Solutions (MITP Amplitude Games)

Erik Panzer

July 22, 2021

1 Power counting and factorization

Consider the Feynman integral $I_G(D, n, z)$ of the graph

Compute the graph polynomials U and F.
Solution:

$$\mathcal{U} = x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4$$
$$\mathcal{F} = -p_1^2 x_1 x_2 (x_3 + x_4) - p_2^2 x_1 x_3 x_4 - p_3^2 x_2 x_3 x_4 + \mathcal{U}(m_1^2 x_1 + m_2^2 x_2 + m_3^2 x_3 + m_4^2 x_4)$$

2. Determine the two singular hyperplanes that contain the point (D, n) = (4, 1, 1, 1, 1). Solution:

- overall divergence: $\omega = 0$ where $\omega = n_1 + n_2 + n_3 + n_4 D$
- subdivergence $\{3,4\}$: $\omega(\{3,4\}) = 0$ where $\omega(\{3,4\}) = n_3 + n_4 D/2$
- 3. Show that \mathcal{U} and \mathcal{F} factorize to leading order on the subdivergence, and conclude that the leading order of the ε -expansion is

$$I_G(4-2\varepsilon,1,1,1,1,z) = \frac{1}{2\varepsilon^2} + \mathcal{O}\left(\varepsilon^{-1}\right)$$

Solution: With $x_3 \to x_3 \rho$ and $x_4 \to x_4$, the leading orders as $\rho \to 0$ are

- $\mathcal{U} \to \rho(x_3 + x_4)(x_1 + x_2) + \mathcal{O}(\rho^2)$
- $\mathcal{F} \to \rho(x_3 + x_4) \left[-p_1^2 x_1 x_2 + (x_1 + x_2)(m_1^2 x_1 + m_2^2 x_2) \right] + \mathcal{O}(\rho^2)$

By factorization, the coefficient of the double pole $1/[\omega \cdot \omega(\{3,4\})]$ is

$$\operatorname{Res}_{\omega(\{3,4\})=0} \operatorname{Res}_{\omega=0} I_G = \operatorname{Res}_{\omega(\{3,4\})=0} P_G = P_{\{3,4\}} \cdot P_{G/\{3,4\}} = 1 \cdot 1 = 1$$

is the square of the period of the bubble (note both the subgraph $\{3,4\}$, and the quotent graph $G/\{3,4\}$, are bubble graphs). Hence the double pole is $1/[\omega \cdot \omega(\{3,4\})] = 1/[2\varepsilon \cdot \varepsilon]$.

4. Show that $I_G - I_{G'}$ is finite at (D, n) = (4, 1, 1, 1, 1), where G' is the graph

Hint: Compute both residues.

Solution: The graph G' has the same overall power counting, and also the same subdivergence $\omega(\{3,4\}) = 0$. The corresponding sub- and quotient graphs

$$3 4 \subset G, G', \qquad G/\{3,4\} = p_1 - 2 p_2 = G'/\{3,4\}$$

are the same for G as they are for G', hence they yield the same residue

$$\operatorname{Res}_{\omega(\{3,4\})=0} I_G = P_{\{3,4\}} \cdot I_{G/\{3,4\}} = P_{\{3,4\}} \cdot I_{G'/\{3,4\}} = \operatorname{Res}_{\omega(\{3,4\})=0} I_{G'}.$$

The residue $P_G = \operatorname{Res}_{\omega=0} I_G$ of the overall divergence depends only on \mathcal{U} , but not \mathcal{F} . Since G and G' differ only in the attachment of the external legs, they have the same $\mathcal{U}_G = \mathcal{U}_{G'}$, and therefore $P_G = P_{G'}$. Hence, the difference $I_G - I_{G'}$ has neither a pole on $\omega = 0$ nor at $\omega(\{3,4\}) = 0$.

