Defects and Anomalies in Quantum Field Theory

Yifan Wang New York University

MITP BQFT 2021(0)

Defects are Ubiquitous

- Kondo effect: magnetic impurities in metal
- Worldlines of heavy charged particles
- Lattice systems (spin chain) with boundaries
- D-Branes in worldsheet string theory

- Precise Descriptions in QFT
- Defect lines in SU(2)k WZW [Affleck-Ludwig,...]
- Wilson/'t Hooft loops [Wilson, t' Hooft, Kapustin,...]
- Conformal boundaries [Cardy, Diehl,...]
- 2d Cardy States [Cardy,...]

General Defects in QFT

Defects are **extended** operators defined on a spacetime sub-manifold Σ

Order-type defects: e.g. Wilson lines ...

$$\mathcal{D} = e^{i\int_{\Sigma} \mathscr{L}(\phi)}$$

Disorder-type defects: e.g. 't Hooft lines, vortex/twist operators ...

$$\langle \mathcal{D}... \rangle = \int D\phi |_{\phi(\Sigma) = \phi_0} (e^{iS})$$

correlation functions with both local and other defect operators

Extended Quantum Field Theory

Defects are an indispensable part of QFT -> Extended QFT

- Topological defects as natural generalizations of symmetries
- Charged operators under generalized higher-form symmetries, order [Gaiotto-Kapustin-Seiberg-Willett 2014]
- QFTs with identical local operators but distinct defects [Aharony-Seiberg-Tachikawa 2013]
- Okuda-Teschner 2009, Drukker-Gaiotto-Gomis 2010,...]

[Gukov-Kapustin 2013, Gaiotto-Kapustin-Seiberg-Willett 2014, Bhardwaj-Tachikawa 2017, Chang-Lin-Shao-YW-Yin 2018] (also [Fuchs-Runkel-Schweigert-(Frohlich-Fjelstad) 2000s])

parameter for phase transitions (e.g. confinement-deconfinement transitions)

• Sensitive to global structures of theory. There are finite classes of extended

• Laboratory for exciting and rich mathematics: e.g. AGT with defects [Alday-Gaiotto-Tachikawa 2009, Alday-Gaiotto-Gukov-Tachikawa-Verlinde 2009, Drukker-Gomis-

Today's Focus

Precision Studies of Defect Observables

Supersymmetry

AdS/CFT

Integrability

Defect Extended Operator Algebra

Worldsheet String Theory

Nonperturbative Objects in String Theory

Defect Symmetries

Two types of symmetries: Intrinsic vs Extrinsic

- Instrinsic: locally conserved symmetries on Σ : defect Noether current j^a $\langle \partial_{\alpha} J^a(z^a) \rangle_{\Im} = 0$
- **Extrinsic**: inherited from bulk: bulk Noether current J^{μ} $\langle \partial_{\mu} J^{\mu}(z^{a}, y^{i}) \rangle_{\mathcal{D}} = 0$ $U_{\alpha} \equiv e^{\alpha \int_{\mathscr{M}_{d-1}} \star J} \text{ remains topological }$ even if $\mathcal{M}_{d-1} \cap \Sigma \neq \emptyset$

Generality of Anomalies

- Features
- Modification of Ward identity by contact terms e.g. 2d $\langle \partial_{\mu} J^{\mu}(x) J^{\nu}(0) \rangle = \frac{k}{\Lambda \pi} \epsilon^{\mu\nu} \partial_{\mu} \delta(x)$ Anomalous variation of the partition function $\delta_{\lambda} \log Z[A]$
- Encodes fine structures of symmetries (current algebra or fusion data) $\langle J^{\mu}(x)J^{\nu}(0)\rangle_{\text{odd}} = k \frac{\epsilon^{\mu\rho}I^{\nu}_{\rho}(x)}{|x|^2}$ Solutions to Wess-Zumino Consistency Conditions $[\delta_{\lambda}, \delta_{\rho}]\log Z[A] = \delta_{[\lambda,\rho]}\log Z[A]$
- Anomaly inflow from anomaly field theory in one higher dimension

Powers

- Anomalies are invariant under symmetric deformations
- Universal and robust observables for symmetric theories
- 't Hooft anomalies are RG invariants
- Conformal a anomalies are RG monotonic (proven in d=2,4)
- Constraints on RG flows and phase structure

Structures of Anomalies w/ Defect Insertion?

