
The Amplitudes Game
MITP Summer School, 2021

Geometry of Amplitudes
Study Problems from Lectures

Lecture One: Vernacular of the S-Matrix
Problem 1: Consistency Conditions from Quantum Mechanics

As we discussed at the end of the lecture, the uniqueness of the (analytic continuation of
the) three-particle S-matrix for massless particles places some surprisingly strong conditions
on viable theories in four dimensions. In this problem, I’d like you to derive a few famous
results from this perspective.

To complete the following, it suffices to consider the forms of various factorization-channels
of particular four-point amplitudes involving some sets of external states. For the sake of the
problems below, you may assume that σ∈Z+.

a. Weinberg’s theorem
In lecture, we discussed how four-particle amplitudes must factorize, depend-

ing on the spins of the particles involved.
Consider an interacting theory of spin-σ particles. Provided the theory is local

and unitarity, the factorization-structure of any four-particle amplitude is
uniquely determined by three-particle amplitudes.

Show that if σ > 2, the theory cannot consistently factorize.

∗ b. Uniqueness of Yang-Mills theory
For interacting particles of spin σ = 1, show that the three-point coupling

constants must satisfy a Jacobi identity:∑
?

(
f c1,c2,?f ?,c3,c4 + f c2,c3,?f ?,c1,c4 + f c3,c1,?f ?,c2,c4

)
= 0 . (1.1)

Thus, any ‘charges’ (distinguishing quantum number-labels) they may have
must transform according to (the adjoint representation of) some Lie
algebra—and consequently, the only (local, long-range, unitary) theory
of interacting spin-one particles is Yang-Mills theory.

∗ c. Equivalence Principle
Suppose that there exists a spin-2 particle with some self-coupling constant κ.

Show that its coupling to any other field must also have the strength κ.

∗extra credit
∗extra credit
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Lecture Two: Combinatorics of On-Shell Diagrams
Problem 1: Basic Combinatorics of On-Shell Diagrams

In this problem, I’d like you to analyze the combinatorics associated with the following
on-shell diagrams:

and (1.1)

a. What are the decorated3 permutation-labels of the on-shell diagrams above?4

Do these diagrams represent to the same on-shell function?

b. Find a sequence of square/merge-moves which transforms the first of these
diagrams into the second.

Problem 2: Building with BCF(W) Bridges

Consider the following decorated permutation:

σ :=

(
1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
4 5 7 6 8 9

)
. (2.1)

a. This decorated permutation labels a cell in some Grassmannian Gr(k, n).
What are k and n?

b. Use the lexicographic BCFW-bridge decomposition to construct a reduced on-
shell diagram which will be labeled by the permutation given above:

How many bridges, d, are required to reach the identity?

c. As discussed in lecture, any on-shell function of planar, maximally supersym-
metric Yang-Mills theory can be represented in the form5

fσ =

∫
dα1

α1

∧ ·· · ∧ dαd
αd

δk×4
(
Cσ(~α)·η̃

)
δk×2
(
Cσ(~α)·λ̃

)
δ2×(n−k)

(
λ·C⊥σ (~α)

)
. (2.2)

For the same permutation σ, and using the bridge decomposition obtained
above, determine the form of the matrix C(~α) (representing a configuration

3Recall that when σ :a 7→b with b<a, we conventionally define its image to be σ(a)=b+n.
4Recall that the map a 7→σ(a) is defined by starting at leg a and turning left/right at every white/blue

vertex, respectively; σ(a) labels the leg where the path terminates—decorated so that σ(a)≥a for all a.
5Recall that, as appearing in the δ-functions here, ‘A·B’ means A.BT —or, a sum over the index a∈ [n].
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in Gr(k, n)). To be clear: let α1 denote the last transposition to the
identity in the decomposition—the one parameterizing a one-dimensional
configuration in Gr(k,n), and let αd denote the ‘uppermost’ bridge.