5. For internal masses $m_e = 0$, obtain the subleading order $(\propto 1/\varepsilon)$ of I_G . *Hint: Compute* $I_{G'}$ with the formula for the massless bubble integral in terms of Γ -functions. **Solution:** Let $B(n_1, n_2) = \Gamma(D/2 - n_1)\Gamma(D/2 - n_2)\Gamma(n_1 + n_2 - D/2)/[\Gamma(n_1)\Gamma(n_2)\Gamma(D - n_1 - n_2)]$ so that the bubble integral is $(-p^2)^{-\omega}B(n_1, n_2)$. Integrating out the subloop yields

Plugging in $n_e = 1$ and $D = 4 - 2\varepsilon$, this gives the ε -expansion

$$\begin{split} I_G(4-2\varepsilon,1,1,1,1,z) &= I_{G'} + \mathcal{O}\left(\varepsilon^0\right) = (-p_1^2)^{-2\varepsilon} \frac{\Gamma(1-\varepsilon)^3 \Gamma(1-2\varepsilon) \Gamma(\varepsilon) \Gamma(2\varepsilon)}{\Gamma(1+\varepsilon) \Gamma(2-2\varepsilon) \Gamma(2-3\varepsilon)} + \mathcal{O}\left(\varepsilon^0\right) \\ &= \frac{1}{2\varepsilon^2} + \frac{1}{\varepsilon} \left(\frac{5}{2} - \gamma_E - \log(-p_1^2)\right) + \mathcal{O}\left(\varepsilon^0\right) \end{split}$$

6. Compute the leading order in the ε -expansion $(D = 4 - 2\varepsilon)$ of the $n_e = 1$ integral

Solution: There is a logarithmic overall divergence $\omega|_{n_e=1} = 5\varepsilon$ and two nested, logarithmic subdivergences

with $\omega(\delta)|_{n_e=1} = 3\varepsilon$ and $\omega(\gamma)|_{n_e=1} = 4\varepsilon$. Hence the leading order is a triple pole $1/[\omega \cdot \omega(\gamma) \cdot \omega(\delta)]|_{n_e=1} = 1/(60\varepsilon^3)$ with coefficient

$$\operatorname{Res}_{\omega(\delta)=0} \operatorname{Res}_{\omega(\gamma)=0} \operatorname{Res}_{\omega=0} I_G = P_{\delta} \cdot P_{\gamma/\delta} \cdot P_{G/\gamma} = 6\zeta(3) \cdot 1 \cdot 1$$

where δ is the wheel with 3 spokes mentioned in the lecture, and $\gamma/\delta \cong G/\gamma$ are both isomorphic to the 1-loop bubble graph. In conclusion,

$$I_G(4-2\varepsilon,1,1,1,1,1,1,1,1,1,1,z) = \frac{\zeta(3)}{10\varepsilon^3} + \mathcal{O}\left(\varepsilon^{-2}\right).$$

7. Compute all subdivergences near $n_e \rightarrow 1$ and $D \rightarrow 4$ of the following 5 massless Feynman integrals individually, and deduce also which divergences are left over in the indicated linear combination:

Find a single additional graph with sign such that its addition renders the entire linear combination free of subdivergences.

2 Schwinger parameters and graph polynomials

1. Starting from the Schwinger parameter representation

$$I(D,n,z) = \left(\prod_{e=1}^{N} \int_{0}^{\infty} \frac{x_e^{n_e - 1} \mathrm{d}x_e}{\Gamma(n_e)}\right) \frac{e^{-\mathcal{F}/\mathcal{U}}}{\mathcal{U}^{D/2}},$$

prove the projective and the Lee-Pomeransky representations.

Hint: Multiply with $1 = \int_0^\infty \delta(\rho - h(x)) d\rho$ and change variables $x_e \to \rho x_e$.

Solution: Introducing ρ and rescaling x_e as suggested, the polynomials \mathcal{U} and \mathcal{F} get multiplied by ρ^L and ρ^{L+1} , respectively. From $x_e^{n_e-1} dx_e$ we also get a factor ρ^{n_e} for every edge. Since h(x)is homoeneous, the delta distribution becomes $\delta(\rho - \rho h(x)) = \delta(1 - h(x))/\rho$ after the rescaling $x_e \to \rho x_e$. The integral over ρ is a gamma function,

$$I(D,n,z) = \left(\prod_{e=1}^{N} \int_{0}^{\infty} \frac{x_{e}^{n_{e}-1} \mathrm{d}x_{e}}{\Gamma(n_{e})}\right) \frac{\delta(1-h(x))}{\mathcal{U}^{D/2}} \underbrace{\int_{0}^{\infty} \rho^{\omega-1} e^{-\rho \mathcal{F}/\mathcal{U}} \mathrm{d}\rho}_{\Gamma(\omega)(\mathcal{U}/\mathcal{F})^{\omega}}$$

