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Motivation

Exploit "microscopic” dualities within AdS/CFT
(pertaining to underlying psu(2,2|4) integrable super spin chain)

Overlaps between spin chain eigenstates and Matrix Product States

or Valence Bond States encode information about correlation fcts.
in AAS/CFT (1-pt fcts, 3-pt fcts and others)

The same type of overlaps are interesting for the study of quantum
quenches in stat. mech.

Fermionic dualities allow one to move between ditterent Dynkin
diagrams of the underlying super Lie algebra

Bosonic dualities complete the possible set of dualities (QQ-system)

Duality relations might constrain overlap formulas



Plan of the talk

[. Overlaps and AdS/dCFT

[I. The Structure of overlap formulas

[1I. Fermionic duality relations for overlaps
[V. Bosonic duality relations for overlaps

V. Future directions



AdS/CFT
N =4 SYM in 4D +— IIB strings on AdS5 x S°

Maldacena ‘98
Gubser, Klebanov

Conformal operators <— String states s roysiovs

\ / Witten ‘98

Eigenstates of integrable super spin chain: |u)

Minahan & Zarembo ‘02
Beisert, C.K. Staudacher ‘03
Beisert & Staudacher ‘ 04, ‘05

AdS/dCFT
Karch & Randall ‘01
N =4 SYM in 4D — IIB strings on AdSs x S°
with co-dimension one defect Karch-Randall probe brane

|B) integrable boundary state describing defect / probe brane

Similar idea: |B) ~ determinant operator/giant graviton



Example: SU(2) Heisenberg spin-1/2 chain

Encodes conformal single trace operators built from two complex
fields X (vacuum) and Y (excitations)

H=Y) (1-Pynt1) <il I D

{u; }2 ) = |u): Eigenstates with K excitations where

. L . .
_(w— ﬁ wo—uj 5 i Ee_t}ie equ[aglons
ut g ) gk —uy b =1,..
K
Baxter polynomials (Q-functions): H u—uj), Qp(u)=u"

0
(ulu) o< det G, Gr; = (‘?—y Gaudin matrix
J



Integrable boundary states |B) in AdS/dCFT

Bethe eigenstate of integrable spin chain

/

(B|lu) computable in closed form

Matrix product states

|B) = [MPS) = ZTr o oo ts st sp)

Valence Bond States

'VBS) = |K)®7, K=" K sls15)

51,52

Integrability understood in a scattering picture

Q2n—|—1|B> =0

\ Conserved parity-odd charges of spin chain

Ghoshal &
Zamolodchikov ‘g4

Piroli, Pozsgay
Vernier ‘17



Motivation

(i) Fullfilled for all cases where closed overlap formula is known
Piroli, Pozsgay

(ii) Discrete version of integrable boundary state condition vernier 17

Ghoshal,
Zamolodchikov ‘93

Boundary

———

Wick rotation

\/ Initial state

Entangled (p,-p) pairs Q2m+1|B> =0
+BYB for initial state

Pure reflection
+BYB for reflection matrix



AdS/dCFT set-up

Lo

(broken) U(N)

N —k D3
T3

D5

Gauge Theory String Theory

¢’i7 \Ijow A,u
1=1,...6,a=1,...,4, u=1,...4

1 [(t;) 0 .
. cl _ — LVkxk —
For 3 > O: o; - ( 0 O) ,1=1,2,3

where t;, 1 = 1,2, 3 constitute a k-dimensional irreducible
representation of su(2)

Karch &
Randall 01

Constable, Myers
& Tafjord 99

N D3

Set-up supersymmetric 1/2 BPS, dCF'T Gaiotto & Witten, ‘08



One-point functions and MPS

. Cardy "84
(OR(z)) = P McAvity & Osborn ’95

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level

(Oa@)) = (Te(diy - din) +- ) |y spaots

Ona(z) ~ eigenstate of integrable SO(6) spin chain Mnahan&

Zarembo ‘02
TI‘(¢7;1 ¢i2 - ¢@L) ~ ‘Si18i2 s SiL>

Matrix Product State associated with the defect: deLeeuw, C.K.
& Zarembo ‘15,
IMPSy) = Ztr i i by i),
. Bethe eigenstate
Object to calculate: °
<MPSk |u>
Ck (u) =

(ulu)?