∗ d. Assume that you have a momentum-conserving set of momenta (λ·λ̃= 0); use
whatever remains of the δ-functions in (2.2) to localize as many of the
bridge coordinates ~α as possible; find an analytic solution for each α in
terms of Lorentz-invariant spinor products.

e. Consider the (on-shell) superfunction7

f(λ, λ̃, η̃) =
δ3×4
(
C ·η̃

)
δ2×2
(
λ·λ̃
)

s123〈4|(2+3)|1][12]〈45〉〈56〉[23]〈6|(1+2)|3]
(2.3)

where the C-matrix (merely of η̃ coefficients this time) is given by

C :=

 λ11 λ12 λ13 λ14 λ15 λ16
λ21 λ22 λ23 λ24 λ25 λ26

[23] [31] [12] 0 0 0

 . (2.4)

Representing a particular configuration inGr(3,6)—and for generic (momentum-

conserving) spinors λ, λ̃—what permutation would label this (on-shell)
function’s C-matrix, as a configuration in the Grassmannian Gr(3,6)?

f. It is not hard to see that the matrices C generated by the two constructions
are fairly different; and yet, each of these two are supposed to represent
the ‘same’ on-shell function. Explain how this gets resolved.

∗extra credit
7Recall that ‘〈a|(b+c)|d]’ := 〈a|(pb+pc)|d] = 〈a|(b〉[b+c〉[c)|d] = 〈ab〉[bd] + 〈ac〉[cd].
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Lecture Three: Non-Planar On-Shell Varieties
Problem 1: Non-Planar On-Shell Functions

In this problem, we’d like to analyze the following non-planar on-shell diagram:

(1.1)

a. Determine the boundary-measurements matrix C(~α) for the graph above (as-
suming all unlabeled edges have weight 1).

b. Find the number of solutions that exist to the (universal) ‘constraints’ on

the α’s—namely, δ3×2
(
C(~α)·λ̃

)
and δ2×3

(
λ·C⊥(~α)

)
—assuming momentum-

conserving spinors.

(Hint: you can solve the equations directly—in Mathematica, say—for some
particular (generic, momentum conserving) spinors.)
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Lecture Four: Tree-Level Recursion in Mathematica
Problem 1: Implementing Recursion Yourself

The goal of this problem is to have you do for yourself what we did ‘in real time’ during
lecture: to build your own implementation of tree-level recursion in Mathematica, say, and
to improve upon what was done in several important ways.

a. Write your own implementation of the tree-level BCFW recursion relations in
momentum-twistor variables.

∗ b. Implement this more efficiently than done during the lecture.
(This is not very hard: there are many obvious places for improvement.)

c. Any superfunction expressed in momentum-twistor space according to

f(Z)×δk×n
(
C ·η

)
=

1

〈12〉〈23〉 · · · 〈n1〉
f(λ, λ̃)δ(k+2)×n(Ĉ ·η̃) (1.1)

Construct the general map between superfunctions expressed in terms of
momentum-twistor variables (Z,η) into those expressed in terms of spinor

variables (λ, λ̃, η̃). That is, given the equality

f(Z)×δk×n
(
C ·η

)
=
δ2×4
(
λ·η̃
)
δ2×2
(
λ·λ̃
)

〈12〉〈23〉 · · · 〈n1〉
f(Z)δk×n

(
C(Z)·η

)
=: f̂(λ, λ̃)δ(k+2)×n(Ĉ(λ, λ̃)·η

)
δ2×2
(
λ·λ̃
) (1.2)

determine the explicit form of Ĉ of η-coefficients.
(Hint : As the bosonic part of any superfunction is near-trivially translated—as

any momentum twistor four-bracket can be directly expanded as a func-

tion of (λ, λ̃)—the only non-trivial part of this problem is the translation

between η-coefficients C(Z) and η̃-coefficients Ĉ(λ, λ̃).)

d. Implement this transformation in your code, to directly represent the results of
BCFW recursion in momentum-space variables. This translation is needed
when discussion ordinary component amplitudes in sYM, as momentum-
twistor super-states are not identical to momentum-space super-states.

∗extra credit
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