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1 Power counting and factorization
Consider the Feynman integral IG(D,n, z) of the graph

G =
1

2

3 4p1

p2

p3

1. Compute the graph polynomials U and F .
Solution:

U = x1x3 + x1x4 + x2x3 + x2x4 + x3x4

F = −p2
1x1x2(x3 + x4)− p2

2x1x3x4 − p2
3x2x3x4 + U(m2

1x1 +m2
2x2 +m2

3x3 +m2
4x4)

2. Determine the two singular hyperplanes that contain the point (D,n) = (4, 1, 1, 1, 1).
Solution:

• overall divergence: ω = 0 where ω = n1 + n2 + n3 + n4 −D
• subdivergence {3, 4}: ω({3, 4}) = 0 where ω({3, 4}) = n3 + n4 −D/2

3. Show that U and F factorize to leading order on the subdivergence, and conclude that the leading
order of the ε-expansion is

IG(4− 2ε, 1, 1, 1, 1, z) = 1
2ε2 +O

(
ε−1

)
.

Solution: With x3 → x3ρ and x4 → x4, the leading orders as ρ→ 0 are
• U → ρ(x3 + x4)(x1 + x2) +O

(
ρ2)

• F → ρ(x3 + x4)
[
−p2

1x1x2 + (x1 + x2)(m2
1x1 +m2

2x2)
]

+O
(
ρ2)

By factorization, the coefficient of the double pole 1/[ω · ω({3, 4})] is

Res
ω({3,4})=0

Res
ω=0

IG = Res
ω({3,4})=0

PG = P{3,4} · PG/{3,4} = 1 · 1 = 1

is the square of the period of the bubble (note both the subgraph {3, 4}, and the quotent graph
G/ {3, 4}, are bubble graphs). Hence the double pole is 1/[ω · ω({3, 4})] = 1/[2ε · ε].
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4. Show that IG − IG′ is finite at (D,n) = (4, 1, 1, 1, 1), where G′ is the graph

G′ =
1

2

3 4p1

p2

p3

Hint: Compute both residues.
Solution: The graph G′ has the same overall power counting, and also the same subdivergence
ω({3, 4}) = 0. The corresponding sub- and quotient graphs

3 4 ⊂ G,G′, G/ {3, 4} =
1

2

p1

p2

p3

= G′/ {3, 4}

are the same for G as they are for G′, hence they yield the same residue

Res
ω({3,4})=0

IG = P{3,4} · IG/{3,4} = P{3,4} · IG′/{3,4} = Res
ω({3,4})=0

IG′ .

The residue PG = Resω=0 IG of the overall divergence depends only on U , but not F . Since G and
G′ differ only in the attachment of the external legs, they have the same UG = UG′ , and therefore
PG = PG′ . Hence, the difference IG − IG′ has neither a pole on ω = 0 nor at ω({3, 4}) = 0.

5. For internal masses me = 0, obtain the subleading order (∝ 1/ε) of IG.
Hint: Compute IG′ with the formula for the massless bubble integral in terms of Γ-functions.
Solution: Let B(n1, n2) = Γ(D/2−n1)Γ(D/2−n2)Γ(n1 +n2−D/2)/[Γ(n1)Γ(n2)Γ(D−n1−n2)]
so that the bubble integral is (−p2)−ωB(n1, n2). Integrating out the subloop yields

IG′ = B(n3, n4)×
n1

n2

n3 + n4 −
D
2

p1

p2
p3

= B(n3, n4)×
n1

n2 + n3 + n4 −
D
2

p1

p2

p3

= B(n3, n4)B(n1, n2 + n3 + n4 −D/2)(−p2
1)−ω

Plugging in ne = 1 and D = 4− 2ε, this gives the ε-expansion

IG(4− 2ε, 1, 1, 1, 1, z) = IG′ +O
(
ε0
)

= (−p2
1)−2εΓ(1− ε)3Γ(1− 2ε)Γ(ε)Γ(2ε)

Γ(1 + ε)Γ(2− 2ε)Γ(2− 3ε) +O
(
ε0
)

= 1
2ε2 + 1

ε

(5
2 − γE − log(−p2

1)
)

+O
(
ε0
)

