
The Amplitudes Game
MITP Summer School, 2021

Geometry of Amplitudes
Solutions to Problems

Lecture One: Vernacular of the S-Matrix
Problem 1: Consistency Conditions from Quantum Mechanics

As we discussed at the end of the lecture, the uniqueness of the (analytic continuation of
the) three-particle S-matrix for massless particles places some surprisingly strong conditions
on viable theories in four dimensions. In this problem, I’d like you to derive a few famous
results from this perspective.

To complete the following, it suffices to consider the forms of various factorization-channels
of particular four-point amplitudes involving some sets of external states. For the sake of the
problems below, you may assume that σ∈Z+.

a. Weinberg’s theorem
In lecture, we discussed how four-particle amplitudes must factorize, depend-

ing on the spins of the particles involved.
Consider an interacting theory of spin-σ particles. Provided the theory is local

and unitarity, the factorization-structure of any four-particle amplitude is
uniquely determined by three-particle amplitudes.

Show that if σ > 2, the theory cannot consistently factorize.

Solution: Consider for example the helicity amplitude A(1−σ,2−σ,3+σ,4+σ). On general
grounds, the little-group scaling part of the amplitude can be factored out, allowing us to
write

A(1−σ,2−σ,3+σ,4+σ) =:(〈12〉[34])2σF (s, t,u) , (1.1)

where s := 〈12〉[12], t := 〈23〉[23],u := 〈13〉[13] are the usual Mandelstam invariants (which sat-
isfy s+t+u= 0). From dimensional analysis, we know that F must be rational function with
fixed scaling dimension −(σ+ 1) in momentum-squared; in particular, it must be homoge-
neous.

In lecture we saw how (for any local, unitary quantum theory) any factorization channel
associated with internal particle exchange (long range mediation) resulted in a pole whose
residue took a very precise form:

Res
s=0

(
F
)
∝ 1

uσ
, (1.2)

and similarly for t and u-channels. (Recall that, when s→0, t+u= 0; so t and u are inter-
changeable in the above.) When σ≥3, F would need to be of degree −4 in momenta-squared,
and thus would necessarily have degree ≥ 2 in at least one Mandelstam. Put another way,
it is not possible for F to have (merely) simple poles in all three channels if its total degree
where ≤ −4. Thus, F cannot support residues on all factorization channels.

As factorization channels are the signal of long-range interactions, it is clear that this must
break down when σ≥ 3.
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∗ b. Uniqueness of Yang-Mills theory
For interacting particles of spin σ = 1, show that the three-point coupling

constants must satisfy a Jacobi identity:∑
?

(
f c1,c2,?f ?,c3,c4 + f c2,c3,?f ?,c1,c4 + f c3,c1,?f ?,c2,c4

)
= 0 . (1.3)

Thus, any ‘charges’ (distinguishing quantum number-labels) they may have
must transform according to (the adjoint representation of) some Lie
algebra—and consequently, the only (local, long-range, unitary) theory
of interacting spin-one particles is Yang-Mills theory.

Solution: Let us denote the three terms appearing in (1.3) cs, ct, cu, respectively—so that
(1.3) reads cs+ct+cu = 0.

Consider the four-particle amplitude involving particles labelled by some distinguishing
(non-kinematic) quantum numbers c1,. . .,c4. Peeling-off the helicity-dependent part as above,
and this time taking into account the coupling-constants appearing in three-point amplitudes,
and being careful about signs, we can easily show that

Res
s=0

(
F
)

=
(∑

?

f c1,c2,?f ?,c3,c4
)1

u
= +cs

1

u
(1.4)

Res
t=0

(
F
)

=
(∑

?

f c1,c4,?f ?,c2,c3
)1

u
=−ct

1

u
(1.5)

Res
u=0

(
F
)

=
(∑

?

f c1,c3,?f ?,c2,c4
)1

s
=−cu

1

s
(1.6)

where we have used the fact that Bose symmetry dictates the complete antisymmetry of the
coupling constants fa,b,c.

