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Entanglement in many body systems

B

A

A and B are entangled if !"#$ ≠ !" ⊗ !$



Measures of entanglement

A and B are entangled if !"#$ ≠ !" ⊗ !$

Measures of entanglement: 

Eisert et al (2010), Haag (1992), Li and Haldane (2008), Vidal and Werner (2004)

von Neumann entropy: 
'" = −Tr," ln ," ,
," = Tr0 ,"#$

Entanglement 
Hamiltonian:

ℋ"= − 2
34 ln ,"

log negativity: 

ℇ" = ln ,67089

Contain signatures of quantum critical phenomena, topological order, 
information scrambling, …



Entanglement entropy in 1+1D quantum systems

1D quantum system at T = 0

A B

Holzhey et al (1994), Cardy and Calabrese (2004), Hastings (2007)

Generic behavior 
for systems in ground state 

gapped spectrum
!" ∼ ln & ,

& = correlation length

gapless spectrum
!" ∼ ln )" ,

)" = subsystem size

e.g., Ising chain: 

* = −,
-
.-/.-01/ − 2,

-
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…
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Entanglement entropy in 1+1D conformal-invariant
quantum systems

A B

Entanglement entropy: !" = $
% ln (" + ⋯,  + = central charge

Ising chain: 

, = −.
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/
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Quantum rotor chain: 
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Entanglement entropy in 1+1D conformal-invariant
quantum systems with boundaries

A B

Entanglement entropy: 

!" #, % = '
6 ln

2,
- sin -0", + !2 + !3 + !4

!2, !3 = ln 52 , ln 53 = boundary entropies, # = inherited, % = free (from 
entanglement cut)

Easier to extract than conventional thermodynamic quantities like Casimir 
energy, impurity free energy, …

Cardy and Calabrese (2004, 2009), Cardy and Tonni (2016), Affleck and Ludwig (1991)

# % #
, = 0" + 06

!4 = non-universal



Entanglement Hamiltonian in 1+1D conformal-
invariant quantum systems with boundaries

Entanglement Hamiltonian: 

ℋ" #, % = − 1
2* ln -" #, % ≃ − 1

2* ln
/012345
Tr/012345

89: = boundary CFT Hamiltonian

Entanglement spectrum obtained from 
standard partition function computation

Cardy and Tonni (2016), AR et al, J. Stat. Mech (2020)

A B
# % #



Entanglement entropy in the critical Ising chain with 
boundaries: Results

Hamiltonian: 

! = −$
%
&%'&%()' −$

%
&%* + ,- &-' + &./)'

Neumann (free): ,- = 0, Dirichlet (fixed): ,- ≪ 1

Central charge = 1/2

Change in boundary entropy:

Δ67→9 =
1
2 ln 2

AR et al, J. Stat. Mech (2020), Affleck and Ludwig (1991)

DMRG (≃matrix 
product state) 
computation

subystem size

entanglement
entropy



Entanglement spectrum in the critical Ising chain 
with boundaries: Results

Boundary states:
!0 = $

%
0 + $

%
' + $

%(/*
+ ,
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%
= $

%
0 + $

%
' − $

%
(
*
+ ,

.$
$/

= 0 − '

Ishibashi (1988), Cardy (1989), di Francesco et al (1997), AR et al, J. Stat. Mech (2020)

Partition function (Neumann boundary 
condition):

011 = 2
345,6,7

81
16 ;

%

<3 => , => = ?@%ABCC

Entanglement spectrum (Neumann):
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Entanglement spectrum in the critical Ising chain 
with boundaries: DMRG Results

AR et al, J. Stat. Mech (2020)



Entanglement spectrum in the critical Ising chain 
with boundaries: DMRG Results

AR et al, J. Stat. Mech (2020)

Entire spectrum 
from the ground 

state!