6. Compute the leading order in the ε-expansion (D = 4− 2ε) of the ne = 1 integral

Solution: There is a logarithmic overall divergence ω|ne=1 = 5ε and two nested, logarithmic
subdivergences

δ = ⊂ γ = ⊂ G =
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with ω(δ)|ne=1 = 3ε and ω(γ)|ne=1 = 4ε. Hence the leading order is a triple pole 1/[ω · ω(γ) ·
ω(δ)]|ne=1 = 1/(60ε3) with coefficient

Res
ω(δ)=0

Res
ω(γ)=0

Res
ω=0

IG = Pδ · Pγ/δ · PG/γ = 6ζ(3) · 1 · 1

where δ is the wheel with 3 spokes mentioned in the lecture, and γ/δ ∼= G/γ are both isomorphic
to the 1-loop bubble graph. In conclusion,

IG(4− 2ε, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, z) = ζ(3)
10ε3 +O

(
ε−2

)
.

7. Compute all subdivergences near ne → 1 and D → 4 of the following 5 massless Feynman integrals
individually, and deduce also which divergences are left over in the indicated linear combination:

Find a single additional graph with sign such that its addition renders the entire linear combination
free of subdivergences.
Solution:
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2 Schwinger parameters and graph polynomials
1. Starting from the Schwinger parameter representation

I(D,n, z) =
(

N∏
e=1

∫ ∞
0

xne−1
e dxe
Γ(ne)

)
e−F/U

UD/2
,

prove the projective and the Lee-Pomeransky representations.
Hint: Multiply with 1 =

∫∞
0 δ(ρ− h(x))dρ and change variables xe → ρxe.

Solution: Introducing ρ and rescaling xe as suggested, the polynomials U and F get multiplied
by ρL and ρL+1, respectively. From xne−1

e dxe we also get a factor ρne for every edge. Since h(x)
is homoeneous, the delta distribution becomes δ(ρ− ρh(x)) = δ(1− h(x))/ρ after the rescaling
xe → ρxe. The integral over ρ is a gamma function,

I(D,n, z) =
(

N∏
e=1

∫ ∞
0

xne−1
e dxe
Γ(ne)

)
δ(1− h(x))
UD/2

∫ ∞
0

ρω−1e−ρF/Udρ︸ ︷︷ ︸
Γ(ω)(U/F)ω

which proves the projective representation of the Feynman integral. Applying the same procedure
to the Lee-Pomeransky integral, we get(

N∏
e=1

∫ ∞
0

xne−1
e dxe
Γ(ne)

)
(U + F)−D/2 =

(
N∏
e=1

∫ ∞
0

xne−1
e dxe
Γ(ne)

)
δ(1− h(x))

∫ ∞
0

ρω−1(U + ρF)−D/2dρ

The substitution ρ→ ρ · U/F gives∫ ∞
0

ρω−1(U + ρF)−D/2dρ =
(U
F

)ω
U−D/2

∫ ∞
0

ρω−1

(1 + ρ)D/2
dρ = β(ω,D/2− ω)

UD/2−ωFω
,

Euler’s beta function. In terms of gamma functions, β(ω,D/2− ω) = Γ(ω)Γ(D/2− ω)/Γ(D/2),
hence with the prefactor Γ(D/2)/Γ(D/2− ω) of the Lee-Pomeransky representation, only Γ(ω)
remains. We have thus arrived again at the projective representation of the Feynman integral.

2. Compute the number of spanning trees of the following graphs: Hint: Use U = detA.

X = Z6 =

Solution: Consider the loop momentum flows and edge labels as indicated in

1

2

3

4

5

6

7 8

ℓ1 ℓ3

ℓ2

and

1

2 3

4

5

6

7

8

9

10

11

12

13ℓ1

ℓ2
ℓ3

ℓ4
ℓ5

ℓ6 .

The loop momentum through edges 7,8,5 of X is then `1− `2, `2− `3 and `1− `2 + `3, respectively.
This gives the matrix

AX =

x1 + x5 + x6 + x7 −x5 − x7 x5
−x5 − x7 x2 + x5 + x7 + x8 −x5 − x8

x5 −x5 − x8 x3 + x4 + x5 + x8

 .
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The number of spanning trees is equal to U = detA evaluated at xe = 1 for every edge e,

UX |xe=1 = det

 4 −2 1
−2 4 −2
1 −2 4

 = 36.