One-point functions and VBS

For k = 1: No vevs Gaiotto & Witten, ‘08

1 N —1

LYy Yy y
Quantum fields A4,,®;,9,=| 7Y |° * ~

yl|lz 2z z

Yy lz 2z z |
Boundary conditions Pys5.6 P23
(supersymmetric) x,y | Dirichlet | Neumann
z no BCs no BCs

One-point tunctions require Wick contractions

For complex scalars (X = &1 4 1Py, etc.)

ab

V)
(XX ) = = (o,

. la bl gYM ab T3 — Y3
For fermions (U (2)W5 (y) = o2 Cab 5% FE—rl




Feynman diagrams

</ </
I
o

Leading for large-N Sub-leading for large-N

C.K., Mdller,
Zarembo 20

(VBS|u)

(ufu)!/?

Object to calculate  Ci—q =

(VBS| = ((XX| + (U1 Ws| — <\If2\111])®L/2, SU(2|1) sector

1
Chr_1 = : SDet&
N E . O—®



Integrable overlaps and the Gaudin determinant

Q2ni1/B) =0 =

(B|u) # 0 iff momentum carrying roots are paired {u;, —u; }2%

(excluding singular cases)

— auxiliary roots paired {v;, —v;}; possibly plus {0}

. . Poszgay 13,
GaU.dlIl matl’lX haS blOCk StI'U.Cture Brockmann et al

14

detG:|A B':‘AJrB B‘:|A+B B

B oA BiA A 0 A_B':det(A+B)-det(A—B)

=detGy -det G_

Quantity entering overlap formulas ¢« mites

Zarembo ‘20
det G r
mo._p  (cewie oy

SDet G =



Integrable Super Spin Chains (of type SU(M|N))
Cartan matrix M,;, Dynkin labels ¢,, a,b=1,... M + N —1

Bethe equatjons Saleur ‘99

o zqa M ,p
(—1)Fet! = fa Yag “Ubk T _ e Xa.j
'LQa iMab -
b, k

Uq,j +

Ugq,;: a=1,... # of nodes in Dynkin diagram
jg=1,..., K, (# of roots of type a)
momentum carrying if g, # 0.

(VBS[u)? _ H Qa(w”)

r

SDet G

.
8

a 1 ZL:CH a

2

AdS/CFT: N=M=4



Gromov, Kazakov,
Leurent, Volin’14

1 language for the spectral problem

Tsuboi 98

QQ-system

d QSC opt

111 a.

Q-functions an

of writing the Bethe equations

Many equivalent ways

For N
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How does the Gaudin matrix fit into this?



Example: SU(2|1) super spin chain

Encodes conformal single trace operators built from fields
X (bosonic), ¥1,¥, (fermionic)

Cartan matrix Dynkin label 1
O—

2] ek
-1 0] 0 Qi,u;, K1 Q2,vj, Ko

graded
permutation

Baxter polynomials

Qi =Tfo-w). Qo =Tfw-u). =

Vacuum: |¥1¥,...),  Excitations at level 1 and 2: Wy, X



Fermionic Duality: Ex: SU(2|1) ot Zaremmba 05

O—& M= [—21 _01

Q1,wi, K4 Q2,vj, Ky

~ Qq (vg)
e Q7 (vr)

®---®

Q27 6j7K2

|

17ui7K1

—

Qy (ug)

| Qi "(ur) Qg (uk)
Qy (ur) Q3 (up)

Change of variables (from v; to v;)

Q1 (v) = Qf (V) = Q2(v) - Qa(v)

I

K> roots v;

Q;(Uk)> —

=0 el
o
i (Ge) =

[?2 :Kl —Kg — 1 roots @j

QF (u) = Qu+ 5)



Transformation formula: Ex: SU(2|1)
O— ®---&
Kl Kz Kl [?2

Kq, Ky even — Ky = Ki — K9 — 1 odd, i.e. v’s contain a single zero

QF (u) — Q7 (u) = iK1 uQs(u) @Q(U), with reduced Baxter polynomials

C.K., Mdller,
Found numerically zarembo 20

D = K, 250l p

Analytical proof in progress

Notice:
e Holds semi-on-shell (the {u;, —u;}’s can be chosen at random)
e Covariance if the overlap formula involves Q2 (0)D

e Factor K signals that a hws is mapped to a descendent

de Leeuw, Ipsen, C.K.,
Vardinghus, Wilhelm 17



Fermionic dualities in general

Allow one to move between any two Dynkin diagrams of a super Lie alge-
bra (of type SU(N|M))