which proves the projective representation of the Feynman integral. Applying the same procedure to the Lee-Pomeransky integral, we get

$$\left(\prod_{e=1}^{N}\int_{0}^{\infty}\frac{x_{e}^{n_{e}-1}\mathrm{d}x_{e}}{\Gamma(n_{e})}\right)(\mathcal{U}+\mathcal{F})^{-D/2} = \left(\prod_{e=1}^{N}\int_{0}^{\infty}\frac{x_{e}^{n_{e}-1}\mathrm{d}x_{e}}{\Gamma(n_{e})}\right)\delta(1-h(x))\int_{0}^{\infty}\rho^{\omega-1}(\mathcal{U}+\rho\mathcal{F})^{-D/2}\mathrm{d}\rho$$

The substitution $\rho \to \rho \cdot \mathcal{U}/\mathcal{F}$ gives

$$\int_0^\infty \rho^{\omega-1} (\mathcal{U} + \rho \mathcal{F})^{-D/2} \mathrm{d}\rho = \left(\frac{\mathcal{U}}{\mathcal{F}}\right)^\omega \mathcal{U}^{-D/2} \int_0^\infty \frac{\rho^{\omega-1}}{(1+\rho)^{D/2}} \mathrm{d}\rho = \frac{\beta(\omega, D/2 - \omega)}{\mathcal{U}^{D/2 - \omega} \mathcal{F}^\omega},$$

Euler's beta function. In terms of gamma functions, $\beta(\omega, D/2 - \omega) = \Gamma(\omega)\Gamma(D/2 - \omega)/\Gamma(D/2)$, hence with the prefactor $\Gamma(D/2)/\Gamma(D/2 - \omega)$ of the Lee-Pomeransky representation, only $\Gamma(\omega)$ remains. We have thus arrived again at the projective representation of the Feynman integral.

2. Compute the number of spanning trees of the following graphs: *Hint: Use* $\mathcal{U} = \det A$.

Solution: Consider the loop momentum flows and edge labels as indicated in

The loop momentum through edges 7,8,5 of X is then $\ell_1 - \ell_2$, $\ell_2 - \ell_3$ and $\ell_1 - \ell_2 + \ell_3$, respectively. This gives the matrix

$$A_X = \begin{pmatrix} x_1 + x_5 + x_6 + x_7 & -x_5 - x_7 & x_5 \\ -x_5 - x_7 & x_2 + x_5 + x_7 + x_8 & -x_5 - x_8 \\ x_5 & -x_5 - x_8 & x_3 + x_4 + x_5 + x_8 \end{pmatrix}.$$

The number of spanning trees is equal to $\mathcal{U} = \det A$ evaluated at $x_e = 1$ for every edge e,

$$\mathcal{U}_X|_{x_e=1} = \det \begin{pmatrix} 4 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 4 \end{pmatrix} = 36$$

Note that the diagonal entries $A_{ii} = \sum_e x_e$ are the sums over all edges such that ℓ_i flows through e. The off-diagonal terms $A_{ij} = \sum_e x_e - \sum_f x_f$ are sums over edges such that both loop momenta ℓ_i and ℓ_j flow through the edge, with sign +1 if they flow in the same direction (e) and sign -1 if they flow through the edge in opposite direction (f). Hence we easily get

$$A_{Z_6} = \begin{pmatrix} x_1 + x_2 + x_3 & -x_3 & 0 & 0 & 0 & 0 \\ -x_3 & x_3 + x_4 + x_5 & -x_5 & 0 & 0 & 0 \\ 0 & -x_5 & x_5 + x_6 + x_7 & -x_7 & 0 & 0 \\ 0 & 0 & -x_7 & x_7 + x_8 + x_9 & -x_9 & 0 \\ 0 & 0 & 0 & -x_9 & x_9 + x_{10} + x_{11} & -x_{11} \\ 0 & 0 & 0 & 0 & -x_{11} & x_{11} + x_{12} + x_{13} \end{pmatrix}$$

and the number of spanning trees of Z_6 is

$$\det \begin{pmatrix} 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & 0 \\ 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & 0 \\ 0 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 \end{pmatrix} = 377.$$

3. Consider a graph G with two external legs, external momentum $p^2 = -1$, and vanishing internal masses $m_e = 0$. Let V denote the "vacuum" graph obtained by gluing the external legs into a new edge "0", for example

Show that:

a)
$$\omega(V) = \omega(G) + n_0 - D/2$$

Solution: V has one additional edge $(\Rightarrow +n_0)$ and one additional loop $(\Rightarrow -D/2)$.

b) $\mathcal{U}_V = x_0 \mathcal{U}_G + \mathcal{F}_G$,

Hint: trees and 2-forests.