Note that the diagonal entries Aii = ∑
e xe are the sums over all edges such that `i flows through

e. The off-diagonal terms Aij = ∑
e xe−

∑
f xf are sums over edges such that both loop momenta

`i and `j flow through the edge, with sign +1 if they flow in the same direction (e) and sign −1 if
they flow through the edge in opposite direction (f). Hence we easily get

AZ6 =



x1 + x2 + x3 −x3 0 0 0 0
−x3 x3 + x4 + x5 −x5 0 0 0

0 −x5 x5 + x6 + x7 −x7 0 0
0 0 −x7 x7 + x8 + x9 −x9 0
0 0 0 −x9 x9 + x10 + x11 −x11
0 0 0 0 −x11 x11 + x12 + x13


and the number of spanning trees of Z6 is

det



3 −1 0 0 0 0
−1 3 −1 0 0 0
0 −1 3 −1 0 0
0 0 −1 3 −1 0
0 0 0 −1 3 −1
0 0 0 0 −1 3


= 377.

3. Consider a graph G with two external legs, external momentum p2 = −1, and vanishing internal
masses me = 0. Let V denote the “vacuum” graph obtained by gluing the external legs into a
new edge “0”, for example

G = ⇒ V =
0

Show that:
a) ω(V ) = ω(G) + n0 −D/2,

Solution: V has one additional edge (⇒ +n0) and one additional loop (⇒ −D/2).
b) UV = x0 UG + FG, Hint: trees and 2-forests.

Solution: Every spanning tree T of V either:
• does not contain 0, in which case T is a spanning tree of V ; or
• does contain 0, in which case F := T \ {0} = T1 t T2 is a 2-forest of G with one external

leg in T1 and the other external leg in T2, hence a 2-forest that contributes to FG.
c) IG = Γ(D/2) · PV where

PV := Res
ω(V )=0

IV =
(

N∏
e=0

∫ ∞
0

xne−1
e dxe
Γ(ne)

)
δ(1− h(x))
UD/2V

.

Solution: The integral over x0 is (compare with the Lee-Pomeransky integral in part 1.)

1
Γ(n0)

∫ ∞
0

xn0−1
0 dx0

(x0UG + FG)D/2
= β(n0, D/2− n0)

Γ(n0)FD/2G

(FG
UG

)n0

= Γ(D/2− n0)
Γ(D/2)

1
Un0
G F

D/2−n0
G

.
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In the integral for PV , we have ω(V ) = 0, hence D/2− n0 = ω(G). The above thus becomes

PV = Γ(ω(G))
Γ(D/2)

(
N∏
e=0

∫ ∞
0

xne−1
e dxe
Γ(ne)

)
δ(1− h(x))

UD/2−ω(G)
G Fω(G)

G

= 1
Γ(D/2) · IG.

d) Conclude that in D = 4 dimensions with indices ne = 1, the Feynman integrals of the
following graphs all coincide:

Solution: The left and centre graphs glue to the same graph V , the wheel with 4 spokes:

cut e←−−− e

f

cut f−−−→

Also the indices agree, because n0 = 1 in both cases. Hence both of these propagator
integrals are equal to the period of V with unit indices everywhere. (FYI: it is PV = 20ζ(5).)
The third propagator glues into a different graph:

G = ⇒ V ′ = .

But the central, glued edge has index n0 = D/2− ω(G) = 0 so that it can be contracted,
therefore PV ′ |n0=0 = PV because V ′/0 ∼= V .
Remark: This is called the “glue-and-cut” symmetry.

3 Analytic continuation
Consider the following graph with m2

1 = m2
2 = p2

1 = p2
2 = m2 and m3 = 0:

G = 12

3

p3

p1 p2

1. Show that F{1,2} = 0 for the tree subgraph with edges {1, 2} = G−{3}. Deduce, via the infrared
factorization formula, that FG must be independent of x3.
Solution: The graph polynomials for the tree are U{1,2} = 1 and

F{1,2} = (m2x1 +m2x2)U{1,2} − p2
1x2 − p2

2x1 = x1(m2 − p2
2) + x2(m2 − p2

1) = 0.

