An invitation to surface operators in the (2,0) theory

Nadav Drukker

Based on: arXiv:2003.12372 with M. Probst and M. Trépanier arXiv:2004.04562 with S. Giombi, A. Tseytlin and X. Zhou arXiv:2009.10732 with M. Probst and M. Trépanier arXiv:2012.11087 with M. Trépanier

Quantum Field Theory at the Boundary Mainz Institute for Theoretical Physics, Johannes Gutenberg University September 27, 2021

Outline

This talk will be comprised of two main parts

- Slow introduction to surface operators in the $\mathcal{N} = (2,0)$ theory.
- Quick review of new BPS observables in the theory and their properties.

Join M. Trépanier at the poster session for further details and to learn of new applications.

6d $\mathcal{N} = (2, 0)$ **CFT**

String/M-theory considerations suggested the existence of these theories. We know that:

- The largest dimension for which there is superconformal algebra is 6d.
- It is expected that there are theories realizing this symmetry for every ADE algebra.
- No Lagragian is known for any of these theories, no continuous parameters.
- Simplest examples realizing this algebra:
 - The free tensor multiplet with a self-dual field strength, 5 scalars and fermions.
 - M-theory on $AdS_7 \times S^4$ realizing the large N limit.
- When compactified to 5d, gives 5d SYM. In 4d gives class S theories, including $\mathcal{N} = 4$ SYM.
- We need tools to understand this theory.

Surface operators

- The simplest argument for the $\mathcal{N} = (2, 0)$ theory is from M-theory:
 - It describes the low energy dynamics of N M5-branes.
- It is known that M2-branes can end on M5-branes.
- The end-points form a two dimensional surface in 6d.
- In compactifying M-theory, an M2-brane wrapping the compact cycle becomes a fundamental string.
 - M2-brane ending on M5-brane becomes fundamental string ending on D5-brane.
 - Fundamental strings carry electric flux, their endpoint is a Wilson loop in 5d YM.
- The surface operators in 6d are analogous to Wilson loops in gauge theories.

Wilson loops

- Wilson loops are crucial observables in any gauge theory.
- They can serve as an order parameter for confinement and are calculable on the lattice.
- Focusing on Wilson loops in theories with extended supersymmetry (like N = 4 SYM in 4d) we can:
 - Evaluate them perturbatively.
 - Evaluate them at strong coupling via AdS/CFT.
 - Integrability.
 - Relate them to scattering amplitudes.
 - Evaluate the circular and other BPS Wilson loops exactly using localization.
 - Use defect-CFT techniques including OPE for small deformations around a line or circle.
- Are the non-perturbative tools also applicable in 6d?

Surface operators

- Surface operators are crucial observables in $\mathcal{N} = (2,0)$ theory.
- They can serve as an order parameter for confinement and are calculable on the lattice.
- Focusing on surface operators in the $\mathcal{N} = (2,0)$ theory in six dimension we can:
 - Evaluate them perturbatively.
 - Evaluate them at strong coupling via AdS/CFT.
 - Integrability.
 - Relate them to scattering amplitudes.
 - Evaluate the circular Wilson loop some surfaces exactly using localization?
 - Use defect-CFT techniques including OPE for small deformations around a line or circle plane or sphere.

Surfaces in the free theory

 $\begin{bmatrix} Henningson \\ Skenderis \end{bmatrix} \begin{bmatrix} Gustavson \end{bmatrix}$

• For the theory with N = 1 we define the surface operator explicitly as

$$V_{\Sigma} = \exp \int_{\Sigma} \left(iB^{+} - n^{i} \Phi_{i} \operatorname{vol}_{\Sigma} \right),$$

- B^+ is a 2-form with self-dual field strength and Φ_i are 5 scalars.
- Even if free, no easy Lagrangian description because of self-duality constraint.
- For a planar or spherical surface and constant |n| = 1, this is globally BPS.
- Can name surfaces with any shape and non-constant |n| = 1 "locally BPS".

Holographic description

Maldacena

- A surface operator is captured at large N by an M2-brane in $AdS_7 \times S^4$ ending on the surface operator at the boundary.
- We can sometimes solve for the minimal volume to get the leading large N result.
- Divergences can always be studied by near-boundary analysis.
- n^i determine Dirichlet boundary conditions on S^4 and non-BPS |n| = 0 satisfy Neumann boundary conditions.