Now, on general grounds, we can deduce that F may be expanded into a basis of degree-
(−2) functions { 1

st
, 1
tu
, 1
su
}; but it is easy to see that momentum conservation—s+t+u= 0—

implies that only two of these are independent. Thus, we may use any pair we’d like to
represent the complete function.

Choosing to express F in terms of { 1
su
, 1
tu
}, we see that the coefficients of these two

terms are uniquely determined by the first two residue conditions above, (1.4) and (1.5).
Specifically, we see that

F = cs
1

su
− ct

1

tu
. (1.7)

However, comparing the u-residue of this expression with the result in (1.6) gives us an
interesting constraint:

Res
u=0

(
F
)

=−cu
1

s
= cs

1

s
− ct

1

t
=

1

s

(
cs + ct

)
(1.8)

∗extra credit
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—where, in the last equality, we have used the fact that t=−s on the support of u=0. Thus,
we conclude that cs+ct+cu = 0, which was what we were asked to show.

∗ c. Equivalence Principle
Suppose that there exists a spin-2 particle with some self-coupling constant κ.

Show that its coupling to any other field must also have the strength κ.

Solution: We can merely sketch the argument—as the details are not difficult to work out
(and are not especially illuminating). The basic argument is to consider any four-particle
amplitude involving a spin-2 particle with another state of arbitrary spin. For example, let
us consider the amplitude A(1−σ,2+σ,3−2,4+2). Again, on general grounds we may factor-out
the helicity-dependent part of the amplitude to consider

A(1−σ,2+σ,3−2,4+2) =:
(
〈13〉[41]

)4(〈13〉[24]

〈32〉[41]

)σ
F (s, t,u) , (1.9)

where, as before, F must be a homogeneous function of degree −3. Thus, it must be
proportional to 1

stu
—and any particular factorization channel will test the same constant of

proportionality.

Let us use κ to denote the coupling constant for the three-graviton amplitude and κ̃ to
denote that for its interactions with the spin-σ particles.

The key insight is that different factorization channels will depend on different combina-
tions of κ and κ̃—and consistency between them will require that they are identical.

Consider for example the s-channel factorization; this involves the exchange of gravitons,
and therefore will be proportional to κ κ̃. In contrast, the t-channel factorization involves
only spin-σ particle exchange. As such, it will be proportional to κ̃2. Comparing these two
requires that κ= κ̃.

∗extra credit
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Lecture Two: Combinatorics of On-Shell Diagrams
Problem 1: Basic Combinatorics of On-Shell Diagrams

In this problem, I’d like you to analyze the combinatorics associated with the following
on-shell diagrams:

and (1.1)

a. What are the decorated3 permutation-labels of the on-shell diagrams above?4

Do these diagrams represent to the same on-shell function?

Solution: Both graphs have the same permutation labels—namely,

σ :=

(
1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 8 6 10 7 9 11 12

)
. (1.2)

We can see this directly by drawing the left-right paths according to the rules discussed in
lecture:

and (1.3)

b. Find a sequence of square/merge-moves which transforms the first of these
diagrams into the second.

Solution: Left to the reader ;) .

3Recall that when σ :a 7→b with b<a, we conventionally define its image to be σ(a)=b+n.
4Recall that the map a 7→σ(a) is defined by starting at leg a and turning left/right at every white/blue

vertex, respectively; σ(a) labels the leg where the path terminates—decorated so that σ(a)≥a for all a.
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Problem 2: Building with BCF(W) Bridges

Consider the following decorated permutation:

σ :=

(
1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
4 5 7 6 8 9

)
. (2.1)

a. This decorated permutation labels a cell in some Grassmannian Gr(k, n).
What are k and n?

Solution: It is clear that the permutation σ labels a cell in G(k,6)—as there are 6 pre-
images. To determine k, we merely note that 3 of the images exceed n—namely, 7,8,9. Thus,
k= 3.

b. Use the lexicographic BCFW-bridge decomposition to construct a reduced on-
shell diagram which will be labeled by the permutation given above:

How many bridges, d, are required to reach the identity?

