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1 Power counting and factorization

Consider the Feynman integral I (D, n, z) of the graph

P2
1
G=np 4
2 b3
1. Compute the graph polynomials ¢ and F.
Solution:
U = 2123 + 2124 + Tox3 + Toxg + T34
F = fp%:clxg(xg +x4) — p§x1x3x4 - p§x2x3x4 + U(m%xl + m%azg + m%xg + mix4)

2. Determine the two singular hyperplanes that contain the point (D,n) = (4,1,1,1,1).
Solution:
o overall divergence: w =0 where w =n1 +no+ng+nq4 — D

o subdivergence {3,4}: w({3,4}) = 0 where w({3,4}) =ng+ng4 — D/2

3. Show that U and F factorize to leading order on the subdivergence, and conclude that the leading

order of the e-expansion is
Zg(4—2511112)———1 —I—O(e 1)
) Y Y Y Y 2 2 *

Solution: With z3 — x3p and x4 — x4, the leading orders as p — 0 are
o U— p(z3+ z4) (71 + 22) + O (p?)
o F— p(xs+z4) [—piziza + (21 + 22)(mixg + m3as)] + O (p?)

By factorization, the coefficient of the double pole 1/[w - w({3,4})] is

Res Reslg— Res Po= Py - P —11=1
w3 N=0w=0 ¢~ u(gan=o ¢ BAT TG/

is the square of the period of the bubble (note both the subgraph {3,4}, and the quotent graph

G/ {3,4}, are bubble graphs). Hence the double pole is 1/[w - w({3,4})] = 1/[2¢ - ¢].



4. Show that I — I is finite at (D,n) = (4,1,1,1,1), where G’ is the graph

D2
1 D3
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Hint: Compute both residues.

Solution: The graph G’ has the same overall power counting, and also the same subdivergence
w({3,4}) = 0. The corresponding sub- and quotient graphs

1 2
304 CG.G,  G/{34} :p14<>-<p =G'/{3,4)

2 P3
are the same for G as they are for G’, hence they yield the same residue

Res Io =P -1, = P, T = Res Ig.
oo 1e (3,4}~ LG /{3,4} B lajpy = Gl e

The residue Pg = Res,,—o I of the overall divergence depends only on I/, but not F. Since G and
G’ differ only in the attachment of the external legs, they have the same Uy = Ug, and therefore
Pg = Pgr. Hence, the difference I — I has neither a pole on w = 0 nor at w({3,4}) = 0.

5. For internal masses m. = 0, obtain the subleading order (o 1/¢) of Ig.

Hint: Compute I with the formula for the massless bubble integral in terms of I'-functions.

Solution: Let B(ni,n2) =I'(D/2—n1)['(D/2—n2)(ny+ne—D/2)/[T'(n1)T'(n2)'(D —ni —na)]
so that the bubble integral is (—p?)~“B(n1,n2). Integrating out the subloop yields

D2 ny
n 3

= B(nsz,n ><p1<><
n n+ g = (3, n4)

n2+n3+n4f§ b3

P2
Igl = B(ng,n4) X

Up)
= B(ns,ng)B(ni,ny +ng +ng — D/2)(—p}) ™~
Plugging in n, = 1 and D = 4 — 2¢, this gives the e-expansion

0. T(1—¢)30(1 — 26)['(e)I'(2¢)
i T+ (2 —2)T(2 -3 © (=")

=t (5 —E - log(—p?)) +0 (=)

Ig(4-25,1,1,1,1,2) = I + O () = (=)

2e2 £\ 2

6. Compute the leading order in the e-expansion (D = 4 — 2¢) of the n. = 1 integral

Solution: There is a logarithmic overall divergence w|, ,—; = 5¢ and two nested, logarithmic
subdivergences




with w(d)|n.=1 = 3¢ and w(y)|n,=1 = 4¢. Hence the leading order is a triple pole 1/[w - w(7) -
w(8)]|n.=1 = 1/(60e3) with coefficient

w(6§320w(7()320w£8 G 6 by/s " LG/ ¢(3)

where ¢ is the wheel with 3 spokes mentioned in the lecture, and v/§ = G/~ are both isomorphic
to the 1-loop bubble graph. In conclusion,

Ig(4—2¢,1,1,1,1,1,1,1,1,1,1,2) = % +0 (5—2) .

