Scale anomaly, non-quantized edge currents, and direct measurement of a beta function in Dirac semimetals

Maxim Chernodub

Institut Denis Poisson, Tours, France Pacific Quantum Center, Vladivostok, Russia

Partially supported by grant No. 0657-2020-0015 of the Ministry of Science and Higher Education of Russia.

Integer quantum Hall effect

Quantization of the Hall conductance

A universal number independent on microscopic details: type of material, disorder (in reasonable limits), value of magnetic field within a plateau, etc

$$\sigma_{xy} = \nu \frac{e^2}{h} \quad (\nu \in \mathbb{Z})$$

$$\mathbf{J} = \sigma \mathbf{E}$$

$$\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ -\sigma_{xy} & \sigma_{xx} \end{pmatrix}$$

- Dissipationless edge currents of opposite signs flowing in the ground state in the sample
- No net drift current in the absence of electric field
- Landau level physics, quantized conductance
- Extremely precise and accurate!

v is known to 10⁻¹⁰ precision and 10⁻⁸ accuracy
 (≈ statistics)
 (≈ systematics)

Semiclassical skipping orbits

Taken from S. M. Girvin, Les Houches Lectures (1998)

... be provocative ...

Integer quantum Hall effect Scale anomaly?

Quantization of the Hall conductance

A universal number independent on microscopic details: type of material, disorder (in reasonable limits), value of magnetic field within a plateau, etc

$$\mathbf{J} = \sigma \mathbf{E}$$

$$\sigma_{xy} = \nu \frac{e^2}{h} \quad (\nu \notin \mathbb{Z})$$

not integer in the presence of the *relevant* scale anomaly

$$\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ -\sigma_{xy} & \sigma_{xx} \end{pmatrix}$$

- Dissipationless edge currents of opposite signs flowing in the ground state in the sample
- No net drift current in the absence of electric field
- Landau level physics, quantized conductance
- Extremely precise and accurate!

 ν is known to 10⁻¹⁰ precision and 10⁻⁸ accuracy

(≈ statistics)

Semiclassical skipping orbits

Taken from S. M. Girvin, Les Houches Lectures (1998)

Chiral fermionic quasiparticles in solid state

TaAs as an example (of a Weyl semimetal)

Massless (gapless) Dirac fermions

A generic system in particle physics, cosmology, solid state ...

Covariant formulation (quantum field theory)

Dirac semimetals (solid state):

Effective low energy description around band crossings in 3D crystals.

Massless Dirac fermions

A generic system in particle physics, cosmology, solid state ...

Covariant formulation (quantum field theory)

Dirac semimetals (solid state):

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} i \not{D} \psi \longrightarrow \bar{\psi} \Big[i \gamma^0 \hbar \frac{\partial}{\partial t} + v_F \gamma (i \hbar \nabla - eA) \Big] \psi$$

 $egin{split} D &= \gamma^\mu D_\mu \ D_\mu &= \partial_\mu + i e A_\mu \end{split}$

Weyl semimetal (non-degenerated bands)

Dirac semimetal (doubly degenerated bands)

nature > nature materials > volumes > volume 15 > issue 11

Effective low energy description around band crossings in 3D crystals.

ZrTe₅

Na₃Bi,

Classical symmetries

$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} i D \psi$

Vector

vector current is classically conserved

$$j_V^\mu = \bar{\psi}\gamma^\mu\psi \qquad \qquad \partial_\mu j_V^\mu = 0$$

local/gauge symmetry

Axial $\psi \to e^{i\omega_5\gamma^5}\psi$

 $\psi \to e^{i\omega_V}\psi$

axial current is classically conserved

$$j_A^{\mu} = \bar{\psi}\gamma^5\gamma^{\mu}\psi \qquad \partial_{\mu}j_A^{\mu} = 0$$

global symmetry (no axial gauge field)

Scale

global scale transformations

$$x \to \lambda^{-1} x, \qquad A_{\mu} \to \lambda A_{\mu},$$

$$\psi \to \lambda^{3/2} \psi$$

Dilatation current is classically conserved

$$j_D^{\mu} = T^{\mu\nu} x_{\nu} \qquad \partial_{\mu} j_D^{\mu} \equiv T^{\mu}_{\ \mu} \equiv 0$$
$$(T^{\mu}_{\mu})_{\rm cl} \equiv 0$$