Solution: Recall that the lexicographic bridge decomposition expresses σ =:(ab) ◦ σ′ where
‘(ab)’ represents a transposition of the images of a,b, and this pair is chosen to be the first pair
of consecutive—but skipping over self-identified legs—legs whose images are ordered—that
is, such that σ(a)<σ(b). Thus, we see that

σ= (12) ◦ (23) ◦ (12) ◦ (34) ◦ (23) ◦ (35) ◦ (23) ◦ (36) ◦σ0 (2.2)

where σ0 is the decoration of the identity,

σ0 :=

(
1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
7 8 9 4 5 6

)
. (2.3)

Thus, the number of bridges to connect σ to the identity is d= 8.

c. As discussed in lecture, any on-shell function of planar, maximally supersym-
metric Yang-Mills theory can be represented in the form5

fσ =

∫
dα1

α1

∧ ·· · ∧ dαd
αd

δk×4
(
Cσ(~α)·η̃

)
δk×2
(
Cσ(~α)·λ̃

)
δ2×(n−k)

(
λ·C⊥σ (~α)

)
. (2.4)

For the same permutation σ, and using the bridge decomposition obtained
above, determine the form of the matrix C(~α) (representing a configuration
in Gr(k, n)). To be clear: let α1 denote the last transposition to the
identity in the decomposition—the one parameterizing a one-dimensional
configuration in Gr(k,n), and let αd denote the ‘uppermost’ bridge.

Solution: Recall that the action of adding a bridge ‘(ab)’ (white-to-blue from a to b) between

legs a,b translates into a shift of the C 7→ Ĉ where ĉb = cb +αca; that is, it shifts column b by
some new parameter times column a.

Applying the sequence of shifts given in (2.2) results in the following C-matrix represen-
tative of the on-shell function:

5Recall that, as appearing in the δ-functions here, ‘A·B’ means A.BT —or, a sum over the index a∈ [n].
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C(~α) :=

1 (α6+α8) α6α7 0 0 0
0 1 (α2+α4+α7) (α2+α4)α5 α2α3 0
0 0 1 α5 α3 α1

 . (2.5)

∗ d. Assume that you have a momentum-conserving set of momenta (λ·λ̃= 0); use
whatever remains of the δ-functions in (2.4) to localize as many of the
bridge coordinates ~α as possible; find an analytic solution for each α in
terms of Lorentz-invariant spinor products.

Solution: Because any computer algebra package can easily solve the requisite equations,
the difficult part of this problem lies almost entirely in doing this in terms of Lorentz-invariant
spinor products. Sparing the details, the (unique) solution to these equations is:

α1 7→α∗1 :=−〈6|(1
+2)|3]

s123
α4 7→α∗4 :=

s123〈45〉[23]

〈4|(1+2)|3]〈5|(1+2|3]
α7 7→α∗7 :=− 〈4|(1

+3)2]

〈4|(1+2)|3]

α2 7→α∗2 :=
〈56〉[23]s123

〈5|(1+2)3]〈6|(1+2)3]
α5 7→α∗5 :=−〈4|(1

+2)3]

s123
α8 7→α∗8 :=−〈4|(2

+3)|1]

〈4|(1+3)|2]

α3 7→α∗3 :=−〈5|(1
+2)|3]

s123
α6 7→α∗6 :=− [12]〈4|(1+2)|3]

[23]〈4|(1+3)|2] (2.6)

and the Jacobian associated with integration against the δ-function constraints turns out to
be:

J=
s2123

〈4|(1+3)|2]〈5|(1+2)|3]〈6|(1+2)3]
. (2.7)

Thus, upon using the δ-functions to localize all of the αi variables, the analytic form of this
particular on-shell function would be:

fσ =
J

α∗1α
∗
2α
∗
3α
∗
4α
∗
5α
∗
6α
∗
7α
∗
8

δ3×4
(
C(~α∗)·η̃

)
δ2×2
(
λ·λ̃
)

=
s3123

〈4|(2+3)|1][12]〈45〉〈56〉[23]〈6|(1+2)|3]
δ3×4
(
C(~α∗)·η̃

)
δ2×2
(
λ·λ̃
)
.