Solution: Every spanning tree T of V either:

- does not contain 0, in which case T is a spanning tree of V; or
- does contain 0, in which case $F := T \setminus \{0\} = T_1 \sqcup T_2$ is a 2-forest of G with one external leg in T_1 and the other external leg in T_2 , hence a 2-forest that contributes to \mathcal{F}_G .

c) $I_G = \Gamma(D/2) \cdot P_V$ where

$$P_V := \operatorname{Res}_{\omega(V)=0} I_V = \left(\prod_{e=0}^N \int_0^\infty \frac{x_e^{n_e - 1} \mathrm{d} x_e}{\Gamma(n_e)}\right) \frac{\delta(1 - h(x))}{\mathcal{U}_V^{D/2}}$$

Solution: The integral over x_0 is (compare with the Lee-Pomeransky integral in part 1.)

$$\frac{1}{\Gamma(n_0)} \int_0^\infty \frac{x_0^{n_0-1} \mathrm{d}x_0}{(x_0 \mathcal{U}_G + \mathcal{F}_G)^{D/2}} = \frac{\beta(n_0, D/2 - n_0)}{\Gamma(n_0) \mathcal{F}_G^{D/2}} \left(\frac{\mathcal{F}_G}{\mathcal{U}_G}\right)^{n_0} = \frac{\Gamma(D/2 - n_0)}{\Gamma(D/2)} \frac{1}{\mathcal{U}_G^{n_0} \mathcal{F}_G^{D/2 - n_0}}.$$

In the integral for P_V , we have $\omega(V) = 0$, hence $D/2 - n_0 = \omega(G)$. The above thus becomes

$$P_V = \frac{\Gamma(\omega(G))}{\Gamma(D/2)} \left(\prod_{e=0}^N \int_0^\infty \frac{x_e^{n_e - 1} \mathrm{d}x_e}{\Gamma(n_e)} \right) \frac{\delta(1 - h(x))}{\mathcal{U}_G^{D/2 - \omega(G)} \mathcal{F}_G^{\omega(G)}} = \frac{1}{\Gamma(D/2)} \cdot I_G$$

d) Conclude that in D = 4 dimensions with indices $n_e = 1$, the Feynman integrals of the following graphs all coincide:

Solution: The left and centre graphs glue to the same graph V, the wheel with 4 spokes:

Also the indices agree, because $n_0 = 1$ in both cases. Hence both of these propagator integrals are equal to the period of V with unit indices everywhere. (FYI: it is $P_V = 20\zeta(5)$.) The third propagator glues into a different graph:

But the central, glued edge has index $n_0 = D/2 - \omega(G) = 0$ so that it can be contracted, therefore $P_{V'}|_{n_0=0} = P_V$ because $V'/0 \cong V$.

Remark: This is called the "glue-and-cut" symmetry.

3 Analytic continuation

Consider the following graph with $m_1^2 = m_2^2 = p_1^2 = p_2^2 = m^2$ and $m_3 = 0$:

1. Show that $\mathcal{F}_{\{1,2\}} = 0$ for the tree subgraph with edges $\{1,2\} = G - \{3\}$. Deduce, via the infrared factorization formula, that \mathcal{F}_G must be independent of x_3 .

Solution: The graph polynomials for the tree are $\mathcal{U}_{\{1,2\}} = 1$ and

$$\mathcal{F}_{\{1,2\}} = (m^2 x_1 + m^2 x_2)\mathcal{U}_{\{1,2\}} - p_1^2 x_2 - p_2^2 x_1 = x_1(m^2 - p_2^2) + x_2(m^2 - p_1^2) = 0$$

Under the scaling $(x_1, x_2) \rightarrow (\rho x_1, \rho x_2)$ of the tree edges, the IR-factorization formula gives

$$\mathcal{F}_G = \rho^1 \mathcal{U}_{G/\{1,2\}} \mathcal{F}_{\{1,2\}} + \mathcal{O}\left(\rho^2\right) = \mathcal{O}\left(\rho^2\right)$$

hence every term in \mathcal{F}_G is of degree ≥ 2 in the variables (x_1, x_2) . But we know that \mathcal{F}_G is homogeneous of degree 2 in all variables (because G has 1 loop); hence \mathcal{F}_G cannot have any x_3 .

