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Jet Physics

Exercise 1 Hadron collider kinematics

Consider a particle with energy E and three momentum ~p = (px, py, pz)
T. At hadron

colliders, particles are commonly parametrised in terms of the kinematic variables

pT =
√
p2x + p2y (transverse momentum), (1)

y =
1

2
ln

(
E + pz
E − pz

)
(rapidity), (2)

ϕ = arctan
py
px

(azimuth). (3)

(a) Show that for massless particles, y is identical to the pseudorapidity η = − ln tan(θ/2)
with θ the angle w.r.t. the +z-direction.

(b) The LHC experiments have extensive detector coverage up to y . 2.5 followed by
more coarse-grained instrumentation up to y . 5. What scattering angles do these
values correspond to?

At the LHC, the two incoming partons that initiate the hard scattering reaction carry
the momentum fractions x1,2 of the proton momenta P µ

1,2 =
√
s
2

(1, 0, 0,±1)T. Consider
the scattering kinematics associated with di-jet production, pa + pb → p1 + p2, where
pµa,b = x1,2P

µ
1,2 and p21 = p22 = 0.

(c) Show that the momentum fractions x1,2 can be expressed in terms of

x1,2 =
2 pT,avg√

s
e±yb cosh(y∗), (4)

with the kinematic variables

pT,avg = 1
2
(pT,1 + pT,2), yb = 1

2
|y1 + y2|, y∗ = 1

2
|y1 − y2|. (5)

(d) What is the physical meaning of the variables yb and y∗?

Exercise 2 Soft and collinear limits with scalar particles

Consider the emission of a gluon from an outgoing scalar particle φ:

Vφ

p+ k

φ
p

g
k

. (6)

The scalar shall transform under the fundamental representation of SU(Nc) and the Feyn-
man rules are given by (momenta pµ± ingoing):

Gφφ†(k) =
i

k2 −m2
φ + iε

(scalar propagator), (7)

V [φ†(p+), φ(p−), Aaµ] = igst
a [pµ+ − p

µ
−] (gluon–scalar vertex). (8)
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(a) Derive an expression for the eikonal current by considering the limit where the gluon
becomes soft (kµ → 0). How does it compare to the emission from a quark line?

(b) Consider the square of the diagram in Eq. (6) for a massless scalar (mφ = 0) and
use the Sudakov parametrisation (p̃2 = n2 = 0, (k⊥ · p̃) = (k⊥ · n) = 0, k2⊥ < 0)

pµ = zp̃µ + kµ⊥ −
k2⊥
z

nµ

2(p̃ · n)
, (9)

kµ = (1− z)p̃µ − kµ⊥ −
k2⊥

(1− z)

nµ

2(p̃ · n)
, (10)

to obtain the behaviour in the limit kµ⊥ → 0. Identify the Splitting function P̂φφ(z)
for the scalar carrying the momentum fraction z (gluon carrying (1− z)).
Hint: Use

∑
pol. ε

∗
µ(k)εν(k) = −gµν + (kµnν + kνnµ)/(k · n) [nµ ≡ gauge vector].

(c) Note that P̂φφ(z) computed in part (b) contains a soft divergence when the gluon
becomes soft (z → 1). We have so far only considered the real-emission corrections;
convince yourself that the missing virtual corrections must be of the form P virt

φφ (z) ∼
δ(1 − z). Determine the regularised splitting function that includes both real and
virtual corrections by using φ-number conservation:∫ 1

0

Pφφ(z) dz = 0. (11)

Hint: In a first step introduce the plus prescription to regulate the soft divergence,∫ 1

0
dz f(z)

(1−z)+ ≡
∫ 1

0
dz f(z)−f(1)

(1−z) .

Exercise 3 Infrared-safe observables

Recall the conditions that an infrared-safe observable must fulfil. Explicitly check the
criteria for the following observables and determine if they are infrared safe:

(a) The number of particles inside a jet.

(b) The number nj of jets in an event.

(c) The sum of the (squared) energies

Etot =
n∑
i=1

Ei, [E2]tot =
n∑
i=1

E2
i , (12)

where the sum runs over all final-state partons.

(d) The energy–energy correlation (EEC):

dσ

dχ
=

∫
dσ

n∑
i,j=1

EiEj
(
∑

k Ek)
2
δ(χ− θij), (13)

where the sums run over all final-state partons and θij denotes the angle between
parton i and j.
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(e) The angularity

τβ =
∑
i∈jet

zi θ
β
i , (14)

where zi denotes the energy fraction of particle i, θi its angle w.r.t. the jet axis,
and β ∈ R in the exponent. Remind yourself that the emission probability has a
divergence ∼ dθi/θi; what are the allowed values for β?

Exercise 4 quark–gluon discrimination

(a) Consider the angularity from Eq. (14) for a quark emitting a gluon in the soft and
collinear limit. Show that up to O(αs), the cumulant for the τβ distribution reads

Σq(τβ) = 1− αs

π

CF

β
ln2(Rβ/τβ). (15)

(b) The all-order resummed expression in the double-logarithmic approximation is then
given by

Σq(τβ) = exp

[
−αs

π

CF

β
ln2(Rβ/τβ)

]
. (16)

How does the analogous expression look like for a gluon Σg(τβ)?

(c) To separate quarks from gluon jets, we can place a cut τcut and only retain events
with τβ < τcut; the fraction of quark (gluon) jets retained by such a cut is precisely
the cumulant Σq(g)(τcut). Display the fraction of retained gluon jets v.s. quark
jets in a receiver operating characteristic curve (ROC). The area under the ROC
curve (AUC) is a discriminating metric often used in machine-learning applications.
Compute the AUC.
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