Involve a fermionic node and its neighbours only O & O

Changes the nature of neighbouring nodes ) «+— O
and the connections R

Dualized node non-momentum carrying = Dynkin labels unchanged

Dualized node momentum carrying —> Dynkin labels change

0 V+1 -®
V| — | =V | for
0 VFl —R®---




Dualizing a non-momentum-carrying node

e, ® O
Kl Km KT
(e om0 ] V m € {—1,+1}
M=|m 0 -—-m]|, q= 101, n2 € {0,—2m} ,
0 —-m M3 ia ns € {0,2m }

K., K, K, alleven = K,, = K; + K, — K,, — 1 odd

Ql_ Q;j— o l—i_Q; — 7’771 (KT o Kl)u Qm@m ? C.K., Miiller,

Zarembo ‘20
000y i
Qi (%)@ (3)

in progress

D=JD = (—n) 5t (m K, —m K))

N[

K;, K, even, K,, odd

~

D= (-J)"'D,



Dualizing a momentum-carrying node

O X O
K K., K,
s M 0 ] 0 ] m € {—1,+1}
M=1m 0 —m|, qg= V], n2 € {0, —2m1 }
0 —m  n3 | 0 n3 € {0,2m }

K, K, K,,,Lalleven — K,, =L+ K;+ K, — K,, —1 odd

(u+ V%)L Q QF — (u— V%)L QQr =i(VL —mK; + mK)uQumQm,

C.K., Miller,
Zarembo ‘20

—~
-
—

- D, Found numerically
( 2 ) Analytical proof
in progress

Qi (0)Qm
Qr

N\ L
D= (ﬁ) (VL — K+ 771K'r> ) (%)

7

NB: K, odd or K; odd requires regularization



Dualizing overlap formulas I

C.K., Mdller,

g @a(O)Qa(O) Zarembo 20
D . — D
" Qa1 (1) Qe (3)

(Both for momentum carrying and non-momentum carrying nodes)

O & O O & O
0
o )

O & O O ® O

S —_ ES — o —
/2 1 1

Covariance of overlap formulas very constraining (fully constraining?)



Dualizing overlap formulas 11
PSU(2,2|4) overlap formula, alternating grading

Has exactly the prescribed covariance properties

®------ O------ ®
°o

1o
RIOOR

5T 5T

i i

®
RIS Or
®

RIOO
N

RIOO
. RIOQOR

PSU(2,2|4) overlap formula, beauty grading
Agrees with field theory result in SO(6) sector

®------ O------ ®

1S
|

Gombor &
Bajnok 20

C.K., Miller,
Zarembo 20

De leeuw., C.K.
Linardopoulos ‘18



A Web of Dualities: Ex: SU(1]2)  Tsuboi‘og

23 @Q-functions, 2 fixed
6 = 3 x 2 versions of the BE’s (~ paths)

Fermionic Duality considered so far:
(flipping across a vertical face)

O—& — &--&

Qu20Q1)1 = Q5 Q11 — Q121 QT = Qupg — Qi

Qoo = u”, Qa1 =1

Additional bosonic dualities such as

(flipping across a horisontal face)

QTW)Q;M - Qﬂ@@éﬁ@ = QppQ120 Q—® — Q__®



Bosonic Dualities: A warm-up example: SU(2)

Q2 =1 Bosonic duality eqn.

/\ QI Qr — Q1 Qf =
\/ Q=Q1  F_[_ ki1

Qp = u”

Dual roots at 0, i% call for regularization of det G

After regularization:  Roots at 0,3 left out in Q

N 2 2n '4 Zarembo ‘21

By QR (@)
Q(i/2)Q(0) 2(2n)! (2n +1)!

Overlaps with VBS Duality invariant



Bosonic dualities in general

Involve a bosonic node and its neighbours only

e—X—0
[ m r

Do not change the Dynkin diagram or the Dynkin labels

Transformation formula only involves @),, and va

C.K., Miller,
Zarembo ‘21

Momentum carrying bosonic node

™ Qm (O)@m (2/2)
D=A _ — D
(L+KT+KZ)/2 K, Qm (%) Qm (O)
Non-momentum carrying bosonic node
™ Qm(o)@m (7’/2)
D=A _ — D
T G (5) @ (0)

Overlaps in the scalar SO(6) sector invariant (up to pre-factor)



Summary

* We have exhausted all fermionic and bosonic spin chain dualities
and found their implications for overlap formulas.

Future Directions

Analytical proof of the duality transformation formulas
Easy to state --- difticult to prove

* Understand the pre-factors in the transformation formulas

* Express the overlaps entirely in terms of Q-functions
and treat the overlaps by means of the Quantum Spectral Curve

* Use duality formulas to constrain unknown overlap formulas

* C(lassity all integrable boundary states in AAS/CFT



Thank you