Entanglement in the 1+1D free, compact boson CFT
Euclidean action: 

! =
1

2%&' ()*
+,-,. ,

& = Luttinger parameter, 012 3 0412 5 ∼ 7
58/:

Boundary states: 

; *3 =
1
2< %

=
>

0
41>2?@ A B

CD3

04 EFGH
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Callan et al (1987), Affleck and Oshikawa (1997)

Dirichlet

Neumann

< = compactification
radius



Entanglement in the free, compact boson CFT: 
Results

Euclidean action: 

! =
1

2%&
' ()*

+
,-,. ,

& = Luttinger parameter, 012 3 0412 5 ∼
7

58/:

Change in boundary entropy from Neumann to Dirichlet:

Δ<=→? =
1
2
ln
2
&

Entanglement spectrum (Neumann): 

B= C, D = B= 0,0 +
%
GHII

&
2
C+ + D

AR et al, J Stat. Mech. (2020), see also: Saleur (1998)
exact form available dim. of primary fields descendant level

degeneracy J D = # of 
integer partitioning of D



Entanglement in the free, compact boson CFT: DMRG 
results for the quantum rotor chain

Hamiltonian with nearest-neighbor interaction:

! =#
$
%$& + (#

$
%$%$)* − ,#

$
cos 0$ − 0$)*

Free, compact boson for , > 1, ( ≪ 1

AR et al, J Stat. Mech. (2020)

%$, 5±$78 = ±5±$78 9$:

subsystem size

total 
system 

sizeChose ,, ( such that ; = 0.192

entanglement
entropy



Entanglement in the free, compact boson CFT: DMRG 
results for the quantum rotor chain

Hamiltonian with nearest-neighbor interaction:

! =#
$
%$& + (#

$
%$%$)* − ,#

$
cos 0$ − 0$)*

Free, compact boson for , > 1, ( ≪ 1

Entanglement spectrum (Neumann): 

56 7, 8 = 56 0,0 + :
;<==

>
2 7

& + 8

AR et al, J Stat. Mech. (2020)

%$, @±$BC = ±@±$BC D$E

Chose ,, ( such that > = 0.192

rescaled
entanglement

energies 7
Non-generic behavior, 

characteristic of an integrable model



Entanglement in the free, compact boson CFT: DMRG 
results for the quantum rotor chain

Hamiltonian with nearest-neighbor interaction:

! =#
$
%$& + (#

$
%$%$)* − ,#

$
cos 0$ − 0$)*

Free, compact boson for , > 1, ( ≪ 1

Entanglement spectrum (Dirichlet): 

56 % = 56 0 + 8
2:;<<

%

AR et al, J Stat. Mech. (2020)

%$, =±$?@ = ±=±$?@ A$B

Chose ,, ( such that C = 0.192

rescaled
entanglement

energies



Entanglement in 1+1D CFTs perturbed by a primary 
field

A B

Hamiltonian: 
! = !#$% + '′∫ *+ Φ

Entanglement entropy: 

-. =
/

6
ln 3 + ⋯

/ = central charge, 3 = correlation length

e.g., Ising chain with ' ≠ 1: 

! = −8
9

:9
;:9<=

; − '8
9

:9
>

Peschel (1999, 2001), Cho et al (2017)

3

Entanglement Hamiltonian: 

ℋ. @, B ∼ −
1

2E
ln

FGHIJKL

TrFGHIJKL

@ B @

does not require lattice integrability!

Entanglement gap: O ∼ 1/ ln 3
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Entanglement spectrum of the quantum sine-
Gordon model : DMRG results

18

AR et al, Nucl. Phys. B (2021)
Lattice integrable regularization: XYZ spin-chain

Hamiltonian with nearest-neighbor interaction:

! = !# + !%

!# =&
'
(') + *&

'
('('+, − .&

'
cos 2' − 2'+,

Free, compact boson for . > 1, * ≪ 1

!% = −7&
'
cos2'

7 ≃ 10:;,
. ∼ 1.0

Predicted degeneracies: 

1,1,1,2,2,3,4,…



The XYZ regularization of the quantum sine-Gordon 
model

Baxter’s XYZ spin-chain

!"#$ = −12)
*+,

-
./0*/0*1,/ + .30*30*1,3 + .40*40*1,4 , ./ > .3 ≥ .4

XYZ to sine-Gordon operator mapping:   01 ∼ 9
:;<
=

Relation to eight-vertex model parameters (in the principal regime): 

