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Integer quantum Hall effect
Quantization of the Hall conductance

A universal number independent on  
microscopic details: type of material,  
disorder (in reasonable limits), value  
of magnetic field within a plateau, etc

Taken from S. M. Girvin,  Les Houches Lectures (1998)

Semiclassical skipping orbits

— No net drift current in the absence of electric field

B

— Dissipationless edge currents of opposite signs 
     flowing in the ground state in the sample

— Landau level physics, quantized conductance

!  is known to 10-10 precision and 10-8 accuracy

— Extremely precise and accurate!

(≈ statistics)               (≈  systematics)
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… be provocative …

not integer in the presence  
of the relevant scale anomaly 

Scale anomaly?

A universal number independent on  
microscopic details: type of material,  
disorder (in reasonable limits), value  
of magnetic field within a plateau, etc



Chiral fermionic quasiparticles in solid state
TaAs as an example (of a Weyl semimetal) 

Chi-Cheng Lee et al. 
Phys. Rev. B 92, 235104 (2015)
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from Nat. Comm. 9, 2217 (2018) 

B. J. Ramshaw et al.



Massless (gapless) Dirac fermions
A generic system in particle physics, cosmology, solid state …

Covariant formulation (quantum field theory)         Dirac semimetals (solid state):

Dirac/Weyl semimetals

Effective low energy description around band crossings in 3D crystals.

relativistic spectrum  
of electronic quasiparticles  
close to the Fermi surface

band structure:

Fermi velocity: 

example: TaAs 
(Weyl semimetal)

en
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Massless Dirac fermions
A generic system in particle physics, cosmology, solid state …

Covariant formulation (quantum field theory)         Dirac semimetals (solid state):

Effective low energy description around band crossings in 3D crystals.



Classical symmetries

Vector

Axial

Scale

vector current is classically conserved 

axial current is classically conserved 

Dilatation current is classically conserved Energy-Momentum tensor

local/gauge symmetry

global symmetry (no axial gauge field)

global scale transformations



Zoo of anomalies
(three out of six triangular vertices)

Axial

A

V                  V

Mixed

A

T                  T

(axial-gravitational anomaly)
Conformal

T

V                  V

Vector                          Axial                               Dilatation

Currents Energy-Momentum tensor

Full list: AVV, ATT, TVV, TAA, AAA, TTT (not counting torsion!)

beta  
function

not one-
loop exact



Scale anomaly and the beta function
Massless Dirac fermions

are (classically) invariant under the global (scale) transformations: 

The quantum theory generates an intrinsic scale due to  
a renormalization (in this particular case) of the electric charge:

In QED (for one Dirac fermion) 

renormalization  
(energy) scale

→ scale symmetry is broken at the quantum level
Known as “scale” ≈ “conformal” ≈ “trace” ≈ “Weyl” anomaly



“Running” coupling in QED

fine structure constant

Adapted from the book of Peskin and Schroeder “An Introduction To Quantum Field Theory”

experiment

S. Odaka et all (VENUS collaboration/KEK), PRL 81, 2428(1998)

Bhabha scattering

fundamental QED with a finite mass of fermion (electron) 

massless theory  
zero-charge IR limit

massive theory, finite IR limit



“Running” couplings in topological materials
topological insulator

— “Theory of a quantum critical phenomenon in a 

     topological insulator: (3 + 1)-dimensional quantum  
     electrodynamics in solids”;

     Isobe, Nagaosa, PRB 86, 165127 (2012)

renormalization group flow

Fermi velocity  speed of light

“distance scale”
long distancesshort distances

Lorentz invariance is restored 
at large distances (low energies)

— 2D systems (graphene) - running Fermi velocity
“Non-Fermi liquid behavior of electrons in the half-filled  
honeycomb lattice (A renormalization group approach)”

Gonzalez, Guinea, Vozmediano, Nucl. Phys. B 424, 595 (1994).