2. Confirm by computing \mathcal{F}_G explicitly.

Solution:

$$\mathcal{F}_G = m^2 (x_1 + x_2)(x_1 + x_2 + x_3) - p_1^2 x_2 x_3 - p_2^2 x_1 x_3 - p_3^2 x_1 x_2$$

= $m^2 (x_1 + x_2)^2 - p_3^2 x_1 x_2 + x_3 (\underbrace{m^2 x_1 + m^2 x_2 - p_1^2 x_2 - p_2^2 x_1}_{=\mathcal{F}_{\{1,2\}}=0})$
= $m^2 (x_1 + x_2)^2 - p_3^2 x_1 x_2.$

3. Draw the Newton polytope of $\mathcal{U} + \mathcal{F}$. Read off the 5 facets. Solution: The Lee-Pomeransky polynomial

$$\mathcal{U}_G + \mathcal{F}_G = x_1 + x_2 + x_3 + x_1^2 m^2 + x_2^2 m^2 + x_1 x_2 \left(2m^2 - p_3^2 \right)$$

has 6 different monomials. We read off the Newton polytope

$$NP = conv \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\} = \underbrace{v_3}_{v_2}$$

4. Describe the convergence domain in (D, n_1, n_2, n_3) by inequalities, and find all finite integrals in D = 6 dimensions with integer n_e .

Solution: The Newton polytope is a pyramid with apex (0, 0, 1) over a quadrilateral in the (x_1, x_2) -plane. This pyramid has 5 supporting hyperplanes (facets) that we can read off easily:

$$v_1 \ge 0, \quad v_2 \ge 0, \quad v_3 \ge 0,$$

 $v_1 + v_2 + v_3 \ge 1, \quad v_1 + v_2 + 2v_3 \le 2$

For example, $v_3 = 0$ is the plane containing the base quadrilateral; and $v_1 + v_2 + 2v_3 = 2$ is the supporting hyperplane that contains the three vertices (2, 0, 0), (0, 2, 0) and (0, 0, 1).

The convergence region is $\operatorname{Re}(n) \in \operatorname{interior}(D/2 \cdot \operatorname{NP})$, hence the conditions are

$$\operatorname{Re}(n_1) > 0, \quad \operatorname{Re}(n_2) > 0, \quad \operatorname{Re}(n_3) > 0,$$

 $\operatorname{Re}(n_1 + n_2 + n_3) > \operatorname{Re}(D/2), \quad \operatorname{Re}(n_1 + n_2 + 2n_3) < \operatorname{Re}(D).$

For D = 6, the only integer solutions are n = (2, 1, 1) and n = (1, 2, 1).

5. Set $D = 4 - 2\varepsilon$ and all $n_e = 1$. In the Lee-Pomeransky representation, insert $1 = \int_0^\infty \delta(\rho - x_1^{-1}) d\rho$, rescale $x_e \to \rho^{\sigma_e} x_e$ for $\sigma = (-1, -1, -2)$, and factor out the lowest powers of ρ to make the infrared divergence explicit.

Solution: Under this scaling, we have

$$dx_1 \to \rho^{-1} dx_1, \qquad dx_2 \to \rho^{-1} dx_2, \qquad dx_3 \to \rho^{-2} dx_3,$$
$$\mathcal{U} \to \rho^{-2} (x_3 + \rho x_1 + \rho x_2), \qquad \mathcal{F} \to \rho^{-2} \mathcal{F}, \qquad \delta(\rho - x_1^{-1}) \to \rho^{-1} \delta(1 - x_1).$$

With $D/2 = 2 - \varepsilon$ and $\omega = 1 + \varepsilon$, the Lee-Pomeransky integral thus becomes

$$I = \frac{\Gamma(2-\varepsilon)}{\Gamma(1-2\varepsilon)} \int_0^\infty \mathrm{d}x_1 \int_0^\infty \mathrm{d}x_2 \int_0^\infty \mathrm{d}x_3 \,\delta(1-x_1) \int_0^\infty \frac{\rho^{-2\varepsilon-1} \mathrm{d}\rho}{(x_3 + \mathcal{F} + \rho x_1 + \rho x_2)^{2-\varepsilon}}.$$

The integral over ρ is divergent at the lower boundary, unless $\omega(\sigma) = -2\varepsilon > 0$.

