Exercises (MITP Amplitude Games)

Erik Panzer

July 19, 2021

1 Power counting and factorization

Consider the Feynman integral $I_G(D, n, z)$ of the graph

- 1. Compute the graph polynomials \mathcal{U} and \mathcal{F} .
- 2. Determine the two singular hyperplanes that contain the point (D, n) = (4, 1, 1, 1, 1).
- 3. Show that \mathcal{U} and \mathcal{F} factorize to leading order on the subdivergence, and onclude that the leading order of the ε -expansion is

$$I_G(4-2\varepsilon,1,1,1,1,z) = \frac{1}{2\varepsilon^2} + \mathcal{O}\left(\varepsilon^{-1}\right)$$

4. Show that $I_G - I_{G'}$ is finite at (D, n) = (4, 1, 1, 1, 1), where G' is the graph

Hint: Compute both residues.

- 5. For internal masses $m_e = 0$, obtain the subleading order $(\propto 1/\varepsilon)$ of I_G . Hint: Compute $I_{G'}$ with the formula for the massless bubble integral in terms of Γ -functions.
- 6. Compute the leading order in the ε -expansion $(D = 4 2\varepsilon)$ of the $n_e = 1$ integral

7. Compute all subdivergences near $n_e \rightarrow 1$ and $D \rightarrow 4$ of the following 5 massless Feynman integrals individually, and deduce also which divergences are left over in the indicated linear combination:

Find a single additional graph with sign such that its addition renders the entire linear combination free of subdivergences.

2 Schwinger parameters and graph polynomials

1. Starting from the Schwinger parameter representation

$$I(D, n, z) = \left(\prod_{e=1}^{N} \int_{0}^{\infty} \frac{x_e^{n_e - 1} \mathrm{d}x_e}{\Gamma(n_e)}\right) \frac{e^{-\mathcal{F}/\mathcal{U}}}{\mathcal{U}^{D/2}},$$

prove the projective and the Lee-Pomeransky representations.

Hint: Multiply with $1 = \int_0^\infty \delta(\rho - h(x)) d\rho$ and change variables $x_e \to \rho x_e$.

2. Compute the number of spanning trees of the following graphs: *Hint:* Use $\mathcal{U} = \det A$.

3. Consider a graph G with two external legs, external momentum $p^2 = -1$, and vanishing internal masses $m_e = 0$. Let V denote the "vacuum" graph obtained by gluing the external legs into a new edge "0", for example

Show that:

a)
$$\omega(V) = \omega(G) + n_0 - D/2$$
,

b)
$$\mathcal{U}_V = x_0 \mathcal{U}_G + \mathcal{F}_G$$
,

c) $I_G = \Gamma(D/2) \cdot P_V$ where

$$P_V := \operatorname{Res}_{\omega(V)=0} I_V = \left(\prod_{e=0}^N \int_0^\infty \frac{x_e^{n_e - 1} \mathrm{d}x_e}{\Gamma(n_e)}\right) \frac{\delta(1 - h(x))}{\mathcal{U}_V^{D/2}}$$

d) Conclude that in D = 4 dimensions with indices $n_e = 1$, the Feynman integrals of the following graphs all coincide:

Hint: trees and 2-forests.

3 Analytic continuation

Consider the following graph with $m_1^2 = m_2^2 = p_1^2 = p_2^2 = m$ and $m_3 = 0$:

- 1. Show that $\mathcal{F}_{\{1,2\}} = 0$ for the tree subgraph with edges $\{1,2\} = G \{3\}$. Deduce, via the infrared factorization formula, that \mathcal{F}_G must be independent of x_3 .
- 2. Confirm by computing \mathcal{F}_G explicitly.
- 3. Draw the Newton polytope of $\mathcal{U} + \mathcal{F}$. Read off the 5 facets.
- 4. Describe the convergence domain in (D, n_1, n_2, n_3) by inequalities, and find all finite integrals in D = 6 dimensions with integer n_e .
- 5. Set $D = 4 2\varepsilon$ and all $n_e = 1$. In the Lee-Pomeransky representation, insert $1 = \int_0^\infty \delta(\rho x_1) d\rho$, rescale $x_e \to \rho^{\sigma_e} x_e$ for $\rho = (-1, -1, -2)$, and factor out the lowest powers of ρ to make the infrared divergence explicit.
- 6. Integrate by parts in ρ and give a convergent integral formula (without ρ) for each coefficient in the ε -expansion.
- 7. Compute the leading order (coefficient of $1/\varepsilon$) and relate it to a bubble integral.
- 8. Explain where the divergence comes from in momentum space.

4 Polynomial reduction

Compute the Landau varieties of:

1. The massless box integral $(m_e^2 = p_i^2 = 0)$.

2. The triangle integral for generic p_1^2, p_2^2, p_3^2 as in the lecture, but with an internal mass $m_3 \neq 0$ (still $m_1 = m_2 = 0$).

