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Kondo models from gauge/gravity duality



Kondo models from gauge/gravity duality

Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures

Motivation for study within gauge/gravity duality:

1. New applications of gauge/gravity duality to condensed matter physics:

Magnetic impurity coupled to strongly correlated electron system
Entanglement entropy, quantum quenches

2. Model for a RG flow with dynamical scale generation (as in QCD)

3. Example for holographic g-theorem

4. Relation to Sachdev-Ye-Kitaev model
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Overview

Kondo effect: Physics and bCFT realization

Top-down model I: with A. O’Bannon et al

Top-down model II: with C. Melby-Thompson, C. Northe

Bottom-up model and applications
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Kondo models from holography

– D3/D5/D7 Model J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

– Entanglement entropy J.E., Flory, Newrzella 1410.7811, JHEP 1501 (2015) 058
J.E., Flory, Hoyos, Newrzella, O’Bannon, Wu 1511.03666, Fortsch.Phys. 64 (2016)

– Two-point functions J.E., Hoyos, O’Bannon, Papadimitriou, Probst, Wu JHEP 1703
(2017) 039 , PRD 96 (2017) no.2, 021901

– Quantum quenches J.E., Flory, Newrzella, Wu JHEP 1704 (2017) 045

– Different setting: D1/D5 system with defect
J.E., Melby-Thompson, Northe JHEP 05 (2020) 075
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Kondo effect
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Kondo model

Original Kondo model (Kondo 1964):
Magnetic impurity interacting with free electron gas

Hamiltonian:

H =
vF
2π
ψ†i∂xψ + λKvFδ(x)~S · ~J , ~J = ψ†

1

2
~Tψ

Decisive in development of renormalization group
IR fixed point, CFT approach Affleck, Ludwig ’90’s

Large N Kondo model Read, Newns, Coleman, ... 80’s
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Logarithmic behaviour at low temperatures

J. Kondo 1964

8



Breakdown of perturbation theory

Perturbation theory breaks down at TK = |ε− εF |e1/κ

TK: Kondo temperature

TK ∼ ΛQCD
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Large N Kondo model

Gauge/gravity requires large N : Spin group SU(N)



Large N Kondo model

Gauge/gravity requires large N : Spin group SU(N)

In this case, interaction term simplifies introducing slave fermions:

Sa = χ†T aχ

Totally antisymmetric representation: Young tableau with Q boxes

Constraint: χ†χ = Q

Interaction: JaSa = (ψ†T aψ)(χ†T aχ) = OO†, where O = ψ†χ

Screened phase has condensate 〈O〉

Coleman PRB 35, 5072 (1987)
Parcollet, Georges, Kotliar, Sengupta cond-mat/9711192, PRB 58 (1998) 3794

Senthil, Sachdev, Vojta cond-mat/0209144, PRL 90 (2003) 216403
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Holographic top-down model I

J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Coupling of a magnetic impurity to a strongly interacting non-Fermi liquid



Holographic top-down model I

J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Coupling of a magnetic impurity to a strongly interacting non-Fermi liquid

Results:

RG flow from perturbation by ‘double-trace’ operator

Dynamical scale generation, screening

Holographic superconductor: Condensate forms in AdS2

Power-law scaling of resistivity in IR with real exponent

Holographic entanglement entropy from including backreaction

Quantum quench: Equilibration dominated by quasinormal modes

Fano resonance in spectral function (spectral asymmetry)
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Holographic top-down approach I

J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Top-down brane realization

0 1 2 3 4 5 6 7 8 9
N D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-7 strings: Chiral fermions ψ in 1+1 dimensions

3-5 strings: Slave fermions χ in 0+1 dimensions

5-7 strings: Scalar (tachyon)
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Near-horizon limit and field-operator map

D3: AdS5 × S5

D7: AdS3 × S5→ Chern-Simons Aµ dual to Jµ = ψ†σµψ

D5: AdS2 × S4→
{

YM at dual toχ
†χ = q

Scalar dual toψ†χ

Operator Gravity field
Electron current J ⇔ Chern-Simons gauge field A in AdS3

Charge Q = χ†χ ⇔ 2d gauge field a in AdS2

Operator O = ψ†χ ⇔ 2d complex scalar Φ
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Holographic top-down model II