6. Integrate by parts in ρ and give a convergent integral formula (without ρ) for each coefficient in the ε -expansion.

Solution: The integration by parts in ρ gives

$$\int_0^\infty \rho^{-2\varepsilon - 1} \mathrm{d}\rho \left(x_3 + \mathcal{F} + \rho x_1 + \rho x_2 \right)^{\varepsilon - 2} = \frac{\varepsilon - 2}{2\varepsilon} \int_0^\infty \frac{(x_1 + x_2)\rho^{-2\varepsilon} \mathrm{d}\rho}{(x_3 + \mathcal{F} + \rho x_1 + \rho x_2)^{3-\varepsilon}}$$

Inverting the scaling, $x_1 \to x_1 \rho$, $x_2 \to x_2 \rho$ and $x_3 \to x_3 \rho^2$ to return to the original Schwinger parameters and to get rid of ρ , the resulting integral representation is

$$I = -\frac{\Gamma(3-\varepsilon)}{2\varepsilon\Gamma(1-2\varepsilon)} \int_0^\infty \mathrm{d}x_1 \int_0^\infty \mathrm{d}x_2 \int_0^\infty \mathrm{d}x_3 \frac{x_1+x_2}{(\mathcal{U}+\mathcal{F})^{3-\varepsilon}}.$$

The divergence at $\varepsilon = 0$ is explicit in the prefactor, but (in contrast to the original Lee-Pomeransky representation) the integral over the Schwinger parameters is holomorphic also at $\varepsilon = 0$. Hence we can expand under the integral:

$$I = -\frac{\Gamma(3-\varepsilon)}{2\Gamma(1-2\varepsilon)} \sum_{k\geq 0} \frac{\varepsilon^{k-1}}{k!} \int_0^\infty \mathrm{d}x_1 \int_0^\infty \mathrm{d}x_2 \int_0^\infty \mathrm{d}x_3 \frac{x_1+x_2}{(\mathcal{U}+\mathcal{F})^3} \log^k(\mathcal{U}+\mathcal{F}).$$

7. Compute the leading order (coefficient of $1/\varepsilon$) and relate it to a bubble integral.

Solution: For the leading order, the ρ -integral in 6. simplifies to

$$\frac{1}{2\varepsilon} \int_0^\infty \rho^{-2\varepsilon} \mathrm{d}\rho \,\frac{\partial}{\partial\rho} \frac{1}{(x_3 + \mathcal{F} + \rho x_1 + \rho x_2)^{2-\varepsilon}} = -\frac{1}{2\varepsilon} \frac{1}{(x_3 + \mathcal{F})^2} + \mathcal{O}\left(\varepsilon^0\right)$$

and the subsequent x_3 -integral is straightforward, leaving:

$$I = -\frac{1}{2\varepsilon} \int_0^\infty \mathrm{d}x_1 \int_0^\infty \mathrm{d}x_2 \frac{\delta(1-x_1)}{\mathcal{F}} + \mathcal{O}\left(\varepsilon^0\right).$$

Up to the prefactor, this is identical to the bubble integral of G/3 in D = 2 dimensions.

Explain where the divergence comes from in momentum space.
Solution: Let ℓ denote the momentum flowing through edge 3. Then

$$I(D,1,1,1,z) = \int_{\mathbb{R}^{1,D-1}} \frac{\mathrm{d}^D \ell}{i\pi^{D/2}} \frac{1}{-\ell^2} \frac{1}{m^2 - (\ell+p_1)^2} \frac{1}{m^2 - (\ell-p_2)^2}$$
$$= \int_{\mathbb{R}^{1,D-1}} \frac{\mathrm{d}^D \ell}{i\pi^{D/2}} \frac{1}{-\ell^2} \frac{1}{\ell^2 + 2\ell p_1} \frac{1}{\ell^2 - 2\ell p_2}$$

For $\ell \to 0$, the integrand grows with $\|\ell\|^{-4}$, while the volume element in D = 4 scales as $\|\ell\|^3 d \|\ell\|$. This shows a logarithmic divergence at $\ell \to 0$.

