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Motivation

o CFT. Conformal field theories are of fundamental importance:
they have applications in critical phenomena, string theory,
mathematics, etc.

o Defects. With the advent of the bootstrap, huge progress has
been made on the study of local operators. Less work has been
done on extended objects.

@ Supersymmetry. The addition of supersymmetry gives us
strong analytic control: non-perturbative results, localization,
integrability.
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Half-BPS observables in NV = 4 SYM

Half-BPS operators in N' = 4 SYM

50(4,2) — SO(2,1) x SO(3)
S0(6) — SO(5) O 0
PSU(2,2|4) — OSP(4|4)

Analogous to four-point functions of local operators
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The main characters

Wilson loop Chiral primaries
W = pel d7(A+6%) Op = Troli .. ¢}
2
<W> = ﬁll(\/X) <OP1 e OPn>

@ Wilson loops are fundamental in localization.

o Chiral primaries play a key role in holography.
Less work has been done on mixed correlators

WOp), WO Op,) ,
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Preliminaries

Wilson line
1 o - . ;
W= N P exp 3 dr (ix*A, + |x|0i¢")

The extra scalar ensures this object is half-BPS.

The "20 prime”

Oa(x) = ujuTrg' ()¢ (x)  (Bo2,01)
Protected by supersymmetry, also half-BPS

We will focus on

(W O2(x1)02(x2)) = L 9)2;5(;2 . 6)2}"(2, Z,w)
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R-symmetry channels

What is “w"?
(U1 U2 (U1 uz (U1 U2 0 U1 0 (Uz 9
Let's define
4w (ur-0)(u2-0) (1 —w)?
= — R o = ———
(1-w)? (u1 - w2) 4w
Then,

F(Za Z,W) = 0'2F0(Z,2) + UFI(Z7Z) + F2(Zaz)
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Woard identities

Recall

(W 0s(0) (o)) = LD (2O 2

X1 X

The channels are not independent [PL, Meneghelli (2016)]

(az + ;aw> Flz,z,0)] =0,

Z=w

<az+;8w) F(z,z,w) =0.

Z=w

See [Barrat, PL, Plefka (2020)] for a weak-coupling analysis.
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Defect CFT

Extended objects include Wilson and 't Hoft lines, surface operators,
boundaries, interfaces, ...

Figure: Local operatos in the presence of a defect.

We have SO(4,2) — SO(2,1) x SO(3).
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Defect CFT correlators

The SO(4,2) x SO(3) symmetry preserved by the defect implies
that one-point functions are non-zero:

Two-point functions depend on two conformal invariants

1
(zz)Re/2

(p(x1)o(x2)) = 8(z,2),

where Z = z* in Euclidean signature

Remark. Compare with the four-point function in the bulk CFT.



Two-point function configuration
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Figure: Configuration of the system in the plane orthogonal to the defect.
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Conformal blocks and crossing symmetry

We have two operator expansions

d(x)$(0) ~ Z Cop0d(x,0)0(0)

d(x) ~ qu@D (x',0%)O(X)
0

Equality of both expansions gives crossing symmetry

Z%O a0 o :Zbié T T
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Superconformal blocks

The two-point function has two decompositions

F(z,2,0) ~ > ay Cooy Gx(z, Z,w)
X

F(z,Z,w) ~ Z béﬁ QAX(Z, Z,w)
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Superconformal blocks

The two-point function has two decompositions

F(z,Z,w) ~ Z ay Cooy, Gy (2, Z,w)
Flz,z,w) ~ Zboxgxzzw)

Here Gs are superblocks:

ZhK w)fae(z,z)  (hk : SO(6)r)
z,w)~ Y hg(w fA,s z,Z)  (hz:SO(5)r)



Strong coupling



Strong coupling

~ NO

&
©

s
L



Strong coupling

~ NO

& S
@NAZZ @ a2

The natural parameters are A\/N? and 1/v/:

A 1
(00) = (00)© + 15 ((0OYH + - (00)®) ..



Strong coupling

0 1
A\1/2 A1/2
~ N ~ W
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For the holographic setup see [Giombi, Pestun (2012)].



Strong coupling

~ NO

N

SRR
D% (O

The natural parameters are A\/N? and 1/v/:

A

(00} = (00Y® + 5 (100)) + T=(00)@) ..

For the holographic setup see [Giombi, Pestun (2012)].