J.E., Melby-Thompson, Northe 2001.04991

Supersymmetric boundary RG flow with SU(2)× SU(2)R symmetry

CFT perturbed by boundary operator 〈TrP exp(iλ
∫
JaMa)〉

Brane construction based on D1/D5 system

t x z θ φ χ 6 7 8 9
D1 X X
D5 X X X X X X

D3(p,q) X X (X) (X)

AdS3 × S3 × M4
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bCFT realization of Kondo effect
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bCFT realization of Kondo effect
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bCFT realization of Kondo effect
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D1/D5 CFT
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Interfaces in D1/D5 CFT
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Interfaces in D1/D5 CFT
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Gravity dual in probe limit
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Bottom-up gravity dual for Kondo model

Action:
S = SEinstein−Hilbert + SCS + SAdS2,

SCS = −N
4π

∫
AdS3

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
,

SAdS2 = −N
∫
dxdtdz δ(x)

√
−g
[

1

4
Trfmnfmn + gmn (DmΦ)

†
DnΦ + V (Φ†Φ)

]
V (Φ) = M2Φ†Φ

Metric: BTZ black hole

ds
2

= gµνdx
µ
dx

ν
=

1

z2

(
dz2

h(z)
− h(z) dt

2
+ dx

2

)
,

h(z) = 1− z2
/z

2
H , T = 1/(2πzH)

AdS2 gauge field: asymptotically at = Q/N
z + µ
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‘Double-trace’ deformation by OO†

Boundary expansion

Φ = z1/2(α ln z + β)

α = κβ

κ dual to double-trace deformation Witten hep-th/0112258

Berkooz, Sever, Shomer hep-th/0112264



‘Double-trace’ deformation by OO†

Boundary expansion

Φ = z1/2(α ln z + β)

α = κβ

κ dual to double-trace deformation Witten hep-th/0112258

Berkooz, Sever, Shomer hep-th/0112264

Φ invariant under renormalization⇒ Running coupling

κT =
κ0

1 + κ0 ln
(

Λ
2πT

)
Dynamical scale generation
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Kondo models from gauge/gravity duality

Scale generation

Divergence of Kondo coupling determines Kondo temperature TK

Transition temperature to phase with condensed scalar: Tc

Tc < TK
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Kondo models from gauge/gravity duality

RG flow

UV

IR

Strongly interacting

electrons

Deformation by

Kondo operator

Non-trivial condensate

Strongly interacting

electrons
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Kondo models from gauge/gravity duality

Normalized condensate 〈O〉 ≡ κβ as function of the temperature

(a) (b)

Mean field transition

〈O〉 approaches constant for T → 0
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Kondo models from gauge/gravity duality

Electric flux at horizon

(a)

√
−gf tr

∣∣∣
∂AdS2

= q

charge q = Q/N of 2d gauge field determines impurity representation

Impurity is screened
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Quantum quench and time dependence

Allow for time dependence of the Kondo coupling and study response of the
condensate



Quantum quench and time dependence

Allow for time dependence of the Kondo coupling and study response of the
condensate

Examples for time dependence of the Kondo coupling:

Gaussian pulse in IR

Quench from condensed to normal phase (IR to UV)

Quench from normal to condensed phase (UV to IR)



Quantum quench and time dependence

Allow for time dependence of the Kondo coupling and study response of the
condensate

Examples for time dependence of the Kondo coupling:

Gaussian pulse in IR

Quench from condensed to normal phase (IR to UV)

Quench from normal to condensed phase (UV to IR)

Timescales governed by quasinormal modes (QNM)

Complex eigenfrequencies of fluctuations in gravity system
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Quasinormal modes

Complex eigenfrequencies ωP of gravitational system determine time evolution

The ωP also determine the poles in the Green’s functions

In condensed phase:

Quasinormal modes on negative imaginary axis, ωpole ∝ −i〈O〉2

Kondo resonance

29



Quantum quench in Kondo model within gauge/gravity duality

J.E., Flory, Newrzella, Strydom, Wu JHEP (2017)



Quantum quench in Kondo model within gauge/gravity duality

J.E., Flory, Newrzella, Strydom, Wu JHEP (2017)

Formation of screening cloud:

Exponential fall-off of number of degrees of freedom at impurity
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Screening happens exponentially fast
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v
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log(D)

Flux at horizon (proportional to number of impurity degrees of freedom)
as function of time
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Kondo model: Two-point functions 〈OO†〉 at T = 0

Parcollet, Georges, Kotliar, Sengupta cond-mat/9711192: Large N Kondo model for weakly
coupled electrons

Spectral asymmetry ωs: Particle-hole symmetry broken

−ImGR for bosonic 〈OO†〉
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Fano resonances

Example of Fano resonance

A related but different Fano resonance is observed in holographic model



Fano resonances

Example of Fano resonance

A related but different Fano resonance is observed in holographic model

Fano (1961):
A discrete set of resonant states interacts with a continuum of states

Example: Light scattering off an atom

Spectral function:

ρFano(ω) =
(ω − ω0 + Γ

2q)
2

(ω − ω0)2 +
(

Γ
2

)2
q: Fano asymmetry parameter

q2 ∝ Probability of resonant scattering

Probability of non− resonant scattering
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Fano resonances

(ω − ω0 + Γ
2q)

2

(ω − ω0)2 +
(

Γ
2

)2 = 1 +
(q2 − 1)

(
Γ
2

)2
(ω − ω0)2 +

(
Γ
2

)2 +
2qΓ

2(ω − ω0)

(ω − ω0)2 +
(

Γ
2

)2

34



Fano resonance

q2 ∝ Probability of resonant scattering

Probability of non− resonant scattering
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Spectral function −Im〈O†O〉 in normal phase, 〈O〉 = 0, T > Tc

J.E., Hoyos, O’Bannon, Papadimitriou, Probst, Wu JHEP 1703 (2017) 039 , PRD 96 (2017) 021901

ρpeak ∝
1

T − Tc

Fano resonance

Here: 0+1 CFT continuum + Resonance with spin impurity = Fano

0+1-dimensional conformal symmetry of AdS2 subspace
broken by double-trace operator of interaction with spin
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Dependence of asymmetry parameter q on representation parameter Q

For T >∼ Tc:
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Spectral function −Im〈O†O〉 in condensed phase, 〈O〉 6= 0, T < Tc

-0.02 -0.01 0.01 0.02

ω
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-30
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-Im 〈O†O〉

T/Tc = 0.999918

T/Tc = 0.968493

T/Tc = 0.919725

Fano asymmetry parameter q = 1 (i.e. no asymmetry)

Poles of retarded Green’s function purely imaginary, ω ∝ −i|〈O〉|2

Manifestation of large N Kondo resonance
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Impurity entropy J.E., Flory, Newrzella 2014, 2015

Simp = Simpurity present − Simpurity absent

AB

AdS
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Entanglement entropy for magnetic impurity: Comparison to field theory

Field theory result: Sorensen, Chang, Laflorencie, Affleck 2007 , (Eriksson, Johannesson 2011)

∆Simp(`) =
π2ξKT

6
coth(2π`T ) + C0



Entanglement entropy for magnetic impurity: Comparison to field theory

Field theory result: Sorensen, Chang, Laflorencie, Affleck 2007 , (Eriksson, Johannesson 2011)

∆Simp(`) =
π2ξKT

6
coth(2π`T ) + C0

In our gravity approach: Same result if D ∝ ξk
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Conclusions and outlook

Kondo model:
Magnetic impurity coupled to strongly coupled system
Two top-down models

Quantum quenches
– Dominated by quasinormal modes

Two-point functions
– Spectral asymmetry
– Relation to SYK model

Entanglement entropy
– In agreement with g-theorem
– Reproduces large N field theory result for large `
– Geometrical realization of Kondo correlation length
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