Calculation 1: Anomalies

Deser Schwimmer

- Calculating correlation functions of local operators gives rise to logarithmic divergences, which account for anomalous dimensions.
- Smooth line operators have finite expectation values.
- Cusped Wilson loops have anomalies and the anomaly of the almost straight cusp is related to the Bremsstrahlung function.
- surface operators again have logarithmic divergences, signalling anomalies.

$$\log \langle V_{\Sigma} \rangle \sim \frac{1}{4\pi} \log \epsilon \int_{\Sigma} \operatorname{vol}_{\Sigma} \left[a_1 \mathcal{R}^{\Sigma} + a_2 \left(H^2 + 4 \operatorname{tr} P \right) + b \operatorname{tr} W + c \left(\partial n \right)^2 \right].$$

- R^{Σ} is the Ricci scalar on Σ .
- -H is the mean curvature
- P the pullback of the Schouten tensor.
- -W is the pullback of the Weyl tensor.
- $-(\partial n)^2 = \partial_m n^i \partial^m n^i$ are couplings to scalar fields.

$$\log \langle V_{\Sigma} \rangle \sim \frac{1}{4\pi} \log \epsilon \int_{\Sigma} \operatorname{vol}_{\Sigma} \left[a_1 \mathcal{R}^{\Sigma} + a_2 \left(H^2 + 4 \operatorname{tr} P \right) + b \operatorname{tr} W + c \left(\partial n \right)^2 \right].$$

- Under conformal transformations ϵ scales.
- For a spherical surface or radius R in flat space

$$\langle V_{S^2} \rangle \sim \frac{1}{R^{2a_1+4a_2}} \,.$$

• In analogy to local operators, where

$$\langle \mathcal{O}(x)\mathcal{O}(0)\rangle \sim \frac{1}{|x|^{2\Delta_{\mathcal{O}}}}.$$

- The anomaly coefficients a_1 , a_2 , b and c can be different for different types of surface operators (different theories, different representations), but do not depend on the geometry.
- In the same way that $\Delta_{\mathcal{O}}$ can have a classical value and quantum corrections, so the anomaly coefficients have classical and subleading in N terms.

Free field theory

[Henningson] Gustavson] [ND, Probst] Skenderis

• Expand to quadratic order

$$V_{\Sigma} = \exp \int_{\Sigma} \left(iB^+ - n^i \Phi_i \operatorname{vol}_{\Sigma} \right).$$

• We use (in flat space)

$$\langle \Phi_i(x)\Phi_j(y)\rangle = \frac{\delta_{ij}}{\pi^2 |x-y|^4},$$
$$\langle B^+_{\mu\nu}(x)B^+_{\rho\sigma}(y)\rangle = \frac{\delta_{\mu\rho}\delta_{\nu\sigma} - \delta_{\mu\sigma}\delta_{\nu\rho}}{4\pi^2 |x-y|^4}$$

- To regularize the integration we displace the two surfaces a distance η along a unit normal vector field ν .
- The 2-form contributes

$$-\frac{1}{2\pi\epsilon^2} - \frac{H\cdot\nu}{4\pi\epsilon} - \frac{1}{16\pi} \left(-2R^{\Sigma} + 3\left(H^2 + 4\operatorname{tr} P\right)\right)\log\epsilon + \dots$$

• And the scalar

$$\frac{1}{2\pi\epsilon^2} + \frac{H\cdot\nu}{4\pi\epsilon} + \frac{1}{16\pi} \left(2R^{\Sigma} - \left(H^2 + 4\operatorname{tr} P\right) + 4\left(\partial n\right)^2 \right) \log\epsilon + \dots$$

• Together

$$\log \langle V_{\Sigma} \rangle = \frac{1}{4\pi} \log \epsilon \int_{\Sigma} \operatorname{vol}_{\Sigma} \left[R^{\Sigma} - \left(H^2 + 4 \operatorname{tr} P \right) + \left(\partial n \right)^2 \right] + \dots$$

• Therefore $(b^{(1)}$ requires curved space propagators)

$$a_1^{(1)} = +1, \qquad a_2^{(1)} = -1, \qquad c^{(1)} = +1.$$

Holographic calculation

Graham Witten

- We generalized Graham and Witten to include non-trivial scalar couplings.
- One needs to study the near boundary equations of motion for an M2-brane in $AdS_7 \times S^4$ ending on the surface operator.
- The result is

$$a_1^{(N)} = 0$$
, $a_2^{(N)} = -N$, $b^{(N)} = 0$, $c^{(N)} = +N$.