Energy-Momentum tensor

$$T^{\mu\nu} = -F^{\mu\alpha}F^{\nu}_{\alpha} + \frac{1}{4}\eta^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta} + \frac{i}{2}\bar{\psi}(\gamma^{\mu}D^{\nu} + \gamma^{\nu}D^{\mu})\psi - \eta^{\mu\nu}\bar{\psi}iD\psi$$

Zoo of anomalies

(three out of six triangular vertices)

Scale anomaly and the beta function

Massless Dirac fermions
$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}+ar{\psi}ioldsymbol{D}\psi$$

are (classically) invariant under the global (scale) transformations:

$$x \to \lambda^{-1} x, \qquad A_{\mu} \to \lambda A_{\mu}, \qquad \psi \to \lambda^{3/2} \psi$$

The quantum theory generates an intrinsic scale due to a renormalization (in this particular case) of the electric charge:

In QED (for one Dirac fermion)

$$\beta_{\rm QED}^{\rm 1-loop} = \frac{e^3}{12\pi^2}$$

\rightarrow scale symmetry is broken at the quantum level

Known as "scale" \approx "conformal" \approx "trace" \approx "Weyl" anomaly

"Running" coupling in QED

fundamental QED with a finite mass of fermion (electron)

S. Odaka et all (VENUS collaboration/KEK), PRL 81, 2428(1998)

Bhabha scattering

"Running" couplings in topological materials

(solid-state physics)

topological insulator

$$\mathcal{L} = \bar{\psi}(\gamma^0 p_0 - v\vec{\gamma} \cdot \vec{p} - m)\psi + \frac{1}{2} \left(\varepsilon \vec{E}^2 - \frac{1}{\mu}\vec{B}^2\right) - e\bar{\psi}\gamma^0\psi A_0 - e\frac{v}{c}\bar{\psi}\gamma^\alpha\psi A_\alpha$$

Fermi velocity

$$egin{aligned} f_{0}(\mathbf{k}_{0}) \mathbb{I} + \mathbf{v}_{0} \cdot \delta \mathbf{k} \ \mathbb{I} \ &+ \sum_{\mathbf{k}_{0}} \mathbf{v}_{\mathbf{k}} \cdot \delta \mathbf{k} \ \sigma^{a} \end{aligned}$$

a=*x*,*y*,*z* solid-state notations

- 2D systems (graphene) - running Fermi velocity

"Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach)" **Gonzalez, Guinea, Vozmediano**, Nucl. Phys. B 424, 595 (1994).

renormalization group flow

Lorentz invariance is restored at large distances (low energies)

 Particle physics (Physics of Universe) (Standard Model of particles):

"One-loop renormalization of Lorentz-violating electrodynamics"

Kostelecky, Lane, Pickering, PRD 65, 056006 (2002)

Solid state (topological insulators/semimetals):

- "Theory of a quantum critical phenomenon in a topological insulator: (3 + 1)-dimensional quantum electrodynamics in solids";
 Isobe, Nagaosa, PRB 86, 165127 (2012)
- Anisotropic fixed points in Dirac and Weyl semimetals
 Pozo, Ferreiros, Vozmediano
 Phys.Rev.B 98, 11, 115122 (2018)

Conformal anomaly and transport effects at the edge

What is about the boundaries? Take massless QED (or scalar QED or similar)

Current generation at the boundary:

A DeWitt expansion of the heat kernel for manifolds with a boundary Class. Quantum Grav. 8 (1991) 603-638. D M McAvity and H Osborn

D M McAvity and H Osborn

Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, UK

Relation to the scale anomaly: C.-S. Chu and R.-X. Miao, JHEP 07, 005 (2018), PRL 121, 251602 (2018);

Numerical evidence: V. A. Goy, A. V. Molochkov, M.Ch. PLB 789, 556 (2019);

Relation to Schwinger pair production in semimetals: M. Vozmediano, M.Ch., PRR 1, 032002 (2019).

The scale anomaly and the edge, physical reason: The renormalization is affected by the boundary

at the bulk (no boundary)

at the boundary

the boundary affects the polarization

→ charge is stronger at the boundary!