. Compute all subdivergences near n, — 1 and D — 4 of the following 5 massless Feynman integrals
individually, and deduce also which divergences are left over in the indicated linear combination:
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Find a single additional graph with sign such that its addition renders the entire linear combination
free of subdivergences.

Solution:
Lfmj/(um%ewoz\i\ R . . . oS
< . 3 0
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2 Schwinger parameters and graph polynomials

1. Starting from the Schwinger parameter representation
ne 1 dz, e—]—' U
_D n, Z (H/ TLE ) Z/[D/2 9

prove the projective and the Lee-Pomeransky representations.

Hint: Multiply with 1 = [7°6(p — h(z))dp and change variables z. — px..

Solution: Introducing p and rescaling z. as suggested, the polynomials &/ and F get multiplied
by p’ and pi*t1; respectively. From z7~1dz, we also get a factor p"e for every edge. Since h(w)
is homoeneous, the delta distribution becomes d(p — ph(x)) = §(1 — h(z))/p after the rescaling
Te — pxe. The integral over p is a gamma function,

xhe” ldxe 6(1 —
D n, Z (H/ ) (uD/z / 10 6 pJ-'/udp

L(w)U/F)~

which proves the projective representation of the Feynman integral. Applying the same procedure
to the Lee-Pomeransky integral, we get

<H/ ne—ldxe> Ut PP (H/ "e_ldf’“"€>5(1_h(x))/0°°pw1(u+pf)D/2dp

The substitution p — p-U/F gives

e _ Uu\Y ., ©  pel Blw,D/2 — w)
w14 4 o F)-D/2d, — () U D/2/ dp — ;
/0 p* (U + pF) P Fa o (1L+p)D/2 p Uub/2—w Fw 7

Euler’s beta function. In terms of gamma functions, f(w, D/2 — w) = T'(w)['(D/2 — w)/T(D/2),
hence with the prefactor I'(D/2)/T'(D/2 — w) of the Lee-Pomeransky representation, only I'(w)
remains. We have thus arrived again at the projective representation of the Feynman integral.

2. Compute the number of spanning trees of the following graphs: Hint: Use U = det A.

and

The loop momentum through edges 7,8,5 of X is then ¢1 — #o, fo — £3 and {1 — £5 + {3, respectively.
This gives the matrix

T1+ x5 + T + T7 —T5 — 7 Ts5
Ax = —I5 — Ty o + x5 + X7 + T8 —I5 — X8
T5 —I5 — Tg T3+ T4+ x5 + X8



The number of spanning trees is equal to U = det A evaluated at z, = 1 for every edge e,

4 -2 1
Ux|por =det [ -2 4 —2| =36.
1 -2 4

Note that the diagonal entries A;; = >, . are the sums over all edges such that ¢; flows through
e. The off-diagonal terms A;; = >, xe — > xy are sums over edges such that both loop momenta
¢; and ¢; flow through the edge, with sign +1 if they flow in the same direction (e) and sign —1 if
they flow through the edge in opposite direction (f). Hence we easily get

1+ T2 + x3 —I3 0 0 0 0
—x3 T3+ T4 + T5 —xs5 0 0 0
A, — 0 —x5 T5 + x6 + T7 —x7 0 0
Zs — 0 0 —x7 x7 + x8 + X9 —X9 0
0 0 0 —Tg x9 + x10 + 211 —r11
0 0 0 0 —T11 T11 + x12 + T13
and the number of spanning trees of Zg is
3 -1 0 0 0 O
-1 3 -1 0 0 ©0
o -1 3 -1 0 0
det 0 0 -1 3 -1 ol~= 377.
o o o0 -1 3 -1
o o0 0O 0 -1 3
. Consider a graph G with two external legs, external momentum p? = —1, and vanishing internal

masses m, = 0. Let V denote the “vacuum” graph obtained by gluing the external legs into a
new edge “0”, for example