Defect Anomalies

- Features $\partial_{\mu}J^{\mu} \sim k\delta(\Sigma) \times (\text{defect contact terms})$
 - Anomalous variation of the **defect** partition function $\delta_{\lambda_{\nabla}} \log Z_{\mathscr{D}}[A]$
 - Solutions to WZ Consistency Conditions for the **residual** symmetries: more invariant structures, can be present even if the bulk is anomaly free
 - Encodes current algebra with **defect** insertion e.g. surface defect in d=3: $\langle J^{\mu}(x)J^{\nu}(x')\rangle_{odd}^{\mathscr{D}} = kf(v)P^{\mu\nu}(x,x')$ v: conformal invariant cross ratio
 - Anomalies are invariant under symmetric deformations on Σ Powers
 - Universal and robust observables for symmetric **defect** theories
 - 't Hooft anomalies are **defect** RG invariants
 - **Defect** conformal "*a*"-type anomalies are RG monotonic
 - Constraints on defect RG flows and defect phase structure

Modification of Ward identity by contact terms on the **defect** worldvolume:

 $\mathbb{R}^{d-1,1}$

 $x^{\mu} = (z^a, y^i)$

D

Boundary U(1) anomaly of 3d Dirac fermion ψ

Projector in the transverse direction: $P_{\pm} \equiv \frac{1 \pm \gamma_y}{2}$ Standard U(1) symmetric boundaries: $B_+:P_+\psi|_{\Sigma} = 0$ or $B_-:P_-\psi|_{\Sigma} = 0$ Boundary U(1) anomaly: $I_4(B_+) = \frac{1}{2}I_4(\chi_-^{2d}) = -\frac{1}{2}I_4(\chi_+^{2d}) = -I_4(B_-)$

To see the 1/2

What about more nontrivial defects?

- Compute from deformed defects after symmetric deformations
- Anomaly inflow in string/M theory

Conformal Defects (DCFT)

- Critical phase in the presence of boundaries/defects
- Universality classes of defect RG flows

- **New critical exponents and OPE data** (e.g. defect local ops S and bulk local op. 1pf $\langle O \rangle_{\mathcal{P}}$)
- Constrained by defect bootstrap equations (e.g. residual conf symmetry, crossing and unitarity)

$SO(p,2) \times SO(d-p) \subset SO(d,2)$

General d [Liendo-Rastelli-van Rees, Gaiotto-Mazac-Paulos, Liendo-Meneghelli, Billo-Goncalves-Lauria-Meineri,...]

2d "Classifying Algebra" [Cardy-Lewellen, Lewellen, Fuchs-Schweigert-(Signer), Recknagel-Schomerus, ..., Runkel-Watts]

Defect Conformal Anomalies

Ward identities w/ conformal defect \mathscr{D}

 $\partial_{\mu}T^{\mu a}(x) = 0$ $\partial_{\mu}T^{\mu i}(x) = \delta(\Sigma)D^{i}(z)$ - Displacement operator $T^{\mu}_{\mu}(x) = 0$

Conformal Anomaly p=2: surface defect

Intrinsic defect anomalies: b-anomaly analogous to c anomaly of 2d CFT **Extrinsic** defect anomalies: $d_{1,2}$ are new anomalies for surface defects

[Henningson-Skenderis, Schwimmer-Theisen, Graham-Witten,...]

Features of Defect Conformal Anomalies $T^{\mu}_{\mu}(x) = \frac{1}{24\pi} \delta(\Sigma)(bR + d_1 \hat{K}_{ab} \hat{K}^{ab} + d_2 W_{ab}{}^{ab})$

	C	b	d_1	d_2
(D)CFT origin	$\langle T_{\mu\nu}(x)T_{\rho\sigma}(x')\rangle_{\rm CFT}$	$\langle T_{ab}(z)T_{cd}(z') angle_{\mathscr{D}}$ But not explicit	$d_1 \propto \delta_{ij} \langle D^i D^j \rangle_{\mathscr{D}}$	$d_2 \propto \delta_{ab} \langle T_{ab} \rangle_{\mathcal{D}}$
RG property	Bulk Monotonic	Defect Monotonic [Jensen-O'Bannon 16]	None	None
Positivity	Yes	No	Yes	Yes (ANEC) Jensen-O'bannon-Robinson-Rodgers 19]
Dependence on defect marginal couplings		No	Yes	Yes
Dependence on bulk marginal couplings	No	Yes w/o SUSY (examples?)	Yes	Yes