Γ = .3
./
, Δ = .4

./
,

2 @
1 + @ =

1 − ΓA
ΔA − ΓA , −B sn BE, @ = 1

@
1 − Γ
1 + Γ

19

Baxter (1982), Luther (1975), Lukyanov (1997, 2003)



The XYZ regularization of the quantum sine-Gordon 
model

Baxter’s XYZ spin-chain

!"#$ = −12)
*+,

-
./0*/0*1,/ + .30*30*1,3 + .40*40*1,4 , ./ > .3 ≥ .4

Relation to eight-vertex model parameters (in the principal regime): 

Γ = .3
./
, Δ = .4

./
,

2 :
1 + : =

1 − Γ;
Δ; − Γ; , −< sn <?, : = 1

:
1 − Γ
1 + Γ

20

AR et al, Nucl. Phys. B (2021)

Entanglement spectrum
obtained from corner 

transfer matrix spectrum,
level spacing: 

@"#$ =
A?
B :

Baxter (1982)
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!"#$ = entanglement gap

AR et al, Nucl. Phys. B (2021)

Entanglement spectrum of the quantum sine-Gordon 
model : DMRG vs corner transfer matrix results



22AR et al, Nucl. Phys. B (2021)

Entanglement spectrum for integrable vs non-
integrable regularizations

5 100

XYZ (Integrable) Quantum rotor 
(Not integrable)



Outlook: experimental realization with 
superconducting quantum electronic circuits

!" = ℏ/2'

(

Capacitor

+*

−*

electric charge

, = *-
2(

, = *-
2(.

− /. cos
3
!"

3, * = 5ℏ

Josephson junction

≡
+*
−*

3

(. /.

electric 
charge

magnetic
flux



The free, compact boson CFT with 
superconducting quantum electronic circuits

24

Quantum circuit

! =#
$
%$& + (#

$
%$%$)* − ,#

$
cos 0$ − 0$)*

onsite repulsion nearest-neighbor repulsion `chemical potential’AR et al, J. Stat. Mech. (2020)
Free, compact boson for , > 1, ( ≪ 1
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FIG. 1. (a) Optical photograph of the Josephson transmission line with a dipole antenna at the left end and a short-circuit
termination at the right one. The phase mode corresponds to AC current through the junctions and AC electric field across
the two chains. (b) Scanning electron microscope images of chain junctions. (c) Photograph of a chip mounted in a single-port
copper waveguide. (d) Linear circuit model for the propagating phase mode at long wavelength (see text). (e) Minimal model
of a Josephson chain exhibiting a BKT transition. (f) Minimal circuit model of the double-chain device from (a). Here the
capacitance c is due to electrostatic coupling between the chains and every superconducting island has a random charge o↵set.

DC resistance with temperature and other system param-
eters [16]. The quantum BKT transition resisted such an
approach [17–20], possibly due to a combination of sys-
tem’s finite size, poor knowledge of actual temperature
and microscopic parameters, or lack of equilibrium under
a DC bias. In fact, disorder can make the resistance scal-
ing on temperature non-universal [10]. We avoid these
issues by asking a conceptually di↵erent question: how
the propagation of the phase mode, at frequencies higher
than temperature, wavelengths much shorter than the
system size, and excited with less than a single photon, is
being inhibited in progressively higher impedance chains?

The minimal circuit model for our double-chain trans-
mission line (Fig. 1f) includes the junctions Josephson
energy EJ , the charging energy EC = e2/2CJ , and the
inter-chain coupling energy E0 = e2/2C0. Here CJ is
the oxide capacitance between neighboring grains and
C0 is the capacitance between the two chains per unit
cell. Introducing the unit cell size a = 600 nm, the
wave propagation parameters are now defined as l⇥ a =
2(~/2e)2/EJ and c ⇥ a = C0. The junction plasma fre-
quency !p ⇡

p
8EJEC/~ defines the ultra-violet cut-o↵

in our system. The dimensionless parameter (EJ/EC)1/2

is proportional to the junction area. It defines the expo-
nent of the quantum phase slip amplitude at the short
length and time scales associated with !p [10]. With
these parameters, the critical wave impedance matches
that of a single chain [21].