Under the scaling (x1, x2)→ (ρx1, ρx2) of the tree edges, the IR-factorization formula gives

FG = ρ1UG/{1,2}F{1,2} +O
(
ρ2
)

= O
(
ρ2
)

hence every term in FG is of degree ≥ 2 in the variables (x1, x2). But we know that FG is
homogeneous of degree 2 in all variables (because G has 1 loop); hence FG cannot have any x3.
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2. Confirm by computing FG explicitly.
Solution:

FG = m2(x1 + x2)(x1 + x2 + x3)− p2
1x2x3 − p2

2x1x3 − p2
3x1x2

= m2(x1 + x2)2 − p2
3x1x2 + x3

(
m2x1 +m2x2 − p2

1x2 − p2
2x1︸ ︷︷ ︸

=F{1,2}=0

)
= m2(x1 + x2)2 − p2

3x1x2.

3. Draw the Newton polytope of U + F . Read off the 5 facets.
Solution: The Lee-Pomeransky polynomial

UG + FG = x1 + x2 + x3 + x2
1m

2 + x2
2m

2 + x1x2
(
2m2 − p2

3

)
has 6 different monomials. We read off the Newton polytope

NP = conv


1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
2

0
0

 ,
0

2
0

 ,
1

1
0


 =

b

b

b

b

b

b

v1

v2

v3

4. Describe the convergence domain in (D,n1, n2, n3) by inequalities, and find all finite integrals in
D = 6 dimensions with integer ne.
Solution: The Newton polytope is a pyramid with apex (0, 0, 1) over a quadrilateral in the
(x1, x2)-plane. This pyramid has 5 supporting hyperplanes (facets) that we can read off easily:

v1 ≥ 0, v2 ≥ 0, v3 ≥ 0,
v1 + v2 + v3 ≥ 1, v1 + v2 + 2v3 ≤ 2.

For example, v3 = 0 is the plane containing the base quadrilateral; and v1 + v2 + 2v3 = 2 is the
supporting hyperplane that contains the three vertices (2, 0, 0), (0, 2, 0) and (0, 0, 1).
The convergence region is Re(n) ∈ interior(D/2 ·NP), hence the conditions are

Re(n1) > 0, Re(n2) > 0, Re(n3) > 0,
Re(n1 + n2 + n3) > Re(D/2), Re(n1 + n2 + 2n3) < Re(D).

For D = 6, the only integer solutions are n = (2, 1, 1) and n = (1, 2, 1).

5. Set D = 4−2ε and all ne = 1. In the Lee-Pomeransky representation, insert 1 =
∫∞

0 δ(ρ−x−1
1 )dρ,

rescale xe → ρσexe for σ = (−1,−1,−2), and factor out the lowest powers of ρ to make the
infrared divergence explicit.
Solution: Under this scaling, we have

dx1 → ρ−1dx1, dx2 → ρ−1dx2, dx3 → ρ−2dx3,

U → ρ−2(x3 + ρx1 + ρx2), F → ρ−2F , δ(ρ− x−1
1 )→ ρ−1δ(1− x1).

With D/2 = 2− ε and ω = 1 + ε, the Lee-Pomeransky integral thus becomes

I = Γ(2− ε)
Γ(1− 2ε)

∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx3 δ(1− x1)
∫ ∞

0

ρ−2ε−1dρ
(x3 + F + ρx1 + ρx2)2−ε .

The integral over ρ is divergent at the lower boundary, unless ω(σ) = −2ε > 0.
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6. Integrate by parts in ρ and give a convergent integral formula (without ρ) for each coefficient in
the ε-expansion.
Solution: The integration by parts in ρ gives∫ ∞

0
ρ−2ε−1dρ (x3 + F + ρx1 + ρx2)ε−2 = ε− 2

2ε

∫ ∞
0

(x1 + x2)ρ−2εdρ
(x3 + F + ρx1 + ρx2)3−ε

Inverting the scaling, x1 → x1ρ, x2 → x2ρ and x3 → x3ρ
2 to return to the original Schwinger

parameters and to get rid of ρ, the resulting integral representation is

I = − Γ(3− ε)
2εΓ(1− 2ε)

∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx3
x1 + x2

(U + F)3−ε .