→ anomalous (transport, static) effects due to the scale anomaly at the boundary

Conformal anomaly and transport effects at the edge

What is about the boundaries? Take massless QED (or any conformal theory ...)

In the magnetic-field background:

1

Take the spatial components:

Scale Magnetic Effect at the Edge (SMEE): Electric current along the edge due to tangential magnetic field

$$\boldsymbol{j}(\boldsymbol{x}) = -f_{\boldsymbol{n}}(\boldsymbol{x})\boldsymbol{n} \times \boldsymbol{B}$$

$$\mathcal{L}_{\boldsymbol{n}}(\boldsymbol{x}) = rac{2eta_e}{e\hbar} rac{1}{|\boldsymbol{n}\cdot\boldsymbol{x}|}$$

n D

diverges at the boundary!

- Effect due to conformal anomaly
- No topology (Berry, Chern, etc) 👞
- No matter at all (= quantum vacuum) (= neutrality point, $\mu = 0 \& T = 0$)

No topological protection/quantization!

Scale Magnetic Effect at the Edge (SMEE)

A physical picture

Ingredients: massless particles, vacuum, edge and magnetic field

C.-S. Chu and R.-X. Miao, PRL 121, 251602 (2018); a slightly more complicated picture. Skipping-like orbits (similar but different from the quantum Hall effect, now in the vacuum = "at the neutrality point") No Fermi surface, no temperature needed (works at T = 0).

(However, enhanced by thermal effects: R. Guo and R.-X. Miao, ArXiv:2102.01253)

SMEE: numerical first-principle check

Generates the current at the boundary?

Scalar electrodynamics at a conformal point in (3+1)D:

$$\mathcal{L}_{sQED} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \left[\left(\partial_{\mu} - ieA_{\mu} \right) \phi \right]^* \left(\partial^{\mu} - ieA^{\mu} \right) \phi$$

Massless one-component electrically-charged scalar field

Numerical Monte-Carlo simulations

We see the generated electric current!

SMEE: numerical first-principle check

1) We see the 1/x behavior of the electric current at the boundary

3) No localization at the boundary with the magnetic length

4) No Landau-level physics → no quantization of conductance

 l_B

Integer quantum Hall effect

Quantization of the Hall conductance

$$\sigma_{xy} =
u rac{e^2}{h} \quad (
u \in \mathbb{Z})$$

It works in systems with charge carriers whose electric charge does not run with the energy scale. "no scale anomaly"

Examples:

- semiconductors (non-relativistic quantum mechanics, no genuine relativistic renormalization effects)
- graphene (relativistic quasiparticle charge carriers experience the scale anomaly associated with the Fermi velocity, but the electric charge does not run with the scale, $\beta_e=0$)

J.González, F.Guinea, M.A.H.Vozmediano, NPB 424, 595 (1994)

 \rightarrow The quantum Hall is well-quantized in graphene.

Scale Magnetic Effect at the Edge

Non-Quantization of the "Hall conductance" for magnetization current

Should be observed in a 2d or quasi-2d system hosting relativistic (Dirac) quasiparticles with running electric charge

(N. B.: in Dirac semimetals, the electric charge runs [Isobe, Nagaosa, 2012])

As contrasted to the quantization of the integer-Hall conductance

 ν is known to 10⁻¹⁰ precision and 10⁻⁸ accuracy

$$\sigma_{xy} =
u rac{e^2}{h} \quad (
u \in \mathbb{Z})$$

Conformal anomaly and transport effects at the edge

Coming back to the edge:

Spatial components:

 $\mu = 1, 2, 3$

In the magnetic-field background:

$$\circ B \qquad J$$

Temporal components?

 $\mu = 0$

$$\rho = -\frac{2\beta_e}{e\hbar}\frac{\mathbf{n}E}{x}$$

Charge accumulation in the electric field background

Scale electric effect at the edge: conformal/scale screening

Screening of electrostatic field in metals:

$$E(x) \sim E(0)e^{-x/\lambda}$$

Screening lengths:

Fermi momentum

$$p_F = (2\pi^2 n)^{1/3}\hbar$$

Density of carriers \boldsymbol{n}

$$\lambda_{\rm D} = \sqrt{\frac{\varepsilon_0 k_B T}{n e^2}}, \qquad \lambda_{\rm FT} = \sqrt{\frac{\varepsilon_0 \pi^2 \hbar^3}{m e^2 p_F}}$$

Debye Fermi-Thomas

What if the medium is totally conformal and possess no dimensionful parameters?