An example of momentum-resolved spectroscopy is
shown in Fig. 2. The experiment is performed using
a standard two-tone dispersive reflectometry, taking ad-
vantage of the weak Kerr non-linearity of a Josephson
junction [22] (Methods). Data reveals an ordered set of
discrete resonances which we associate with the stand-
ing wave modes of the transmission line (Fig. 2a). By
indexing the individual resonances and plotting the fre-
quency as a function of index n = 1, 2, ..., we obtain the
dispersion relation !n(kn), where kn is the wavenumber

FIG. 2. (a) Reflection signal as a function of probe fre-
quency. Discrete standing wave resonances are indexed one
by one starting from the very first mode at about 40 MHz.
The third resonance is a spurious mode and is discarded. (b)
Reconstructed dispersion relation (blue markers) and theoret-
ical fit (solid line). (c) Mode spacing as a function of mode
index. The sharp periodic outliers originate from the stitching
error of the lithographer, otherwise invisible in device images.

defined as kn+1 � kn = ⇡/L, and L = 10 mm is the
length of the line (Fig. 2b). The dispersion is in excel-
lent agreement with a simple two parameter expression
!(k) = vk/

p
1 + (vk/!p)2, describing ultra-slow pho-

tons with a velocity v = 1.88 ⇥ 106 m/s and a band
edge at the plasma frequency !p/2⇡ = 24.8 GHz. The
n = 1 mode is clearly visible at 40 MHz, half the mode
spacing, which correctly reflects the additional ⇡ phase-
shift due to the short-circuit boundary condition. This
observation confirms that wave propagation occurs along
the entire length of the system and the spectrum is gap-
less. Fluctuations of the mode spacing as a function of

Manucharyan group (Maryland, 2018, 2019): 
! ∼ 33000

Where are the experiments?

25

Devoret group (Yale, 2009):
! = 43

Gershenson group  
(Rutgers,  2012): ! = 6, 24

is the tunnel resistance of each junction. This expression for
the Josephson inductance is valid provided that (i) the charac-
teristic energies h! and kBT, respectively, associated to the
frequency and the temperature are much smaller than the
superconducting gap, (ii) the phase across the junction can be
considered as a classical quantity,17 and (iii) is much smaller
than 1, which implies that the current going through the
SQUID is much smaller than IC. To evaluate the lineic im-
pedance Z of the inner conductor of our transmission line,
one must take into account the capacitance CJ of the tunnel
junction, yielding Z ¼ i2p!LJð/Þ=að1$ !2=!2

PÞ, with !P the
Josephson plasma frequency18 !P ¼ 1=½2pðLJCJÞ1=2&, and a is
the distance between neighbouring SQUIDs. Below !P, the
inner conductor thus presents an effective lineic inductance

L ¼ LJð/Þ=að1$ !2=!2
PÞ: (2)

The characteristic impedance of the SQUID transmis-
sion line is then given by Z1 ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
, where C is the lineic

capacitance to ground of the SQUID array, evaluated using
standard electromagnetic simulations. Note that at frequen-
cies much lower than !P; L is independent of frequency, so
that our device can be considered as a standard quarter wave-
length impedance transformer, albeit with high lineic induct-
ance. Finally, we would like to point that this technique
cannot provide characteristic impedances Z1 ' RQ, since
quantum phase slips then drive the array into an insulating
state.19