The divergence at ε = 0 is explicit in the prefactor, but (in contrast to the original Lee-Pomeransky
representation) the integral over the Schwinger parameters is holomorphic also at ε = 0. Hence
we can expand under the integral:

I = − Γ(3− ε)
2Γ(1− 2ε)

∑
k≥0

εk−1

k!

∫ ∞
0

dx1

∫ ∞
0

dx2

∫ ∞
0

dx3
x1 + x2

(U + F)3 logk(U + F).

7. Compute the leading order (coefficient of 1/ε) and relate it to a bubble integral.
Solution: For the leading order, the ρ-integral in 6. simplifies to

1
2ε

∫ ∞
0

ρ−2εdρ ∂

∂ρ

1
(x3 + F + ρx1 + ρx2)2−ε = − 1

2ε
1

(x3 + F)2 +O
(
ε0
)

and the subsequent x3-integral is straightforward, leaving:

I = − 1
2ε

∫ ∞
0

dx1

∫ ∞
0

dx2
δ(1− x1)
F

+O
(
ε0
)
.

Up to the prefactor, this is identical to the bubble integral of G/3 in D = 2 dimensions.

8. Explain where the divergence comes from in momentum space.
Solution: Let ` denote the momentum flowing through edge 3. Then

I(D, 1, 1, 1, z) =
∫
R1,D−1

dD`
iπD/2

1
−`2

1
m2 − (`+ p1)2

1
m2 − (`− p2)2

=
∫
R1,D−1

dD`
iπD/2

1
−`2

1
`2 + 2`p1

1
`2 − 2`p2

For `→ 0, the integrand grows with ‖`‖−4, while the volume element in D = 4 scales as ‖`‖3 d ‖`‖.
This shows a logarithmic divergence at `→ 0.

4 Polynomial reduction
Compute the Landau varieties of:

1. The massless box integral (m2
e = p2

i = 0).

p2 p3

p4p1

1

2

3

4

8



Solution: Start with the singularities of the integrand, in the projective representation with
δ(1− x4): Set s = −(p1 + p2)2 and t = −(p1 + p4)2, then

S = {U|x4=1,F|x4=1} = {1 + x1 + x2 + x3, sx2 + tx1x3} .

Reduction of x1:

S1 = {1 + x2 + x3, s, x2︸ ︷︷ ︸
x1→0

, t, x3︸︷︷︸
x1→∞

, sx2 − tx3(1 + x2 + x3)︸ ︷︷ ︸
resultant

}

Reduction of x2:
S1,2 = {s, t, x3, 1 + x3, s− tx3}

Reduction of x3:
S1,2,3 = {s, t, s+ t}

Hence the Landau variety L ⊆ S1,2,3 has at most 3 components. Clearly {s = 0} and {t = 0}
are necessary, since the special cases n = (0, 1, 0, 1) and n = (1, 0, 1, 0) correspond to bubble
integrals ∝ s−ε and ∝ t−ε, respectively, which have singularities at s = 0 and t = 0. To see that
singularities at s+ t = 0 also appear, consider for example the finite box integral in D = 6:

I(6, 1, 1, 1, 1, s, t) =
∫ ∞

0

∫ ∞
0

∫ ∞
0

dx1dx2dx3
(sx2 + tx1x3)(1 + x1 + x2 + x3)2 , set x2 → x2x3

=
∫ ∞

0

∫ ∞
0

∫ ∞
0

dx1dx2dx3
(sx2 + tx1)(1 + x1 + x3(1 + x2))2

=
∫ ∞

0

∫ ∞
0

dx1dx2
(sx2 + tx1)(1 + x1)(1 + x2) =

∫ ∞
0

dx1
(1 + x1)(tx1 − s)

log tx1
s

= π2 + log2(s/t)
2(s+ t)

Taking two variations around s = 0, this becomes (2iπ)2/(s + t), which clearly has a pole at
s+ t = 0. In conclusion, L = S1,2,3 = {s, t, s+ t}.

2. The triangle integral for generic p2
1, p

2
2, p

2
3 as in the lecture, but with an internal mass m3 6= 0

(still m1 = m2 = 0).

