The Amplitudes Game Geometry of Amplitudes
MITP Summer School, 2021 Study Problems from Lectures

Lecture One: Vernacular of the S-Matrix

Problem 1: Consistency Conditions from Quantum Mechanics

As we discussed at the end of the lecture, the uniqueness of the (analytic continuation of
the) three-particle S-matrix for massless particles places some surprisingly strong conditions
on viable theories in four dimensions. In this problem, I'd like you to derive a few famous
results from this perspective.

To complete the following, it suffices to consider the forms of various factorization-channels
of particular four-point amplitudes involving some sets of external states. For the sake of the
problems below, you may assume that c€Z,.

a. Weinberg’s theorem

In lecture, we discussed how four-particle amplitudes must factorize, depend-
ing on the spins of the particles involved.

Consider an interacting theory of spin-o particles. Provided the theory is local
and unitarity, the factorization-structure of any four-particle amplitude is
uniquely determined by three-particle amplitudes.

Show that if o > 2, the theory cannot consistently factorize.

*x b. Uniqueness of Yang-Mills theory
For interacting particles of spin o =1, show that the three-point coupling
constants must satisfy a Jacob: identity:

Z (fcl,CQ,*f*,cs,C4 4 f02,037*f*,01764 + fc37617*f*,02704> =0. (11)
Thus, any ‘charges’ (distinguishing quantum number-labels) they may have
must transform according to (the adjoint representation of) some Lie
algebra—and consequently, the only (local, long-range, unitary) theory
of interacting spin-one particles is Yang-Mills theory.

* c. Equivalence Principle
Suppose that there exists a spin-2 particle with some self-coupling constant .
Show that its coupling to any other field must also have the strength .

*extra credit
*extra credit
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Lecture Two: Combinatorics of On-Shell Diagrams
Problem 1: Basic Combinatorics of On-Shell Diagrams

In this problem, I'd like you to analyze the combinatorics associated with the following
on-shell diagrams:

2 3 2 3
1 4 1 4
and (1.1)
8 5 8 5
7 6 7 6

a. What are the decorated® permutation-labels of the on-shell diagrams above?*

Do these diagrams represent to the same on-shell function?

b. Find a sequence of square/merge-moves which transforms the first of these
diagrams into the second.

Problem 2: Building with BCF(W) Bridges

Consider the following decorated permutation:

123456
a:<¢¢uu>. (2.1)
457689

a. This decorated permutation labels a cell in some Grassmannian Gr(k,n).
What are k£ and n?

b. Use the lexicographic BCFW-bridge decomposition to construct a reduced on-
shell diagram which will be labeled by the permutation given above:
How many bridges, d, are required to reach the identity?

C. As discussed in lecture, any on-shell function of planar, maximally supersym-
metric Yang-Mills theory can be represented in the form®

d d ~ ~
fr= / 0%1 A A O%d FH(Cy (@) -7) 67 Co () X) 2R (N-CH (@) (2.2)
For the same permutation o, and using the bridge decomposition obtained
above, determine the form of the matrix C'(&) (representing a configuration

3Recall that when o:a—b with b<a, we conventionally define its image to be o(a)=b+n.

4Recall that the map a+o(a) is defined by starting at leg @ and turning left/right at every white/blue
vertex, respectively; o(a) labels the leg where the path terminates—decorated so that o(a)>a for all a.

"Recall that, as appearing in the d-functions here, ‘A- B’ means A.BT—or, a sum over the index a € [n].
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in Gr(k,n)). To be clear: let a; denote the last transposition to the
identity in the decomposition—the one parameterizing a one-dimensional
configuration in Gr(k,n), and let oy denote the ‘uppermost’ bridge.

* d. Assume that you have a momentum-conserving set of momenta (A-A=0); use
whatever remains of the d-functions in (2.2) to localize as many of the
bridge coordinates @ as possible; find an analytic solution for each a in
terms of Lorentz-invariant spinor products.

e. Consider the (on-shell) superfunction’
_ §34(C-77) 622 -\
e (C2)
s123(4](2+3)[1][12](45)(56)[23] (6] (1+2)[3]
where the C-matrix (merely of 77 coefficients this time) is given by
AUAL AL AL AL A
C= [N X A2 A\ A2 A2 |. (2.4)
[23][31][12] O O O
Representing a particulzir configuration in Gr(3,6)—and for generic (momentum-

conserving) spinors A, A—what permutation would label this (on-shell)
function’s C-matrix, as a configuration in the Grassmannian Gr(3,6)?

(2.3)

f. It is not hard to see that the matrices C generated by the two constructions
are fairly different; and yet, each of these two are supposed to represent
the ‘same’ on-shell function. Explain how this gets resolved.

*extra credit
"Recall that “al(b+c)|d) = (a|(pp+pe)|d] = (al(b) [b+c)[c)|d] = (ab)[bd] + {(ac)[cd].
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Lecture Three: Non-Planar On-Shell Varieties
Problem 1: Non-Planar On-Shell Functions

In this problem, we’d like to analyze the following non-planar on-shell diagram:

(1.1)

a. Determine the boundary-measurements matrix C(a’) for the graph above (as-
suming all unlabeled edges have weight 1).

b. Find the number of solutions that exist to the (universal) ‘constraints’ on
the a’s—namely, *?(C(a)-\) and 6*3(\-C*(&))—assuming momentum-
conserving spinors.

(Hint: you can solve the equations directly—in MATHEMATICA, say—for some
particular (generic, momentum conserving) spinors.)
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Lecture Four: Tree-Level Recursion tn MATHEMATICA

Problem 1: Implementing Recursion Yourself

The goal of this problem is to have you do for yourself what we did ‘in real time’ during
lecture: to build your own implementation of tree-level recursion in MATHEMATICA, say, and
to improve upon what was done in several important ways.

a. Write your own implementation of the tree-level BCFW recursion relations in
momentum-twistor variables.

* b. Implement this more efficiently than done during the lecture.
(This is not very hard: there are many obvious places for improvement.)

C. Any superfunction expressed in momentum-twistor space according to

F(Z)xs>(C-n) = FON) 82 C) (1.1)

1
(12)(23)---(nl)
Construct the general map between superfunctions expressed in terms of

momentum-twistor variables (Z,n) into those expressed in terms of spinor

variables (A,X,?ﬂ. That is, given the equality

F(2)x0(C ) =" ;§j<'§§f. . &j) §(2)8>(C(2)n)

= F(\N)SEDR(C (A N)-7)023(A-X)

(1.2)

determine the explicit form of C of n-coefficients.

(Hint: As the bosonic part of any superfunction is near-trivially translated—as
any momentum twistor four-bracket can be directly expanded as a func-
tion of (A, \)—the only non-trivial part of this problem is the translation

between 7-coefficients C'(Z) and 7j-coefficients C'(A, X).)

d. Implement this transformation in your code, to directly represent the results of
BCFW recursion in momentum-space variables. This translation is needed
when discussion ordinary component amplitudes in sYM, as momentum-
twistor super-states are not identical to momentum-space super-states.

*extra credit
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