- Comparing to the free field calculation we find that in both cases $a_2 = -c$.
- In fact we can prove this using the displacement operator, as well as prove b = 0.
- Exact expressions for a_1 and a_2 exist for all N and any representation. For the fundamental rep they are $\begin{bmatrix} Wang \end{bmatrix} \begin{bmatrix} Chalabi, Estes, Jensen, Krym \\ O'Bannon, Robinson, Rogers, Sisti \end{bmatrix} \begin{bmatrix} ND, Giombi \\ Tseytlin, Zhou \end{bmatrix}$

$$a_1^{(N)} = \frac{1}{2} - \frac{1}{2N}, \qquad a_2^{(N)} = -N + \frac{1}{2} + \frac{1}{2N}.$$

defect CFT (dCFT) interlude

- A CFT in D dimensions has an SO(D+1,1) symmetry group (SO(D,2)) in Minkowski space).
- For D = 1, 2 the group is enlarged to the Virasoro group.
- A flat (or spherical) dimension d defect or operator preserves an $SO(d+1,1) \times SO(D-d)$ subgroup.
- Most familiar examples:
 - Local operator, d = 0: Preserves $\mathbb{R}_+ \times SO(D)$.
 - Boundary, or codimension-1 defect, d = D 1: Preserves SO(D 1, 1).
- Operators localized on the submanifold are classified by representation of this group.
- The Ward identities of the subgroup still enforce the usual behavior of *n*-point functions. So the 2-point function is

$$\langle\!\langle \mathcal{O}(x)\mathcal{O}(y)\rangle\!\rangle \sim \frac{1}{|x-y|^{2\Delta}}$$

Displacement operator

• The displacement operator can be define via

$$\partial_{\mu}T^{\mu n'}(x) = \mathbb{D}^{n'}(x)\delta^{D-d}(x)$$

- It captures the breaking of translation invariance of the theory in the presence of the defect.
- We can define it like this even if we do not have a Lagrangian for the theory.
- It has a protected dimension d + 1.
- This definition also makes its normalization well defined, so we can define $c_{\mathbb{D}}$ via

$$\left\langle\!\!\left\langle \mathbb{D}^{m'}(\sigma)\mathbb{D}^{n'}(0)\right\rangle\!\!\right\rangle = \frac{C_{\mathbb{D}}\delta^{mn}}{\pi^2|\sigma|^{2d+2}}$$

- In the case of the Wilson loop, $c_{\mathbb{D}}$ is called the Bremsstrahlung function and determines the radiation of an accelerating charged particle.
- In $\mathcal{N} = 4$ SYM, it is known exactly for all N and λ .

Displacement operator and anomalies

Bianchi, Lemos Madalena, Meineri] Bianchi Lemos [ND, Probst Trépanier]

• We know that the dispalcement 2-point function is

$$\left\| \mathbb{D}^{m'}(\sigma) \mathbb{D}^{n'}(0) \right\| = \frac{C_{\mathbb{D}} \delta^{m'n'}}{\pi^2 |\sigma|^6},$$

• Now consider a small deformation of the plane by an arbitrary normal vector field $\xi^{n'}$. At quadratic order we find

$$\log \langle V \rangle \sim \frac{1}{2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left\langle \! \left\langle \mathbb{D}_{n'}(\sigma) \mathbb{D}_{m'}(\tau) \right\rangle \! \right\rangle \xi^{n'}(\sigma) \xi^{m'}(\tau) d^2 \sigma \, d^2 \tau$$

• Expanding $\tau = \sigma + \eta$, this gives the anomaly density

$$\mathcal{A} = \frac{C_{\mathbb{D}}}{2\pi^2} \int_{\mathbb{R}^2} \frac{\delta_{n'm'}}{|\eta|^6} \xi^{n'}(\sigma) \left[\dots + \frac{1}{24} \eta^n \eta^m \eta^p \eta^q \partial_n \partial_m \partial_p \partial_q \xi^{m'}(\sigma) + \dots \right] d^2 \eta.$$