12

3

p3

p1 p2

Solution: In the projective representation with x3 = 1, the singularities of the integrand are

S =
{

1 + x1 + x2︸ ︷︷ ︸
U|x3=1

,−p2
1x2 − p2

2x1 − p2
3x1x2 +m2

3(1 + x1 + x2)︸ ︷︷ ︸
F|x3=1

}

Reduction of x1:

S1 =
{

1 + x2,m
2
3(1 + x2)− p2

1x2︸ ︷︷ ︸
x1→0

,m2
3 − p2

2 − p2
3x2︸ ︷︷ ︸

x1→∞

, (1 + x2)(p2
2 + p2

3x2)− p2
1x2︸ ︷︷ ︸

resultant [U ,F ]

}

Reduction of x2:

S1,2 =
{
m2

3,m
2
3 − p2

2, p
2
2︸ ︷︷ ︸

x2→0

,m2
3 − p2

1, p
2
3︸ ︷︷ ︸

x2→∞

, p2
1,m

2
3 + p2

3 − p2
2, (m2

3 − p2
1)(m2

3 − p2
2)−m2

3p
2
3︸ ︷︷ ︸

resultants

,∆
}
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where ∆ = p4
1 + p4

2 + p4
3 − 2p2

1p
2
2 − 2p2

1p
2
3 − 2p2

2p
2
3 denotes the discriminant that also appeared in

the massless case. By symmetry (flipping x1 ↔ x2 and p1 ↔ p2), note

S2,1 = S1,2
∣∣
p1↔p2

=
(
S1,2 \

{
m2

3 + p2
3 − p2

2
})
∪
{
m2

3 + p2
3 − p2

1
}
.

Hence the component m2
3 + p2

3 − p2
2 ∈ S1,2 is spurious, and we get the upper bound

L ⊆ S1,2 ∩ S2,1 =
{
p2

1, p
2
2, p

2
3,∆,m2

3,m
2
3 − p2

1,m
2
3 − p2

2, (m2
3 − p2

1)(m2
3 − p2

2) +m2
3p

2
3

}
.

In fact, all these singularities indeed appear, hence L = S1,2 ∩ S2,1.
Remark: The following is not explicitly asked for in the question, and for information only.
For example, setting n1 = 0, the contracted graph is a bubble with one massless and one massive
propagator. In D = 4 with the massive propagator squared (n3 = 2), this bubble integral is

I(4, 0, 1, 2, z) =
∫ ∞

0

x3dx3
(1 + x3)(m2

3x3(1 + x3)− p2
1x3) = 1

−p2
1

log m
2
3 − p2

1
m2

3
.

This exhibits singularities at p2
1 = 0, m2

3 = 0 and m2
3 − p2

1 = 0. By symmetry, the bubble with
n = (1, 0, 2) also gives singularities at p2

2 = 0 and m2
3 − p2

2 = 0. The massless bubble n = (1, 1, 0)
is proportional to a power of p2

3. In summary, the bubble quotients imply the lower bound

L ⊇
{
p2

1, p
2
2, p

2
3,m

2
3,m

2
3 − p2

1,m
2
3 − p2

2

}
.

The component (m2
3 − p2

1)(m2
3 − p2

2)−m2
3p

2
3 = 0 is the leading Landau singularity of the triangle.

For example, it appears in

I(4, 1, 1, 2, z) =
∫ ∞

0

∫ ∞
0

dx1dx2
F2|x3=1

= 1
(m2

3 − p2
1)(m2

3 − p2
2) +m2

3p
2
3

log (m2
3 − p2

1)(m2
3 − p2

2)
−p2

3m
2
3

.

Finally, the fact that ∆ ∈ L is in some sense the most complicated. It is an example of a
“singularity of the second type” [1]. As the calculation above shows, ∆ arises as the discriminant
of the resultant [U ,F ]. In particular, it is absent in the integral I(4, 1, 1, 2, z) above because that
only depends on F . One can see ∆ explicitly for example as the denominator of

I(4, 1, 1, 1, z) =
∫ ∞

0

∫ ∞
0

dx1dx2
UF|x3=1

= 1√
∆
× {sum of several dilogarithms} .
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