Free examples: Defect Conformal Anomalies

	Fields	cL	cR
2d	$\psi_{-}^{2d} = 0$	1/2	0
	$\psi_+^{2d} = 0$	0	1/2
	$\phi^{2d} = 0$	1	1
3d	$P_+\psi _{\Sigma}=0$	-1/4	1/4
	$P_{-}\psi _{\Sigma} = 0$	1/4	-1/4
	$\phi \mid_{\Sigma} = 0$	1/8	1/8
	$\partial_{\perp}\phi \mid_{\Sigma} = 0$	-1/8	-1/8

$$P_{\pm} = \frac{1}{2}(1 \pm \gamma_{\perp}): \text{bosen}$$

Standard boundary conditions of 3d free fields

Traceless extrinsic curvature

$$b = c_L + c_R$$

$$k_g = c_L - c_R$$
 Defect gravitational

oundary chiral projector

RG flow and a-theorem in QFT

General Strategy: [Komargodski-Schwimmer 2011]

- Couple the QFT along the RG to spurious dilaton $\tau(z)$
- Restore Weyl symmetry
- IR effective action $S_{\text{eff}} = S_{\text{IR}} + S_{\text{dilaton}}[\tau] + \dots$
- Weyl anomaly matched between UV and IR
 - $\delta_{\sigma} \log Z_{UV} = \delta_{\sigma} \log Z_{IR} + i \delta_{\sigma} S_{\text{dilaton}}[\tau]$
- $S_{\text{dilaton}} = S_{\text{WZ}} + S_{\text{inv}}$
- a-theorem from unitarity constraints on $S_{\rm dilaton}$ (reflection positivity in 2d and optical theorem in 4d.

y by
$$\tau \to \tau + \sigma$$
 as $g_{\mu\nu} \to g_{\mu\nu} e^{2\sigma}$

$$S_{\text{dilaton}}^{2d}[\tau] \sim -\Delta c_{2d} \int d^2 z (\partial \tau)^2 \quad S_{\text{dilaton}}^{4d}[\tau] \sim -\Delta a_{4d} \int d^4 z (\partial \tau)^4$$

Defect RG flow and Defect a-theorem \mathcal{D}_{UV}

General Strategy: [Komargodski-Schwimmer 2011] extended to defects

- - Restore defect Weyl symmetry by $\tau \to \tau + \sigma$ as $g_{\mu\nu} \to g_{\mu\nu} e^{2\sigma}$
- IR effective action $S_{\text{eff}} = S_{\mathcal{D}_{\text{TR}}} + S_{\text{dilaton}}[\tau] + \dots$
- Weyl anomaly matched between UV and IR

Isolate potential complications in the defect case due to the extrinsic anomalies

IR+T

UV+T

 $\mathscr{A}_{\mathrm{UV}}^{\mathrm{Weyl}} = \mathscr{A}_{\mathrm{IR}}^{\mathrm{Weyl}}$

• a-theorem from unitarity constraints on $S_{\rm dilaton}$ [Jensen-O'Bannon 16, YW 21] (reflection positivity of defect correlators in 2d, defect optical theorem in 4d)

- $S_{\rm DFT} = S_{\mathcal{D}_{\rm UV}} + \int_{\Sigma} d^p z \sqrt{|h|} \sum_{\mathcal{O}_{\rm UV} \in \mathcal{D}_{\rm UV}} \lambda_{\mathcal{O}_{\rm UV}} \mathcal{O}_{\rm UV}(z)$
- Couple the **DFT** along the RG to spurious **defect** dilaton $\tau(z)$

 $\delta_{\sigma} \log Z_{\mathcal{D}_{IV}} = \delta_{\sigma} \log Z_{\mathcal{D}_{IR}} + i \delta_{\sigma} S_{\text{dilaton}}[\tau]$

• $S_{\text{dilaton}} = S_{\text{WZ}} + S_{\text{inv}}$ $S_{\text{dilaton}}^{2d}[\tau] \sim -\Delta b_{2d} \int d^2 z (\partial \tau)^2 S_{\text{dilaton}}^{4d}[\tau] \sim -\Delta a_{4d} \int d^4 z (\partial \tau)^4$

Defect Anomalies beyond Free Theories?

