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Outline

This talk will be comprised of two main parts

• Slow introduction to surface operators in the N = (2, 0) theory.

• Quick review of new BPS observables in the theory and their properties.

Join M. Trépanier at the poster session for further details and to learn of new applications.
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6d N = (2, 0) CFT

String/M-theory considerations suggested the existence of these theories.

We know that:

• The largest dimension for which there is superconformal algebra is 6d.

• It is expected that there are theories realizing this symmetry for every ADE algebra.

• No Lagragian is known for any of these theories, no continuous parameters.

• Simplest examples realizing this algebra:

– The free tensor multiplet with a self-dual field strength, 5 scalars and fermions.

– M-theory on AdS7 × S4 realizing the large N limit.

• When compactified to 5d, gives 5d SYM. In 4d gives class S theories, including N = 4

SYM.

• We need tools to understand this theory.
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Surface operators

• The simplest argument for the N = (2, 0) theory is from M-theory:

– It describes the low energy dynamics of N M5-branes.

• It is known that M2-branes can end on M5-branes.

• The end-points form a two dimensional surface in 6d.

• In compactifying M-theory, an M2-brane wrapping the compact cycle becomes a

fundamental string.

– M2-brane ending on M5-brane becomes fundamental string ending on D5-brane.

– Fundamental strings carry electric flux, their endpoint is a Wilson loop in 5d YM.

• The surface operators in 6d are analogous to Wilson loops in gauge theories.
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Wilson loops

• Wilson loops are crucial observables in any gauge theory.

• They can serve as an order parameter for confinement and are calculable on the lattice.

• Focusing on Wilson loops in theories with extended supersymmetry (like N = 4 SYM

in 4d) we can:

– Evaluate them perturbatively.

– Evaluate them at strong coupling via AdS/CFT.

– Integrability.

– Relate them to scattering amplitudes.

– Evaluate the circular and other BPS Wilson loops exactly using localization.

– Use defect-CFT techniques including OPE for small deformations around a line or

circle.

• Are the non-perturbative tools also applicable in 6d?
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Surface operators

• Surface operators are crucial observables in N = (2, 0) theory.

• They can serve as an order parameter for confinement and are calculable on the lattice.

• Focusing on surface operators in the N = (2, 0) theory in six dimension

we can:

– Evaluate them perturbatively.

– Evaluate them at strong coupling via AdS/CFT.

– Integrability.

– Relate them to scattering amplitudes.

– Evaluate the circular Wilson loop some surfaces exactly using localization?

– Use defect-CFT techniques including OPE for small deformations around a line or

circle plane or sphere.
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Surfaces in the free theory
[

Henningson
Skenderis

][

Gustavson
]

• For the theory with N = 1 we define the surface operator explicitly as

VΣ = exp

∫

Σ

(

iB+ − niΦi volΣ
)

,

• B+ is a 2-form with self-dual field strength and Φi are 5 scalars.

• Even if free, no easy Lagrangian description because of self-duality constraint.

• For a planar or spherical surface and constant |n| = 1, this is globally BPS.

• Can name surfaces with any shape and non-constant |n| = 1 “locally BPS”.
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Holographic description
[

Maldacena
]

• A surface operator is captured at large N by an M2-brane in AdS7 × S4 ending on the

surface operator at the boundary.

• We can sometimes solve for the minimal volume to get the leading large N result.

• Divergences can always be studied by near-boundary analysis.

• ni determine Dirichlet boundary conditions on S4 and non-BPS |n| = 0 satisfy

Neumann boundary conditions.
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Calculation 1: Anomalies
[

Deser
Schwimmer

]

• Calculating correlation functions of local operators gives rise to logarithmic

divergences, which account for anomalous dimensions.

• Smooth line operators have finite expectation values.

• Cusped Wilson loops have anomalies and the anomaly of the almost straight cusp is

related to the Bremsstrahlung function.

• surface operators again have logarithmic divergences, signalling anomalies.

log 〈VΣ〉 ∼
1

4π
log ε

∫

Σ
volΣ

[

a1R
Σ + a2

(

H2 + 4 trP
)

+ b trW + c (∂n)2
]

.

– RΣ is the Ricci scalar on Σ.

– H is the mean curvature

– P the pullback of the Schouten tensor.

– W is the pullback of the Weyl tensor.

– (∂n)2 = ∂mni∂mni are couplings to scalar fields.
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log 〈VΣ〉 ∼
1

4π
log ε

∫

Σ
volΣ

[

a1R
Σ + a2

(

H2 + 4 trP
)

+ b trW + c (∂n)2
]

.