0
Show that:

a) w(V)=w(G)+ny—D/2,
Solution: V has one additional edge (= +ng) and one additional loop (= —D/2).
b) Uy = xoUg + Fa, Hint: trees and 2-forests.
Solution: Every spanning tree T" of V either:
e does not contain 0, in which case T is a spanning tree of V; or

 does contain 0, in which case F':=T \ {0} =T} UT5 is a 2-forest of G with one external
leg in T} and the other external leg in T5, hence a 2-forest that contributes to Fg.

c) I =T(D/2) - Py where

o0 ne 1 1 —
(V) ur

Solution: The integral over xg is (compare with the Lee-Pomeransky integral in part 1.)

1 ) /Ooo ( zpo g B(no, D/2 —ng) (ﬂ;)”ﬂ _I(D/2 —no) 1

I'(no rolg + Fq)P/2 F(no)f£/2 Ug I'(D/2) ugo}_g/g,no-




In the integral for Py, we have w(V') = 0, hence D/2 — ng = w(G). The above thus becomes

°°x”? 1da:e 6(1—h(z) 1

d) Conclude that in D = 4 dimensions with indices n, = 1, the Feynman integrals of the
following graphs all coincide:

< A

Solution: The left and centre graphs glue to the same graph V', the wheel with 4 spokes:

e s
f

Also the indices agree, because ng = 1 in both cases. Hence both of these propagator
integrals are equal to the period of V' with unit indices everywhere. (FYT: it is Py = 20{(5).)

The third propagator glues into a different graph:

G: = V/:

But the central, glued edge has index ng = D/2 —w(G) = 0 so that it can be contracted,
therefore Py/|n,—0 = Py because V//0 =2V

Remark: This is called the “glue-and-cut” symmetry.

3 Analytic continuation

Consider the following graph with m? = m3 = p? = p3 = m? and m3 =0
b1 3 b2
G = 2 1
p3

1. Show that Fy; 9y = 0 for the tree subgraph with edges {1,2} = G — {3}. Deduce, via the infrared
factorization formula, that ¢ must be independent of x3.

Solution: The graph polynomials for the tree are Uy o1 =1 and
Fiioy = (mPxy + mPma)Ugy 9y — plas — p3zr = x1(m? — p3) + z2(m® — pt) = 0.
Under the scaling (x1,z2) — (pz1, pra) of the tree edges, the IR-factorization formula gives
Fao = p'UgiinFzy + 0 (P2> =0 (/)2)

hence every term in Fg is of degree > 2 in the variables (x1,z2). But we know that Fg is
homogeneous of degree 2 in all variables (because G has 1 loop); hence F¢ cannot have any x3.



2. Confirm by computing Fg explicitly.

Solution:

Fo = m%(x1 + x2) (21 + 22 + 13) — plwers — par1T3 — PaT L0
2

2 2 2 2 2 2
=m”(z1 + 22)° — psm122 + x3( M w1 + M xy — piwe — piT1)

=m?(z; + x2)% — pgxlxg. =F(1,23=0

3. Draw the Newton polytope of U + F. Read off the 5 facets.

Solution: The Lee-Pomeransky polynomial
Uc+Fg =21 +29+2a3+ x%mQ + x%m2 + z122 (2m2 — p%)

has 6 different monomials. We read off the Newton polytope

NP = conv O),11|,10,10],]12],|1],=

4. Describe the convergence domain in (D, nj,n2,n3) by inequalities, and find all finite integrals in
D = 6 dimensions with integer ne.

Solution: The Newton polytope is a pyramid with apex (0,0,1) over a quadrilateral in the
(21, x2)-plane. This pyramid has 5 supporting hyperplanes (facets) that we can read off easily:

vy > 0, vy > 0, v3 >0,
V] + vy +vg > 1, V1 + v9 + 2v3 < 2.

For example, vs3 = 0 is the plane containing the base quadrilateral; and v; 4+ vo + 2v3 = 2 is the
supporting hyperplane that contains the three vertices (2,0,0), (0,2,0) and (0,0, 1).