4 Polynomial reduction

Compute the Landau varieties of:

1. The massless box integral $(m_e^2 = p_i^2 = 0)$.

Solution: Start with the singularities of the integrand, in the projective representation with $\delta(1-x_4)$: Set $s = -(p_1 + p_2)^2$ and $t = -(p_1 + p_4)^2$, then

$$S = \{\mathcal{U}|_{x_4=1}, \mathcal{F}|_{x_4=1}\} = \{1 + x_1 + x_2 + x_3, sx_2 + tx_1x_3\}.$$

Reduction of x_1 :

$$S_1 = \{\underbrace{1 + x_2 + x_3, s, x_2}_{x_1 \to 0}, \underbrace{t, x_3}_{x_1 \to \infty}, \underbrace{sx_2 - tx_3(1 + x_2 + x_3)}_{\text{resultant}}\}$$

Reduction of x_2 :

$$S_{1,2} = \{s, t, x_3, 1 + x_3, s - tx_3\}$$

Reduction of x_3 :

$$S_{1,2,3} = \{s, t, s+t\}$$

Hence the Landau variety $L \subseteq S_{1,2,3}$ has at most 3 components. Clearly $\{s = 0\}$ and $\{t = 0\}$ are necessary, since the special cases n = (0, 1, 0, 1) and n = (1, 0, 1, 0) correspond to bubble integrals $\propto s^{-\varepsilon}$ and $\propto t^{-\varepsilon}$, respectively, which have singularities at s = 0 and t = 0. To see that singularities at s + t = 0 also appear, consider for example the finite box integral in D = 6:

$$\begin{split} I(6,1,1,1,1,s,t) &= \int_0^\infty \int_0^\infty \int_0^\infty \frac{\mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}x_3}{(sx_2 + tx_1 x_3)(1 + x_1 + x_2 + x_3)^2}, \quad \text{set } x_2 \to x_2 x_3 \\ &= \int_0^\infty \int_0^\infty \int_0^\infty \frac{\mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}x_3}{(sx_2 + tx_1)(1 + x_1 + x_3(1 + x_2))^2} \\ &= \int_0^\infty \int_0^\infty \frac{\mathrm{d}x_1 \mathrm{d}x_2}{(sx_2 + tx_1)(1 + x_1)(1 + x_2)} = \int_0^\infty \frac{\mathrm{d}x_1}{(1 + x_1)(tx_1 - s)} \log \frac{tx_1}{s} \\ &= \frac{\pi^2 + \log^2(s/t)}{2(s + t)} \end{split}$$

Taking two variations around s = 0, this becomes $(2i\pi)^2/(s+t)$, which clearly has a pole at s+t=0. In conclusion, $L = S_{1,2,3} = \{s,t,s+t\}$.

2. The triangle integral for generic p_1^2, p_2^2, p_3^2 as in the lecture, but with an internal mass $m_3 \neq 0$ (still $m_1 = m_2 = 0$).

Solution: In the projective representation with $x_3 = 1$, the singularities of the integrand are

$$S = \left\{ \underbrace{1 + x_1 + x_2}_{\mathcal{U}|_{x_3=1}}, \underbrace{-p_1^2 x_2 - p_2^2 x_1 - p_3^2 x_1 x_2 + m_3^2 (1 + x_1 + x_2)}_{\mathcal{F}|_{x_3=1}} \right\}$$

Reduction of x_1 :

$$S_{1} = \left\{ \underbrace{1 + x_{2}, m_{3}^{2}(1 + x_{2}) - p_{1}^{2}x_{2}}_{x_{1} \to 0}, \underbrace{m_{3}^{2} - p_{2}^{2} - p_{3}^{2}x_{2}}_{x_{1} \to \infty}, \underbrace{(1 + x_{2})(p_{2}^{2} + p_{3}^{2}x_{2}) - p_{1}^{2}x_{2}}_{\text{resultant } [\mathcal{U}, \mathcal{F}]} \right\}$$