• Under conformal transformations ε scales.

• For a spherical surface or radius R in flat space

〈VS2〉 ∼
1

R2a1+4a2

.

• In analogy to local operators, where

〈O(x)O(0)〉 ∼
1

|x|2∆O

.

• The anomaly coefficients a1, a2, b and c can be different for different types of surface

operators (different theories, different representations), but do not depend on the

geometry.

• In the same way that ∆O can have a classical value and quantum corrections, so the

anomaly coefficients have classical and subleading in N terms.
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Free field theory
[

Henningson
Skenderis

][

Gustavson
][

ND, Probst
Trépanier

]

• Expand to quadratic order

VΣ = exp

∫

Σ

(

iB+ − niΦi volΣ
)

.

• We use (in flat space)

〈Φi(x)Φj(y)〉 =
δij

π2|x− y|4
,

〈

B+
µν(x)B

+
ρσ(y)

〉

=
δµρδνσ − δµσδνρ
4π2|x− y|4

.

• To regularize the integration we displace the two surfaces a distance η along a unit

normal vector field ν.

• The 2-form contributes

−
1

2πε2
−

H · ν

4πε
−

1

16π

(

−2RΣ + 3
(

H2 + 4 trP
))

log ε+ . . .

• And the scalar

1

2πε2
+

H · ν

4πε
+

1

16π

(

2RΣ −
(

H2 + 4 trP
)

+ 4 (∂n)2
)

log ε+ . . .
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• Together

log 〈VΣ〉 =
1

4π
log ε

∫

Σ
volΣ

[

RΣ −
(

H2 + 4 trP
)

+ (∂n)2
]

+ . . .

• Therefore (b(1) requires curved space propagators)

a
(1)
1 = +1 , a

(1)
2 = −1 , c(1) = +1 .
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Holographic calculation
[

Graham
Witten

]

• We generalized Graham and Witten to include non-trivial scalar couplings.

• One needs to study the near boundary equations of motion for an M2-brane in

AdS7 × S4 ending on the surface operator.

• The result is

a
(N)
1 = 0 , a

(N)
2 = −N , b(N) = 0 , c(N) = +N .

• Comparing to the free field calculation we find that in both cases a2 = −c.

• In fact we can prove this using the displacement operator, as well as prove b = 0.

• Exact expressions for a1 and a2 exist for all N and any representation. For the

fundamental rep they are
[

Wang
][

Chalabi, Estes, Jensen, Krym
O’Bannon, Robinson, Rogers, Sisti

][

ND, Giombi
Tseytlin,Zhou

]

a
(N)
1 =

1

2
−

1

2N
, a

(N)
2 = −N +

1

2
+

1

2N
.
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defect CFT (dCFT) interlude

• A CFT in D dimensions has an SO(D + 1, 1) symmetry group (SO(D, 2) in

Minkowski space).

• For D = 1, 2 the group is enlarged to the Virasoro group.

• A flat (or spherical) dimension d defect or operator preserves an

SO(d+ 1, 1)× SO(D − d) subgroup.

• Most familiar examples:

– Local operator, d = 0: Preserves R+ × SO(D).

– Boundary, or codimension-1 defect, d = D − 1: Preserves SO(D − 1, 1).

• Operators localized on the submanifold are classified by representation of this group.

• The Ward identities of the subgroup still enforce the usual behavior of n-point

functions. So the 2-point function is

⟪O(x)O(y)⟫ ∼ 1

|x− y|2∆
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Displacement operator

• The displacement operator can be define via

∂µT
µn′

(x) = Dn′

(x)δD−d(x)

• It captures the breaking of translation invariance of the theory in the presence of the

defect.

• We can define it like this even if we do not have a Lagrangian for the theory.

• It has a protected dimension d+ 1.

• This definition also makes its normalization well defined, so we can define cD via

⟪Dm′

(σ)Dn′

(0)⟫ =
CDδ

mn

π2|σ|2d+2
,

• In the case of the Wilson loop, cD is called the Bremsstrahlung function and

determines the radiation of an accelerating charged particle.

• In N = 4 SYM, it is known exactly for all N and λ.
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Displacement operator and anomalies
[

Bianchi, Lemos
Madalena, Meineri

][

Bianchi
Lemos

] [

ND, Probst
Trépanier

]

• We know that the dispalcement 2-point function is

⟪Dm′

(σ)Dn′

(0)⟫ =
CDδ

m′n′

π2|σ|6
,

• Now consider a small deformation of the plane by an arbitrary normal vector field ξn
′

.