The convergence region is Re(n) € interior(D/2 - NP), hence the conditions are

Re(ny) > 0, Re(ng) > 0, Re(ng) > 0,
Re(n1 + n2 + n3) > Re(D/2), Re(n1 + n2 + 2n3) < Re(D).

For D = 6, the only integer solutions are n = (2,1,1) and n = (1,2, 1).

5. Set D = 4—2¢ and all n, = 1. In the Lee-Pomeransky representation, insert 1 = [ d(p— 7 Y)dp,
rescale . — p?ex, for 0 = (—1,—1,—2), and factor out the lowest powers of p to make the
infrared divergence explicit.

Solution: Under this scaling, we have

de; — p_ldxl, dzy — p_ldazg, des — p_2d:v3,

U — p (3 + pr1 + pr2), F = p 2F, S(p—a7h) = pt6(1 — ).

With D/2 =2 — ¢ and w = 1 + ¢, the Lee-Pomeransky integral thus becomes

INOED) p~ > dp
I = d d dxsd(1 —
1 — 2¢) / xl/ xz/ = :171)/0 (x5 + F + px1 + pro)?—¢

The integral over p is divergent at the lower boundary, unless w(o) = —2¢ > 0.




6. Integrate by parts in p and give a convergent integral formula (without p) for each coefficient in
the e-expansion.

Solution: The integration by parts in p gives

e—2

e 2 o
/ p = dp (w3 + F 4 pr1 + pra)” T = /
0 2¢ Jo (

(z1 + 22)p~>dp
r3+ F + pr1 + px2)3—5

Inverting the scaling, x1 — 1p, 3 — x2p and x3 — 3p? to return to the original Schwinger
parameters and to get rid of p, the resulting integral representation is

1+ T2
I=— d d d
2&?F1—25 / ”31/ wQ/ UL FP

The divergence at € = 0 is explicit in the prefactor, but (in contrast to the original Lee-Pomeransky
representation) the integral over the Schwinger parameters is holomorphic also at € = 0. Hence
we can expand under the integral:

F(?’ gh1 $1+ 2
I__2F(1—25 kg% k! / dxl/ de/ s G 7 log" (U + 7).

7. Compute the leading order (coefficient of 1/¢) and relate it to a bubble integral.
Solution: For the leading order, the p-integral in 6. simplifies to

1 o —2¢ 0 1 1 1 0
d a = —_——— O
2ho P P oplust Frpm et (@t PP (5 )

and the subsequent x3-integral is straightforward, leaving:

I:—— dwl/ d$2 )+(’)( )

Up to the prefactor, this is identical to the bubble integral of G/3 in D = 2 dimensions.

8. Explain where the divergence comes from in momentum space.

Solution: Let £ denote the momentum flowing through edge 3. Then

dPr 1 1 1
I(D,1,1,1,2) =
( P ’Z) /]Rl,D—l imD/2 —€2m2—(€+p1)2 m2—(€—p2)2
dPe 1 1 1

RLD-1 iwD/2 —¢2 2 20p1 02— 20pa
For ¢ — 0, the integrand grows with ||¢||~*, while the volume element in D = 4 scales as ||£||> d ||£]|.
This shows a logarithmic divergence at £ — 0.
4 Polynomial reduction

Compute the Landau varieties of:

1. The massless box integral (m? = p? = 0).

p2 9 p3

p1 y20!



Solution: Start with the singularities of the integrand, in the projective representation with
§(1 — x4): Set s = —(p1 +p2)? and t = —(p1 + p4)?, then

S = {Z/{|x4:1,]:‘x4:1} = {1 + 21+ 29 + 23, 872 + tﬂ?lxg} .
Reduction of z1:

S1 = {1 + xzo +x3,8,22, t,x3 ,5T2 — txg(l + 29 + xg)}
N

z1—0 T1—00 resultant

Reduction of zs:
Si2={s,t,x3,1+ 23,5 —tes}
Reduction of x3:
Si23={st,s+1}

Hence the Landau variety L C S1 23 has at most 3 components. Clearly {s = 0} and {t =0}
are necessary, since the special cases n = (0,1,0,1) and n = (1,0,1,0) correspond to bubble
integrals o< s7° and o t~¢, respectively, which have singularities at s = 0 and ¢ = 0. To see that
singularities at s +t = 0 also appear, consider for example the finite box integral in D = 6:

61,1110 = [ [ [ dadzzdzs ¢
( y L, L, 1, 1,8, )_ 0 0 0 (8$2+t$11} )(1+$ Tt o )2, set o — T2x3
3 1 2 3

_/oo /oo /oo dridaedxs
- o Jo Jo (sx2+t3:1)(1+w1+x3(1+x2))2

_ /oo /OO dzidzs _ /OO dxz; logmil
o Jo (sxa+tx1)(l+z1)(1+ x2) 0 (1+x1)(tw1 —s) s
72 4 log?(s/t)
2(s+1)

Taking two variations around s = 0, this becomes (2i7r)%/(s + t), which clearly has a pole at
s+t =0. In conclusion, L = S1 23 = {s,t,s + t}.

. The triangle integral for generic p?,p3,p3 as in the lecture, but with an internal mass mg # 0
(still mq = mg = 0).

b1 3 b2

p3
Solution: In the projective representation with 3 = 1, the singularities of the integrand are

S = { L+ 21 + 29, —pize — P3z1 — P3T122 + m3(1 + 21 + 22) }
u|13:1 ]:|z3:1

Reduction of z1:

S = { 1+ z0,m3(1 + x2) — piaa, mj — p3 — P3xa, (1 + 2)(p3 + P3z2) — Pias }

z1—0 T1—00 resultant [, F]
Reduction of xs:
2 92 2 2 2 2 2 92 2 2 2 2 2 2 2 )
S0 = {msa m3 — p3, P3, M3 — P1, D3, P1, M3 + p3 — p3, (M3 — py)(m3 — p3) — m3ps, A}
z2—0 T2—00 resultants



where A = p + p3 + pi — 2p?p3 — 2p?p3 — 2p3p3 denotes the discriminant that also appeared in
the massless case. By symmetry (flipping z1 <> z2 and p; <> p2), note

So1 = Stal,, i = (S12\ {m3 +p3 = p3}) U {m3 +p} —p1}.

P1p2

Hence the component m2 + p3 — p3 € S1 2 is spurious, and we get the upper bound

L - 5172 N 52»1 = {p%p%’piA)mgam% _p%amg _p%a (m?z) _p%)(mg _pg) + m%pg} .

In fact, all these singularities indeed appear, hence L = S12 M Sa1.
Remark: The following is not explicitly asked for in the question, and for information only.
For example, setting n; = 0, the contracted graph is a bubble with one massless and one massive

propagator. In D = 4 with the massive propagator squared (nz = 2), this bubble integral is

o0 r3dxs 1 m2 — p?
I(4,0,1,2,z):/ 5 —5— = —log 3 L
o (I+z3)(mzw3(1+ x3) — pizs) Pi

2
m3

This exhibits singularities at p? = 0, m3 = 0 and m3 — p? = 0. By symmetry, the bubble with
n = (1,0,2) also gives singularities at p3 = 0 and m3 — p3 = 0. The massless bubble n = (1,1,0)
is proportional to a power of p3. In summary, the bubble quotients imply the lower bound

2 2 2 9 9 9 9 9
L> {p1»p2ap33m37m3 — p1,m3 —p2}~

The component (m% — p?)(m3 — p3) — m2p3 = 0 is the leading Landau singularity of the triangle.
For example, it appears in

o0 0 dxidas 1 (m2 —p2)(m2 _PQ)
I(4,1,1,2,z):/ / e log s PUMTS T Pa),
0 Jo Files=1  (m3—pi)(m3—p3) +m3p3

D)
—b3m3

Finally, the fact that A € L is in some sense the most complicated. It is an example of a
“singularity of the second type” [1]. As the calculation above shows, A arises as the discriminant
of the resultant [/, F]. In particular, it is absent in the integral I(4,1,1,2, z) above because that
only depends on F. One can see A explicitly for example as the denominator of

o0 oo 1
I(4,1,1,1,2) = /0 /0 ij__ﬁifl = 7 x {sum of several dilogarithms} .
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