For example, take a Dirac semimetal at particle-hole symmetric point.

- We have the mobile carriers (massless fermionic quasiparticles)
- Classically, there is no dimensionful scale.
- No classical scale \rightarrow no screening?

No quantity to construct the screening length from!

(formally, of course)

Scale electric effect at the edge

$$\rho = -\frac{2\beta_e}{e\hbar} \frac{nE}{x}$$

the density of the electric charge accumulated at the boundary

Physics: the screening is due to the Schwinger effect ("skipping orbits" in time)

Works efficiently due to the absence of a mass gap

Generated by the conformal anomaly! (proportional to the beta function)

Mechanism in semimetals: creation of electron-hole pairs in the presence of a uniform electric field (the Zener effect)

Scale electric effect at the edge of a semimetal

Consider QED:

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \sum_{a=1}^{N_f} \bar{\psi}_a i \gamma^\mu D_\mu \psi_a$$

Charge density due to conformal anomaly: $ho = - rac{2 eta_e}{e \hbar} rac{n E}{r}$

Solve the Maxwell equation

$$\partial_x E_x(x) = \frac{1}{\varepsilon_0} \rho(x)$$

At the boundary the conformal screening is polynomial:

$$E_x(x) = \frac{C}{x^{\nu}} \qquad \rho(x) = -\frac{C\varepsilon_0\nu}{x^{1+\nu}} \qquad \phi(x) = \phi_0 - \frac{Cx^{1-\nu}}{1-\nu}$$
Electric field Charge density Electrostatic potential
$$\underbrace{\text{Similar to the Wilson-Fisher fixed point}}_{\langle \phi(0)\phi(r)\rangle \propto \frac{1}{r^{D-2+\eta}}} \qquad \underbrace{\text{Conformal screening exponent:}}_{(\text{proportional to a central charge in CFT)} \nu = \frac{2\beta_e}{ec\hbar\varepsilon_0}$$

(proportional to a central charge in CFT)

Scale electric effect at the edge

Conformal exponent in a Dirac semimetal:

$$\nu = \frac{e^2}{6\pi^2 \hbar v_F \varepsilon \varepsilon_0} = \frac{2\beta_e}{ec\hbar\varepsilon_0}$$

Particle density in a finite sample with two boundaries:

$$\rho(x) = \frac{\Delta\phi}{L^2} \varepsilon_0 \nu h(\nu) \left(1 - \frac{2x}{L}\right) \left[\frac{x}{L} \left(1 - \frac{x}{L}\right)\right]^{-1-\nu}$$

Direct measurement of the beta function. Indirect evidence of the Schwinger effect.

M. A. H. Vozmediano, M.Ch., Phys. Rev. Research 1, 032002(R) (2019)

Accessible experimentally

- direct measurement of the beta function associated with the renormalization of the electric charge (never done in solid state)
- evidence of the elusive Schwinger effect

(particle-antiparticle production by electric field)

Conformal exponent in a Dirac semimetal:

$$\nu = \frac{e^2}{6\pi^2 \hbar v_F \varepsilon \varepsilon_0}$$

In typical Dirac/Weyl materials $v_F \sim 10^{-3}c$ and $\varepsilon \sim 10$

-> large, experimentally accessible conformal exponent: $\nu \sim 10^{-1}$

Electrostatic screening potential vs. distance from the boundary of a Dirac material at T=0 charge neutrality point (= at a Lifshitz point at zero temperature)

Summary at the edge

Conformal anomaly leads to a number of new transport effects:

- at reflective boundaries (edges) of bounded systems
- in the bulk (unbounded systems not covered in the talk)

Electric current is proportional to the beta function. Accessible experimentally in Dirac and Weyl semimetals.

Scale electric effect:

- polynomial screening of electrostatic fields
- particle creation via the Schwinger effect

Scale magnetic effect:

edge currents in the absence of matter
non-integer quantum Hall effect.