(2.8)

where the matrix of η̃-coefficients is given by

C(~α∗) :=

1 (α∗6+α∗8) α∗6α
∗
7 0 0 0

0 1 (α∗2+α∗4+α∗7) (α∗2+α∗4)α
∗
5 α∗2α

∗
3 0

0 0 1 α∗5 α∗3 α∗1

 . (2.9)

e. Consider the (on-shell) superfunction7

f(λ, λ̃, η̃) =
δ3×4
(
C ·η̃

)
δ2×2
(
λ·λ̃
)

s123〈4|(2+3)|1][12]〈45〉〈56〉[23]〈6|(1+2)|3]
(2.10)

where the C-matrix (merely of η̃ coefficients this time) is given by

∗extra credit
7Recall that ‘〈a|(b+c)|d]’ := 〈a|(pb+pc)|d] = 〈a|(b〉[b+c〉[c)|d] = 〈ab〉[bd] + 〈ac〉[cd].
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C :=

 λ11 λ12 λ13 λ14 λ15 λ16
λ21 λ22 λ23 λ24 λ25 λ26

[23] [31] [12] 0 0 0

 . (2.11)

Representing a particular configuration inGr(3,6)—and for generic (momentum-

conserving) spinors λ, λ̃—what permutation would label this (on-shell)
function’s C-matrix, as a configuration in the Grassmannian Gr(3,6)?

Solution: The geometric definition of the permutation associated with a configuration in the
(positive) Grassmannian C =:(c1c2 · · · cn) is simply that a 7→σ(a) if σ(a) represents the nearest
column-vector cσ(a) such that ca∈span{ca+1, . . . , cσ(a)}—where cyclic labeling is understood.

(If we ever have ca =~0, then σ(a) = a by definition.)

Consider first a completely generic 3×6 matrix. As each column represents a generic three-
vector, a generic three-dimensional subspace is required to represent any particular column.
Thus, ca∈span{ca+1, . . . , ca+3} in general, and σ(a) = a+3.

For the matrix given above, it is not hard to see that the first three columns are generic
3-vectors, while the last three span only a 2-dimensional subspace. Moreover, it is fairly easy
to see that every consecutive set of columns is full-rank, with the exception of the set (c4c5c6).
In particular, this means that c3 /∈span{c4, . . . , c6}, but c3∈span{c4, . . . , c7}; as such, σ(3) = 7.
Similarly, it is easy to see that c4∈span{c5, c6}; as such, σ(4) = 6. All other sets of columns
behave similarly to the generic case. Thus, the permutation encoding this configuration in
Gr(3,6) would be given precisely by the one given in (2.1) above.

f. It is not hard to see that the matrices C generated by the two constructions
are fairly different; and yet, each of these two are supposed to represent
the ‘same’ on-shell function. Explain how this gets resolved.

Solution: This is not in fact hard to understand. By inspection, the two expressions differ
by a factor of s4123 in their prefactors, and involve different C-matrices. Let’s denote the
matrix C(~α∗) appearing in problems c,d by CA and that appearing in problem e as CB.

Before we make the critical (mathematical) argument, we can easily see that the super-
functions have identical component amplitudes. Consider for example extracting component
function involving particles 1, . . . ,6 all being gluonic states with helicities (−,−,−,+,+,+).
This component would be extracted by multiplying the relevant bosonic functions by the
fourth-power of the determinant of the corresponding matrix of η̃-coefficients. For the first
expression, this corresponds simply to the function∫ 4∏

I=1

(
dη̃I1 dη̃

I
2 dη̃

I
3

)
fAσ =

s3123
〈4|(2+3)|1][12]〈45〉〈56〉[23]〈6|(1+2)|3]

δ2×2
(
λ·λ̃
)
, (2.12)

as the determinant det{cA1 , cA2 , cA3 }= 1; while for the second, it would correspond to∫ 4∏
I=1

(
dη̃I1 dη̃

I
2 dη̃

I
3

)
fB(2.10) =

s4123
s123〈4|(2+3)|1][12]〈45〉〈56〉[23]〈6|(1+2)|3]

δ2×2
(
λ·λ̃
)
, (2.13)
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as det{cB1 , cB2 , cB3 }= s123. Thus, the two superfunctions appear to match on bosonic compo-
nents.