— Particle physics (Physics of Universe) 
     (Standard Model of particles):

— Solid state  
    (topological insulators/semimetals):

“One-loop renormalization of Lorentz-violating  
electrodynamics”

Kostelecky, Lane, Pickering, PRD 65, 056006 (2002)

(solid-state physics)

— Anisotropic fixed points in Dirac and Weyl semimetals

    Pozo, Ferreiros, Vozmediano 
    Phys.Rev.B 98, 11, 115122 (2018)

solid-state notations



Conformal anomaly and transport effects at the edge 
What is about the boundaries? Take massless QED (or scalar QED or similar)

electric current
beta function a normal vector to the boundary

spatial distance to the reflective boundary

Relation to the scale anomaly:  
C.-S. Chu and R.-X. Miao, JHEP 07, 005 (2018), PRL 121, 251602 (2018);

Current generation at the boundary: 

Numerical evidence: V. A. Goy, A. V. Molochkov, M.Ch. PLB 789, 556 (2019);

Relation to Schwinger pair production in semimetals: M. Vozmediano, M.Ch., PRR 1, 032002 (2019).

… somewhere in appendix …



The scale anomaly and the edge, physical reason: 
The renormalization is affected by the boundary 

the distance to the boundary enters as an inverse energy scale

at the bulk (no boundary) at the boundary the boundary affects 
the polarization 
 
→ charge is stronger 
    at the boundary! 

→ anomalous  
    (transport, static) 
    effects due to  
    the scale anomaly  
    at the boundary



Conformal anomaly and transport effects at the edge 
What is about the boundaries? Take massless QED (or any conformal theory …)

Electric current along the edge due to tangential magnetic field 
Scale Magnetic Effect at the Edge (SMEE):

diverges at the boundary!— Effect due to conformal anomaly 
— No topology (Berry, Chern, etc) 
— No matter at all (= quantum vacuum) 
    (= neutrality point, " = 0 & T = 0) 

n
J
x

In the magnetic-field background:

No topological protection/quantization!

Take the spatial components:

electric current
beta function a normal vector to the boundary

spatial distance to the reflective boundary



Scale Magnetic Effect at the Edge (SMEE)

Skipping-like orbits (similar but different from the quantum  
Hall effect, now in the vacuum = “at the neutrality point”)

A physical picture
Ingredients: massless particles, vacuum, edge and magnetic field

No Fermi surface, no temperature needed (works at T = 0).
(However, enhanced by thermal effects: R. Guo and R.-X. Miao, ArXiv:2102.01253)

C.-S. Chu and R.-X. Miao, PRL 121, 251602 (2018); a slightly more complicated picture.



Generates the current at the boundary?

Scalar electrodynamics at a conformal point in (3+1)D:

Dirichlet 
boundary

Numerical Monte-Carlo simulations

We see the generated electric current!

V.A. Goy, A.V. Molochkov, M.Ch., Phys. Lett. B 789, 556 (2019)

Massless one-component electrically-charged scalar field

Chemical potential is zero = vacuum

SMEE: numerical first-principle check



SMEE: numerical first-principle check

non-conformal behavior 
(the scalar is massive)

conformal behavior 
(the massless scalar)

V.A. Goy, A.V. Molochkov, M.Ch., Phys. Lett. B 789, 556 (2019)

1) We see the 1/x behavior of the electric current at the boundary

2) We see the correct coefficient and recover the beta function!
(Notice that the beta function of the scalar QED is four 
times smaller than the beta function in the usual QED)

Chemical potential  is zero. 
The current is generated  
in the vacuum.

3) No localization at the boundary with the magnetic length 

4) No Landau-level physics → no quantization of conductance 



Integer quantum Hall effect
Quantization of the Hall conductance

Examples:

It works in systems with charge  
carriers whose electric charge  
does not run with the energy scale.

→ The quantum Hall is well-quantized in graphene. 