Figure 1(a) shows a picture of the measured co-planar
resonator and its equivalent electric circuit scheme. From the
left to the right a 50 X line is followed by a 350mm long
Josephson metamaterial line containing lithographically iden-
tical and evenly spaced SQUIDs with a 5mm period. SQUIDs
where fabricated following the process described in Ref. 20:
the SQUIDs (see the top inset) are obtained by double angle
deposition of (20/40 nm) thin aluminum electrodes, with a
200 oxidation of the first electrode at 400 millibars of a (85%
O2/15% Ar) mixture. Before the evaporation, the substrate
was cleaned by rinsing in ethanol and Reactive Ion Etching
in an oxygen plasma.21 The barriers have an area of 0.5mm2

each resulting in a room temperature tunnel resistance
RN ¼ 720 X. To assess that the SQUIDs in the array are iden-
tical, we have performed reproducibility tests, yielding con-
stant values of RN (within a few %) over millimetric
distances. Assuming a superconducting gap D ¼ 180 leV
and a 17% increase of the tunnel resistance between room
temperature and base temperature,22 one obtains a zero flux
critical current for the SQUIDs IC¼ 671 nA, corresponding to
LJð/ ¼ 0Þ ¼ 0:49 nH. This corresponds to an effective lineic
inductance L ’ 100 lH m$1 at zero magnetic flux and fre-
quency much lower than !P. Assuming a capacitance for the
junctions of the order of 80 fF/mm2 yields !P ’ 25 GHz. Note
that our simple fabrication mask (see Top Panel in Fig. 1(a))
produces 10 times bigger Josephson junction in between ad-
jacent SQUIDs, resulting in an additional L ’ 10 lH m$1

lineic inductance. The L ’ 1 lH m$1 electromagnetic in-
ductance associated to our geometry is negligible. With the
designed lineic capacitance C ¼ 84:3 pF m$1, the length of
the resonator sets the first resonance at !0 ’ 7 GHz with an
impedance ZRes ’ 1:5 kX and quality factor Q ’ 18. The fre-
quency !0 being small enough compared to !P, the frequency
dependence of L given by Eq. (2) is almost negligible.
Sweeping the field then modifies L / jcosð/=2/0Þj

$1;
!0 / jcosð/=2/0Þj

0:5, the impedance ZRes / jcosð/=2/0Þj
$0:5

and the quality factor Q/ jcosð/=2/0Þj
$0:5. The 0.35mT field

period is estimated from the 3mm2 SQUID area.
The 100( 100 nm2 normal tunnel junction (see Fig.

1(a) bottom inset) is fabricated by multiple angle evaporation
of copper/aluminum/copper with thicknesses (30/5/60 nm),
and a 200 oxidation of aluminum at 800 millibars of a (85%
O2/15% Ar) mixture. Using the standard theory of the prox-
imity effect,23 we find that the aluminum superconductivity
is fully suppressed in the lower electrode. Finally, a
30( 50( 0.3 mm3 normal metal (gold) pad is inserted
between the SQUID array and the normal junction, in order
to efficiently absorb the power dissipated at the biased nor-
mal tunnel junction. The electron-phonon coupling24,25 is

FIG. 1. Description of the device and characterization circuit. (a) Optical
microscope image of the k=4 co-planar resonator based on a Josephson
metamaterial, on top of the scheme of its equivalent electric circuit. Top
inset: scanning electron microscope (SEM) image of few SQUIDs from the
Josephson metamaterial. Bottom inset: SEM image of the high resistance
normal tunnel junction terminating the resonator. (b) Electric circuit used to
characterize the resonator: The sample shown in (a) is connected to the cir-
cuit with a bias tee. The inductive port is used to dc bias the sample and to
measure the normal state resistance of the tunnel junction in a three point
configuration. The capacitive port is used to amplify, filter, and measure the
fraction of the RF power emitted by the tunnel junction, which is transmitted
by the resonator. This quantity depends only on the dc bias, the detection im-
pedance provided by the resonator, the output impedance of the tunnel junc-
tion and the gain of the detection chain. An additional RF line, heavily
attenuated and connected to the circuit via a $20 dB directional coupler, is
used to calibrate the gain of the detection chain. For this calibration, the res-
onant frequency of the resonator is tuned out of the detection bandwidth, so
that the incoming radiation is fully reflected by the sample.