Superconformal Defects

- Ubiquitous in SCFTs (constructions from intersecting branes and branes wrapping) geometries in string/M/F theory)
- Breaks bulk superconformal algebra to a smaller superconformal subalgebra
- Displacement operator (and other broken current operators) sits in unitary superconformal multiplets -> Constraints on symmetry breaking pattern -> classification of superconformal defects according to symmetries [Bianchi-Preti-Vescovi 18, Bianchi-Lemos-Meineri 18, Liendo-Meneghell-Mitaev 18, Agmon-YW 20]

For superconformal lines (preserving transverse rotations)

- No superconformal lines in 4d N=1 and 6d N=(1,0) or (2,0)
- half-BPS lines in 5d N=1, 4d N=2, 2/3-BPS lines in 4d N=3
- Half and quarter-BPS lines in 4d N=4
- Superconformal lines in d>3 are all rigid
- Superconformal lines in d=3 can have (and sometimes must have) conformal manifolds

Superconformal surface defect anomalies

 $\mathcal{N} = (0,2)$ superconformal surface defect: $\mathfrak{so}(1,2) \times \mathfrak{osp}(2|2,\mathbb{R})$

SUS

Anomaly multiplet relation

Global $U(1)_r$ symmetry J_{μ}

't Hooft anomalies

 $\partial_{\mu}J^{\mu}(x) = \frac{1}{4\pi}\delta(\Sigma)k\epsilon_{ab}F^{ab}$

RG invariant, easy

 $U(1)_r$ current Identify by b-maximization (Generalizing [Benini-Bobev 2012])

Conformal symmetry $T_{\mu\nu}$

Conformal anomalies

 $T^{\mu}_{\mu} = \delta(\Sigma)(bR + d\hat{K}_{ab}\hat{K}^{ab})$

RG variant, hard

• Anomaly multiplet relations $c_L = 3k - k_g$, $c_R = 3k$, or b = 3k

[YW 20]

Example 1: Super Ising SCFT

N=2 SQFT with superpotential

- Flow to strongly coupled 3d CFT
- appear in various CM setups: e.g. optical lattice of cold atoms and boundaries of topological superconductors
- What can we say about its boundary universality classes?

- $W = \Phi^{3} \longrightarrow \mathscr{L} = |\partial \phi|^{2} + \lambda |\phi|^{4} + \text{fermions}$ $\Phi \to (\phi, \psi)$

Super Ising boundary

UV field content

Simplest boundary (supersymmetric Dirichlet

't Hooft anomalies from the fermion with $r = -\frac{1}{3}$

Defect conformal anomalies from SUSY anomaly

complex boson ϕ and fermion ψ

$$\phi \mid_{\Sigma} = P_{+}\psi \mid_{\Sigma} = 0$$

$$k = -\frac{1}{2}\left(\frac{1}{3}\right)^{2}, \quad k_{g} = -\frac{1}{2}$$
multiplet relations $c_{L} = \frac{1}{3}, \quad c_{R} = -\frac{1}{6}$

Boundary Casimir energy, Boundary entanglement entropy,

Example 2: Surface defects in 6d SCFTs

- Mysterious 6d (2,0) SCFTs with no Lagrangian, no parameter, labelled by ADE Lie algebra \mathfrak{g}
- Existence suggested by string/M theory constructions: M5 branes, IIB on ADE singularities \bullet
- Mother of many QFTs: compactification \rightarrow unifying classification of lower dimensional lacksquareQFTs, geometric pictures of strong-weak dualities ...
- Contain rich spectrum of defects -> defects and local ops in the lower dim QFT
- M theory predicts surface defects from M2 branes $\mathcal{D}_{\lambda}[\mathfrak{q}]$ lacksquare
- Defect conformal anomaly *b*? \bullet
- SUSY says b = 3kk is the 't Hooft anomaly for R-symmetry in the $\mathfrak{osp}(2|2,\mathbb{R}) \times \mathfrak{so}(2,1)$ subalgebra

Weight vector λ describes how M2 intersects the M5s (before taking the conformal/singular limit) M2