— semiconductors (non-relativistic quantum mechanics,  
                                  no genuine relativistic renormalization effects)
— graphene (relativistic quasiparticle charge carriers experience  
                       the scale anomaly associated with the Fermi velocity,  
                       but the electric charge does not run with the scale,              )

“no scale anomaly” 

J.González, F.Guinea, M.A.H.Vozmediano, NPB 424, 595 (1994)



δ

Scale Magnetic Effect at the Edge
Non-Quantization of the “Hall conductance” for magnetization current

As contrasted to the quantization  
of the integer-Hall conductance

Infrared energy scale: size of the system

Ultraviolet energy scale:  
        nonlinearity in the energy dispersion  
        interatomic distance

Should be observed in a 2d or quasi-2d system hosting  
relativistic (Dirac) quasiparticles with running electric charge

generated by the scale anomaly

permittivity

(N. B.: in Dirac semimetals, the electric charge runs [Isobe, Nagaosa, 2012])

modest = minimalistic  
estimate  assuming ln(…)=1

!  is known to 10-10 precision and 10-8 accuracy



Conformal anomaly and transport effects at the edge 
Coming back to the edge:

electric current
beta function a normal vector to the boundary

spatial distance to the reflective boundary

Spatial components:

J
In the magnetic-field background:

Temporal components?

Charge accumulation in the electric field background



Scale electric effect at the edge: conformal/scale screening

Screening of electrostatic field in metals:

Screening lengths:

      Debye                          Fermi-Thomas

Fermi momentum

Density of carriers

What if the medium is totally conformal and possess no dimensionful parameters?

For example, take a Dirac semimetal at particle-hole symmetric point.

– We have the mobile carriers (massless fermionic quasiparticles) 

– Classically, there is no dimensionful scale. 

– No classical scale → no screening? No quantity to construct the screening length from!

(formally, of course)



Scale electric effect at the edge

the density of the electric charge   
accumulated at the boundary

Mechanism in semimetals: creation of electron-hole pairs in the  
presence of a uniform  electric field (the Zener effect)

Physics: the screening is due to  
the Schwinger effect  
(“skipping orbits” in time)

Works efficiently due to  
the absence of a mass gap 

Generated by the conformal anomaly!
(proportional to the beta function)



Scale electric effect at the edge of a semimetal

Charge density due to conformal anomaly:

Solve the Maxwell equation 

Consider QED:

At the boundary the conformal screening is polynomial:

Electric field Charge density Electrostatic potential

Conformal screening exponent:

(proportional to a central charge in CFT)

Similar to the Wilson-Fisher fixed point



Scale electric effect at the edge

Conformal exponent in a Dirac semimetal:

Particle density in a finite sample with two boundaries:

M. A. H. Vozmediano, M.Ch., Phys. Rev. Research 1, 032002(R) (2019) 

Direct measurement of the beta function. Indirect evidence of the Schwinger effect.



In typical Dirac/Weyl materials                         and

Conformal exponent in a Dirac semimetal:

- direct measurement of the beta function  
   associated with the renormalization of the electric charge  
   
- evidence of the elusive Schwinger effect 

(never done in solid state)

(particle-antiparticle production by electric field)

→ large, experimentally accessible conformal exponent:

Electrostatic screening potential 
vs. distance from the boundary 
of a Dirac material 
at T=0 charge neutrality point  
(= at a Lifshitz point at zero temperature) 

Accessible experimentally



Conformal anomaly leads to a number of new transport effects:

 
— at reflective boundaries (edges) of bounded systems

— in the bulk (unbounded systems - not covered in the talk) 

Electric current is proportional to the beta function.

Accessible experimentally in Dirac and Weyl semimetals.


Scale electric effect: 


    — polynomial screening of electrostatic fields 
    — particle creation via the Schwinger effect


Scale magnetic effect:  

   —edge currents in the absence of matter

   — non-integer quantum Hall effect. 


Summary at the edge