212601-2 Altimiras et al. Appl. Phys. Lett. 103, 212601 (2013)

Esteve group (Saclay, 2013): 
! ∼ 100

Probing strongly-interacting 
quantum field theories

Roch group (Grenoble , 2019): ! ∼ 1500

Early experiments: Delft (1990-s)
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FIG. 1. (a) Optical photograph of the Josephson transmission line with a dipole antenna at the left end and a short-circuit
termination at the right one. The phase mode corresponds to AC current through the junctions and AC electric field across
the two chains. (b) Scanning electron microscope images of chain junctions. (c) Photograph of a chip mounted in a single-port
copper waveguide. (d) Linear circuit model for the propagating phase mode at long wavelength (see text). (e) Minimal model
of a Josephson chain exhibiting a BKT transition. (f) Minimal circuit model of the double-chain device from (a). Here the
capacitance c is due to electrostatic coupling between the chains and every superconducting island has a random charge o↵set.

DC resistance with temperature and other system param-
eters [16]. The quantum BKT transition resisted such an
approach [17–20], possibly due to a combination of sys-
tem’s finite size, poor knowledge of actual temperature
and microscopic parameters, or lack of equilibrium under
a DC bias. In fact, disorder can make the resistance scal-
ing on temperature non-universal [10]. We avoid these
issues by asking a conceptually di↵erent question: how
the propagation of the phase mode, at frequencies higher
than temperature, wavelengths much shorter than the
system size, and excited with less than a single photon, is
being inhibited in progressively higher impedance chains?

The minimal circuit model for our double-chain trans-
mission line (Fig. 1f) includes the junctions Josephson
energy EJ , the charging energy EC = e2/2CJ , and the
inter-chain coupling energy E0 = e2/2C0. Here CJ is
the oxide capacitance between neighboring grains and
C0 is the capacitance between the two chains per unit
cell. Introducing the unit cell size a = 600 nm, the
wave propagation parameters are now defined as l⇥ a =
2(~/2e)2/EJ and c ⇥ a = C0. The junction plasma fre-
quency !p ⇡

p
8EJEC/~ defines the ultra-violet cut-o↵

in our system. The dimensionless parameter (EJ/EC)1/2

is proportional to the junction area. It defines the expo-
nent of the quantum phase slip amplitude at the short
length and time scales associated with !p [10]. With
these parameters, the critical wave impedance matches
that of a single chain [21].

An example of momentum-resolved spectroscopy is
shown in Fig. 2. The experiment is performed using
a standard two-tone dispersive reflectometry, taking ad-
vantage of the weak Kerr non-linearity of a Josephson
junction [22] (Methods). Data reveals an ordered set of
discrete resonances which we associate with the stand-
ing wave modes of the transmission line (Fig. 2a). By
indexing the individual resonances and plotting the fre-
quency as a function of index n = 1, 2, ..., we obtain the
dispersion relation !n(kn), where kn is the wavenumber

FIG. 2. (a) Reflection signal as a function of probe fre-
quency. Discrete standing wave resonances are indexed one
by one starting from the very first mode at about 40 MHz.
The third resonance is a spurious mode and is discarded. (b)
Reconstructed dispersion relation (blue markers) and theoret-
ical fit (solid line). (c) Mode spacing as a function of mode
index. The sharp periodic outliers originate from the stitching
error of the lithographer, otherwise invisible in device images.

defined as kn+1 � kn = ⇡/L, and L = 10 mm is the
length of the line (Fig. 2b). The dispersion is in excel-
lent agreement with a simple two parameter expression
!(k) = vk/

p
1 + (vk/!p)2, describing ultra-slow pho-

tons with a velocity v = 1.88 ⇥ 106 m/s and a band
edge at the plasma frequency !p/2⇡ = 24.8 GHz. The
n = 1 mode is clearly visible at 40 MHz, half the mode
spacing, which correctly reflects the additional ⇡ phase-
shift due to the short-circuit boundary condition. This
observation confirms that wave propagation occurs along
the entire length of the system and the spectrum is gap-
less. Fluctuations of the mode spacing as a function of

Maryland group (2018, 2019): ! ∼ 33000

Quantum circuits as analog free boson QFT simulators

26

Grenoble group (2019): ! ∼ 1500

More interesting field theories with quantum circuits: 
AR and H. Saleur, Phys. Rev. B (2019), AR et al, Nucl. Phys. B (2021)

Quantum circuit Quantum circuit
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