightarrow 2^{2L}$ functions

L. Dixon Amplitude Bootstrap

Mainz - Lect. 1 - 2021/07/19