Today we are going to do bootstrap!
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Inversion formula
Following [Caron-Huot (2017)],
b(A',s) ~ /dzdf J(z,Z) Disc F(z,Zz)

where

— — Res b(4',s) (for s > s¥)

b2 = —
(@]@] A=A

and
Disc F(z,2) = F(z,2) — F(z,2)
Around Z = 1 with z and w fixed.

[Lemos, PL, Meineri, Sarkar (2018)]
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Strong coupling spectrum

The bulk expansion is

.7:(2,270.)) ~ 1+ao, Co,0,0, goz(zasz)+z ax C02(92X QX(Z,Z,O.))
X

No anomalous dimensions at this order:

1 b
Ax:4+2”+£+m <a+>\3/2) +...
[Goncalves (2015)]
Disc G, (z,Z,w) = 0, this implies

b(A',s) ~ / dzdz J(z,Z) Disc Go,(z, 2, w)

The CFT data can be reconstructed from a single block!
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First order correction

At leading order
£:2+s, bryss=1+s

The first correction

1+2s (2+5)(1 + 65 + 25?)
9 6b2+5,5 - 2
165 32(1 + 5)2(5 + 2s)

b2+s,s’Y£ =

We can now do the sum

0 4
F(z,Z,w) Zéb QA z,Z,w —i—Zb@X’yA aAgA(z,Z,cu)
A,s
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After resummation

Folz,2) = 7\/75 2z7 _ 1+ 2_22 . 2zEIog_zZ
N2 (1-2)(1-2) [(1-2z2) (1-2zz)3
Fi(z,2) = o VA i + (spin 0)

N2 (1—2z)(1-2)(1 - z2)
F2(z,z) =0+ (spin 0 and 1)

This result is not supersymmetric!

Improved strategy:

@ Add blocks with spin s =0, 1
o Impose (82 + %@;) ]-'(z,Z,w)‘z_ =0

=w
o Consistency with the bulk expansion



The final result



The final result

VA 275 14 zz 2zZlog zZz

Fo(z,2) = SN2 (1-2)(1-2) |[(1—z2)? * (1-2zz)3




The final result

_ VA 2zz 1+ zz 2zZlog zZ
Folz.2) =~ a—a=3 [(122)2 (122)3}

722(522 -2+ 37 — (24 2)(2 - 2z + 222%)) log 22
1-2)(1-2)(1-2z2)3



The final result

_ VA 2zz 1+ zz 2zZlog zZ
Folz.2) =~ a—a=3 [(1 e P 22)3}
VA — 2z7
W [—2|og(l + \/272) — m
722(522 -2+ 37 — (24 2)(2 - 2z + 222%)) log 22
1-2)(1-2)(1-2z2)3
Fa(2.2) = 8% [_ ~2(z+2) N (z+2)(1+ zz) — 4zz

Fl(Z,f) =

Vzz (1—2z2)?
+2((z + 2)(1 + z2) — 422) log(1 + V/zZ2)

z2Z((z+2)(3 — 22z + 2°2%) — 6 + 622 — 42%2%) log zZ
- 1=z2)



The final result

_ VA 2zz 1+ zz 2zZlog zZ
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VA — 2z7
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Consistency checks

It has the correct Disc F(z,Z,w)
It is consistent with localization.

It satisfies the Ward identities:

=0

Z=w

1
<az + 28w> ,F(Z,Z,(.U)

It has sensible expansions around z ~ 0 and z ~ 1
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Conclusions and future directions

We bootstrapped (( OO, )) at strong coupling, where
O ~ Tr¢?. See our paper for J = 2,3, 4.

One could try to perform the explicit holographic calculation.
It might be convenient to go to Mellin space M(s, t).

Can we go to higher orders? Flat space limit?
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Defects in (2, 0) theories

What about (O;0,)) in 6d (2,0) theories?

In [Drukker, Giombi, Tseytlin, Zhou (2020)] they studied

(—%xﬂx +m'?,\)g(‘(.)?:(t.ri)| =0, (—%\70\- +(10r-\)g'(~(.f:a.a)‘ =0.

a=1/x a=1/x

for operators on the defect.

We have a bootstrap problem

o Obtain the Ward identities for ({ 0,0, ))
o Calculate superconformal blocks

@ Apply Disc to the holographic spectrum

(4.18)