• Doing the angular integration and integrating $|\eta|$ by parts, we find a log divergence multiplying the trace of the second fundamental form squared

$$-\frac{C_{\mathbb{D}}}{64\pi}\int_{\mathbb{R}^2}\partial^n\partial^m\xi^{n'}\partial_n\partial_m\xi^{n'}d^2\sigma = -\frac{C_{\mathbb{D}}}{64\pi}\int_{\Sigma}\mathbf{I}^2\operatorname{vol}_{\Sigma} = -\frac{C_{\mathbb{D}}}{64\pi}\int_{\Sigma}\left(H^2 - R^{\Sigma}\right)\operatorname{vol}_{\Sigma}.$$

• Since the integral of R^{Σ} vanishes, we identify

$$a_2 = -\frac{C_{\mathbb{D}}}{16}$$

• The displacement operator is part of a mulitplet

$$\partial_{\mu}T^{\mu m'} = \mathbb{D}^{m'}\delta^{4}(x),$$
$$\partial_{\mu}J^{\mu} = \mathbb{Q}\delta^{4}(x),$$
$$\partial_{\mu}j^{\mu i'5} = \mathbb{O}^{i'}\delta^{4}(x),$$

• and

$$\langle\!\langle \mathbb{O}_{i'}(\sigma)\mathbb{O}_{j'}(0)\rangle\!\rangle = \frac{C_{\mathbb{O}}\delta_{i'j'}}{\pi^2|\sigma|^4}$$

• We can follow the same logic to relate $c_{\mathbb{O}}$ to the coefficient of the $(\partial n)^2$ anomaly

 $c = C_{\mathbb{O}}$.

• Using SUSY ward identities we can relate

 $C_{\mathbb{D}} = 16C_{\mathbb{O}}.$

• This proves

 $c = -a_2$.

BPS surface operators

ND, Trépanier

- The theory has 32 supercharges.
- 'Locally BPS" operators have a half-rank projector at every point along the surface.
 - Generally more than one half-rank projector equation will only have a trivial solution.
- Want compatible equations at all points along the surface.
 - The plane has the same equation at all points, hence globally 1/2 BPS.
- Found 4 classes (and several subclasses) of geometries that allow for BPS observables, with appropriate choice of "scalar coupling" n^i :
 - Type- \mathbb{R} : Any curve in \mathbb{R}^5 times a line.
 - Type-C: Any holomorphic curve in $\mathbb{R}^6 \sim \mathbb{C}^3$
 - Type-II: Any surface in $\mathbb{R}^4 \subset \mathbb{R}^6$.
 - Type-S: Any surface in $S^3 \subset \mathbb{R}^6$.
- Holographic description in terms of generalized calibrating forms in subspaces of $AdS_7 \times S^4$

$\mathbf{Type-}\mathbb{R}$

A curve in \mathbb{R}^5 extended over x^6 :

$$x^{I}(u) \subset \mathbb{R}^{5} \ (I = 1, \dots, 5) \text{ and } x^{6} = v,$$

 $n^{I}(u, v) = \frac{\partial_{u} x^{I}}{|\partial_{u} x|}.$

- Restricting the curve to \mathbb{R} , we get a plane.
- With a curve in \mathbb{R}^2 can make a crease.
- They are uplifts of "Zarembo Wilson loops" in $\mathcal{N} = 4$ SYM.
- No anomaly. Presumably expectation value vanishes.

$\mathbf{Type}\text{-}\mathbb{C}$

We choose a complex structure such that $\mathbb{R}^6 \to \mathbb{C}^3$ and take any surface which is holomorphic, with fixed $n^I = \delta^{I5}$.

- Generally preserve two supercharges.
- In \mathbb{C}^2 preserves 4.
- In \mathbb{C} , it's just the plane, so 16.
- The anomaly is

$$\int_{\Sigma} \mathcal{A}_{\Sigma}^{\mathbb{C}} \operatorname{vol}_{\Sigma} = a_1 \chi(\Sigma) \,.$$

• Easy to construct holographic 3-surfaces dual to them.

Type- \mathbb{H}

Arbitrary surface in $\mathbb{R}^4 \subset \mathbb{R}^6$. n^I chosen from the tangent space by projecting to the self-dual part, which is in S^2

$$n^{I} = \epsilon^{ab} \eta^{I}_{\mu\nu} \partial_{a} x^{\mu} \partial_{b} x^{\nu} \,.$$

- Generally preserve a single supercharge.
- Restricting to \mathbb{R}^3 preserve two supercharges.
- Lagrangian manifolds: $n^I \in S^1$ preserve two supercharges.
- Anomaly related to degree of Gauss map.
- Holographic description in terms of surfaces calibrated with respect to a G_2 -structure on $AdS_5 \times S^2$.