M5

Example: Surface defects in 6d SCFTs

Residual 6d R-symmetry Transverse rotation $SU(2)_L \times SU(2)_R \times SU(2)_F \times SU(2)_I$

r = 2(R - 2I)Defect U(1)R symmetry

Defect 't Hooft anomalies from inflow on the tensor branch

Defect symmetry

Defect U(1)R 't Hooft anomaly

Defect conformal anomalies

$$b = c_L = c_R = 3k = 3(\lambda, \lambda) + 24(\lambda, \rho)$$

[YW 20] Agrees with holographic computations for SU(N) case in large N limit [Estes-Krym-O'Bannon-Robinson-Rodgers 18] also [Drukker-Probst-Trepanier 20] and see Nadav's talk

[Kim-Kim-Park 16, Shimizu-Tachikawa 16]

 $\mathcal{D}_{\lambda}[g]$

 $I_4 = \frac{1}{2} (\lambda, \lambda) (c_2(F_L) - c_2(F_R)) + (\lambda, \rho) (c_2(F_I) - c_2(F_F))$

Weyl vector for \mathfrak{g}

 $k = (\lambda, \lambda) + 8(\lambda, \rho)$

Constraints from 't Hooft anomalies on defects?

Anomalies and Boundaries

 \mathcal{X}_{\parallel} Bulk current \backsim $\sim\sim$ \backsim boundary

Usual 't Hooft anomalies w/o bdy

Symmetry G

t Hooft anomalies w/ bdy

2d continuous sym [Masataka 2016, Billo-Goncalves-Lauria-Meineiri 2016, Jensen-Shaverin-Yarom 2017, Hellerman-Orlando-Watanabe 2021] General [Thorngren-YW 2020]

Anomalies and Boundaries d>2

Assume a G-symmetric boundary \mathscr{B}

on manifold with boundary

 $(|\mathscr{B}\rangle)$ defines a G-symmetric state)

- $\partial_{\mu}J^{\mu}=0$ Up to c number terms (e.g anomalies)
- Structure of anomalies constrained by Wess-Zumino consistency condition

- The anomaly does not lead to a projective rep of G on Hilbert space
 - The anomaly must be abelian (from descent equations)

Also [Jensen-<u>Shaverin</u>-Yarom 2017]

Anomalies and Boundaries

Assume a G-symmetric boundary \mathscr{B}

Current Ward identity (w/ boundary) $\langle \partial_{\mu} J$

Unitarity requires as $x_{\perp} \rightarrow 0$ $J_{+} = 0$ As an operator equation

k = 0Together

 $\partial_{\mu}J^{\mu} = 0$ Up to c number terms (e.g) anomalies

Focus on the IR conformal boundary for G=U(1)

$$J^{\mu}(x)J^{\mu_1}(x_1)\dots J^{\mu_n}(x_n)\rangle = -\frac{k}{(n+1)!(2\pi)^n}\epsilon^{\mu_1\dots\mu_n\nu_1\dots\nu_n}\prod_{i=1}^n\frac{\partial}{\partial x_i^{\nu_i}}\delta^d(x-x)$$

Bulk current

Anomalous symmetries must be broken at the boundary

Application: Boundaries of N=4 Super-Yang-Mills

- Witten]
- Both anomalies trivialize

 $JSU(2)_F \times SU(2)_R \times U(1)_R$

N=4 super-Yang-Mills

 $SO(3)_H \times SO(3)_C$

Witten anomaly for $SU(2)_F$

 $\pi_4(SU(2)) = \mathbb{Z}_2$

• Known maximally symmetric boundary preserves $SO(3)_H \times SO(3)_C$ [Gaiotto-

Application: Boundary conditions for 2d fermions w/chiral symmetry

Indeed, explicit constructions of symmetric boundary states only possible for these cases [Smith-Tong 2020]

y:
$$(-1)^{F_L}$$
 and $(-1)^{F_R}$

$$N_f$$
 2d Majorana ferm

 $\mathbb{Z}_2^L \times \mathbb{Z}_2^R$ symmetric boundary condition possible only if $N_f \in 8\mathbb{Z}$

More Open Questions

- Universal ("positivity") bounds on defect conformal anomalies (and free energy) e.g. collider bounds from positive energy conditions [Hofman-Maldacena 08, Herzog-Schaub 21]
- Discrete (and "exotic") symmetries and defect 't Hooft anomalies
- Inversion (conformal) anomalies for odd-dimensional defects [Drukker-Gross]
- Holographic dual of the defects and constraints on world-volume couplings
- Bootstrap & Symmetry constraints on non-BPS branes/ boundaries in String/M-theory (via AdS/CFT) and swampland conjectures for quantum gravity [McNamara-Vafa 2019]

Thank you!