Reduction of x_2 :

$$S_{1,2} = \left\{ \underbrace{m_3^2, m_3^2 - p_2^2, p_2^2}_{x_2 \to 0}, \underbrace{m_3^2 - p_1^2, p_3^2}_{x_2 \to \infty}, \underbrace{p_1^2, m_3^2 + p_3^2 - p_2^2, (m_3^2 - p_1^2)(m_3^2 - p_2^2) - m_3^2 p_3^2}_{\text{resultants}}, \Delta \right\}$$

where $\Delta = p_1^4 + p_2^4 + p_3^4 - 2p_1^2p_2^2 - 2p_1^2p_3^2 - 2p_2^2p_3^2$ denotes the discriminant that also appeared in the massless case. By symmetry (flipping $x_1 \leftrightarrow x_2$ and $p_1 \leftrightarrow p_2$), note

$$S_{2,1} = S_{1,2}|_{p_1 \leftrightarrow p_2} = \left(S_{1,2} \setminus \{m_3^2 + p_3^2 - p_2^2\}\right) \cup \{m_3^2 + p_3^2 - p_1^2\}.$$

Hence the component $m_3^2 + p_3^2 - p_2^2 \in S_{1,2}$ is spurious, and we get the upper bound

$$L \subseteq S_{1,2} \cap S_{2,1} = \left\{ p_1^2, p_2^2, p_3^2, \Delta, m_3^2, m_3^2 - p_1^2, m_3^2 - p_2^2, (m_3^2 - p_1^2)(m_3^2 - p_2^2) + m_3^2 p_3^2 \right\}.$$

In fact, all these singularities indeed appear, hence $L = S_{1,2} \cap S_{2,1}$.

Remark: The following is not explicitly asked for in the question, and for information only.

For example, setting $n_1 = 0$, the contracted graph is a bubble with one massless and one massive propagator. In D = 4 with the massive propagator squared $(n_3 = 2)$, this bubble integral is

$$I(4,0,1,2,z) = \int_0^\infty \frac{x_3 \mathrm{d}x_3}{(1+x_3)(m_3^2 x_3(1+x_3) - p_1^2 x_3)} = \frac{1}{-p_1^2} \log \frac{m_3^2 - p_1^2}{m_3^2}$$

This exhibits singularities at $p_1^2 = 0$, $m_3^2 = 0$ and $m_3^2 - p_1^2 = 0$. By symmetry, the bubble with n = (1, 0, 2) also gives singularities at $p_2^2 = 0$ and $m_3^2 - p_2^2 = 0$. The massless bubble n = (1, 1, 0) is proportional to a power of p_3^2 . In summary, the bubble quotients imply the lower bound

$$L \supseteq \left\{ p_1^2, p_2^2, p_3^2, m_3^2, m_3^2 - p_1^2, m_3^2 - p_2^2 \right\}$$

The component $(m_3^2 - p_1^2)(m_3^2 - p_2^2) - m_3^2 p_3^2 = 0$ is the leading Landau singularity of the triangle. For example, it appears in

$$I(4,1,1,2,z) = \int_0^\infty \int_0^\infty \frac{\mathrm{d}x_1 \mathrm{d}x_2}{\mathcal{F}^2|_{x_3=1}} = \frac{1}{(m_3^2 - p_1^2)(m_3^2 - p_2^2) + m_3^2 p_3^2} \log \frac{(m_3^2 - p_1^2)(m_3^2 - p_2^2)}{-p_3^2 m_3^2}.$$

Finally, the fact that $\Delta \in L$ is in some sense the most complicated. It is an example of a "singularity of the second type" [1]. As the calculation above shows, Δ arises as the discriminant of the resultant $[\mathcal{U}, \mathcal{F}]$. In particular, it is absent in the integral I(4, 1, 1, 2, z) above because that only depends on \mathcal{F} . One can see Δ explicitly for example as the denominator of

$$I(4,1,1,1,z) = \int_0^\infty \int_0^\infty \frac{\mathrm{d}x_1 \mathrm{d}x_2}{\mathcal{UF}|_{x_3=1}} = \frac{1}{\sqrt{\Delta}} \times \{\text{sum of several dilogarithms}\}.$$

References

 D. B. Fairlie, P. V. Landshoff, J. Nuttall and J. C. Polkinghorne, Singularities of the second type, Journal of Mathematical Physics 3 (1962), no. 4 pp. 594–602.