Type-S

Take $x^{\mu} \in S^3$ and n^I according to

$$n^{I} = \frac{1}{2} \epsilon^{ab} \epsilon^{IJKL} \partial_{a} x^{J} \partial_{b} x^{K} x^{L} \,.$$

- $\bullet\,$ Generic surface preserves two combination of Q and S supercharges.
- Restricting to S^2 gives the 1/2 BPS sphere.
- Can construct spherical crease, which is 1/4 BPS.
- Infinitesimal surfaces lead to the same as the \mathbb{R}^3 restriction of Type-II.
- Anomaly includes topological part and part related to the area of the surface

$$\int \mathcal{A}_{\Sigma}^{S} \operatorname{vol}_{\Sigma} = (a_{1} + a_{2}) \chi(\Sigma) + a_{2} \frac{\operatorname{vol}(\Sigma)}{2\pi} \,.$$

• Complicated calibration form in $AdS_4 \times S^3$.

Summary

Type Geometry		n^I in	SUSYs	Also in	Anomaly	
R	$\mathbb{R}\times\gamma,\gamma\subset\mathbb{R}^5$	S^4	1 Q			
	$\mathbb{R}\times\gamma,\gamma\subset\mathbb{R}^4$	S^3	1 Q		0	
	$\mathbb{R}\times\gamma,\gamma\subset\mathbb{R}^3$	S^2	2 Q	H		
	$\mathbb{R}\times\gamma,\gamma\subset\mathbb{R}^2$	S^1	4 Q	H		
C	$\Sigma \subset \mathbb{C}^3$ (holo.)	point	2 Q		yes	
	$\Sigma \subset \mathbb{C}^2$ (holo.)	point	4 Q	\mathbb{H}, L		
H	$\Sigma\subset \mathbb{R}^4$	S^2	1 Q			
subclass $\begin{cases} L\\ N \end{cases}$	Lagrangian	S^1	2 Q		yes	
	$\Sigma \subset \mathbb{R}^3$	S^2	2 Q	(S)		
S $\Sigma \subset S^3$		S^3	2 (Q+S)		yes	

Name	Type	Geometry	n^I in	SUSYs	see	
cones	H	over $\gamma \subset S^3$	S^2	Q, S	[Mezei]	
	\mathbb{H}, N	over $\gamma \subset S^2$	S^2	2Q,2S	[^{Fulu}] Wang]	
crease	$\mathbb{R}, \mathbb{H}, \mathbb{N}$	2 half-planes	S^0	$4Q,4S\subset\mathfrak{osp}(4^* 2)$	$\begin{bmatrix} Agmon \\ Wang \end{bmatrix}$	
tori	S	$T^2 \subset S^3$	S^4	2(Q+S)		
	\mathbb{H}, L	$T^2 \subset \mathbb{R}^4$	S^1	2Q,2S		
spheres	\mathbb{H}, \mathbb{N}	$S^2 \subset \mathbb{R}^3$	S^2	2Q,2S	[Berenstein]	
	\mathbf{S}	latitude $S^2 \subset S^3$	S^3	4(Q+S)	Corrado Fischler Maldacena	
	\mathbf{S}	large $S^2 \subset S^3$	point	$16(Q+S)\subset\mathfrak{osp}(4^* 2)^2$		
plane	$\mathbb{R} \mathbb{C} \mathbb{H} L N$	\mathbb{R}^2	point	$8Q,8S\subset\mathfrak{osp}(4^* 2)^2$	Maldacena	

Special examples with enhanced SUSY

Conclusion and outlook

- Surface operators are natural observables in the 6d theory.
- They are similar to Wilson loops.
- We can generalize some of the tools used for line operators to study the surface operators.
- We found relations among b, a_2 and c.
- Found very rich examples of BPS observables.

Beyond anomalies

- Most calculations of surface operators lead to logarithmic divergences, which are the surface anomalies.
- Those are like dimensions of local operators.
 - There are more of them: a_1, a_2, b, c .
 - They are known and have only classical, 1-loop and 2-loop corrections.
- We know how to define finite quantities for local operators with arbitrary quantum corrections to their dimensions. In particular their structure constants.
- Likewise can define finite quantities for anomalous surface operators.
- See Maxime's poster.

The end