The logic behind this (and the way to see that this will always work) is to notice that, for
fermionic δ-functions,

δk×4
(
D·η̃

)
= det(M)4δk×4

(
C ·η̃

)
for D=M.C . (2.14)

By noticing that CA∼CB∈Gr(3,6)—that is, there exists someM (namely, (cA1 c
A
2 c

A
3 ).(cB1 c

B
2 c

B
3 )−1)

—it is easy to use the rule above to show that they are in fact identical as superfunctions.

Lecture Three: Non-Planar On-Shell Varieties
Problem 1: Non-Planar On-Shell Functions

In this problem, we’d like to analyze the following non-planar on-shell diagram:

(1.1)

a. Determine the boundary-measurements matrix C(~α) for the graph above (as-
suming all unlabeled edges have weight 1).

Solution: Following the instructions discussed in lecture, we see that the ‘sources’ {1,2,5}
should correspond to the columns set to the identity matrix; the other entries can be read
off directly from the sum over paths, resulting in:

C(~α) =

1 0 α6α8+α1α7(α4+α8) α1(α4+α8) 0 α3α8

0 1 α6+α1α7 α1 0 α3

0 0 α1α7(α2+α5) α1(α2+α5) 1 α3α5

 (1.2)

b. Find the number of solutions that exist to the (universal) ‘constraints’ on

the α’s—namely, δ3×2
(
C(~α)·λ̃

)
and δ2×3

(
λ·C⊥(~α)

)
—assuming momentum-

conserving spinors.

(Hint: you can solve the equations directly—in Mathematica, say—for some
particular (generic, momentum conserving) spinors.)

Solution: Using Mathematica and a generic set of (momentum-conserving) spinors, we
find that the number of solutions to the constraints is 2; in particular, this ‘leading singularity’
involves square-root √

(s13+s14+s23+s24)2− 4s12s34 . (1.3)
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Lecture Four: Tree-Level Recursion in Mathematica
Problem 1: Implementing Recursion Yourself

The goal of this problem is to have you do for yourself what we did ‘in real time’ during
lecture: to build your own implementation of tree-level recursion in Mathematica, say, and
to improve upon what was done in several important ways.

a. Write your own implementation of the tree-level BCFW recursion relations in
momentum-twistor variables.

∗ b. Implement this more efficiently than done during the lecture.
(This is not very hard: there are many obvious places for improvement.)

c. Any superfunction expressed in momentum-twistor space according to

f(Z)×δk×n
(
C ·η

)
=

1

〈12〉〈23〉 · · · 〈n1〉
f(λ, λ̃)δ(k+2)×n(Ĉ ·η̃) (1.1)

Construct the general map between superfunctions expressed in terms of
momentum-twistor variables (Z,η) into those expressed in terms of spinor

variables (λ, λ̃, η̃). That is, given the equality

f(Z)×δk×n
(
C ·η

)
=
δ2×4
(
λ·η̃
)
δ2×2
(
λ·λ̃
)

〈12〉〈23〉 · · · 〈n1〉
f(Z)δk×n

(
C(Z)·η

)
=: f̂(λ, λ̃)δ(k+2)×n(Ĉ(λ, λ̃)·η

)
δ2×2
(
λ·λ̃
) (1.2)

determine the explicit form of Ĉ of η-coefficients.
(Hint : As the bosonic part of any superfunction is near-trivially translated—as

any momentum twistor four-bracket can be directly expanded as a func-

tion of (λ, λ̃)—the only non-trivial part of this problem is the translation

between η-coefficients C(Z) and η̃-coefficients Ĉ(λ, λ̃).)

d. Implement this transformation in your code, to directly represent the results of
BCFW recursion in momentum-space variables. This translation is needed
when discussion ordinary component amplitudes in sYM, as momentum-
twistor super-states are not identical to momentum-space super-states.

∗extra credit
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