At quadratic order we find

log 〈V 〉 ∼
1

2

∫

R2

∫

R2

⟪Dn′(σ)Dm′(τ)⟫ ξn′

(σ)ξm
′

(τ)d2σ d2τ

• Expanding τ = σ + η, this gives the anomaly density

A =
CD

2π2

∫

R2

δn′m′

|η|6
ξn

′

(σ)

[

· · ·+
1

24
ηnηmηpηq∂n∂m∂p∂qξ

m′

(σ) + . . .

]

d2η .

• Doing the angular integration and integrating |η| by parts, we find a log divergence

multiplying the trace of the second fundamental form squared

−
CD

64π

∫

R2

∂n∂mξn
′

∂n∂mξn
′

d2σ = −
CD

64π

∫

Σ
II
2 volΣ = −

CD

64π

∫

Σ

(

H2 −RΣ
)

volΣ .

• Since the integral of RΣ vanishes, we identify

a2 = −
CD

16
.
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• The displacement operator is part of a mulitplet

∂µT
µm′

= Dm′

δ4(x),

∂µJ
µ = Qδ4(x),

∂µj
µi′5 = Oi′δ4(x),

• and

⟪Oi′(σ)Oj′(0)⟫ = COδi′j′

π2|σ|4
.

• We can follow the same logic to relate cO to the coefficient of the (∂n)2 anomaly

c = CO .

• Using SUSY ward identities we can relate

CD = 16CO .

• This proves

c = −a2 .
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BPS surface operators
[

ND, Trépanier
]

• The theory has 32 supercharges.

• ‘Locally BPS” operators have a half-rank projector at every point along the surface.

– Generally more than one half-rank projector equation will only have a trivial

solution.

• Want compatible equations at all points along the surface.

– The plane has the same equation at all points, hence globally 1/2 BPS.

• Found 4 classes (and several subclasses) of geometries that allow for BPS observables,

with appropriate choice of “scalar coupling” ni:

– Type-R: Any curve in R5 times a line.

– Type-C: Any holomorphic curve in R6 ∼ C3

– Type-H: Any surface in R4 ⊂ R6.

– Type-S: Any surface in S3 ⊂ R6.

• Holographic description in terms of generalized calibrating forms in subspaces of

AdS7 × S4
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Type-R

A curve in R5 extended over x6:

xI(u) ⊂ R5 (I = 1, . . . , 5) and x6 = v ,

nI(u, v) =
∂ux

I

|∂ux|
.

• Restricting the curve to R, we get a plane.

• With a curve in R2 can make a crease.

• They are uplifts of “Zarembo Wilson loops” in N = 4 SYM.

• No anomaly. Presumably expectation value vanishes.
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Type-C

We choose a complex structure such that R6 → C3 and take any surface which is

holomorphic, with fixed nI = δI5.

• Generally preserve two supercharges.

• In C2 preserves 4.

• In C, it’s just the plane, so 16.

• The anomaly is
∫

Σ
AC

Σ volΣ = a1χ(Σ) .

• Easy to construct holographic 3-surfaces dual to them.
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Type-H

Arbitrary surface in R4 ⊂ R6. nI chosen from the tangent space by projecting to the

self-dual part, which is in S2

nI = εabηIµν∂ax
µ∂bx

ν .

• Generally preserve a single supercharge.

• Restricting to R3 preserve two supercharges.

• Lagrangian manifolds: nI ∈ S1 preserve two supercharges.

• Anomaly related to degree of Gauss map.

• Holographic description in terms of surfaces calibrated with respect to a G2-structure

on AdS5 × S2.
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Type-S

Take xµ ∈ S3 and nI according to

nI =
1

2
εabεIJKL∂ax

J∂bx
KxL .

• Generic surface preserves two combination of Q and S supercharges.

• Restricting to S2 gives the 1/2 BPS sphere.

• Can construct spherical crease, which is 1/4 BPS.

• Infinitesimal surfaces lead to the same as the R3 restriction of Type-H.

• Anomaly includes topological part and part related to the area of the surface
∫

AS
Σ volΣ = (a1 + a2)χ(Σ) + a2

vol(Σ)

2π
.

• Complicated calibration form in AdS4 × S3.
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Summary

Type Geometry nI in SUSYs Also in Anomaly

R

R× γ, γ ⊂ R5 S4 1 Q

0
R× γ, γ ⊂ R4 S3 1 Q

R× γ, γ ⊂ R3 S2 2 Q H

R× γ, γ ⊂ R2 S1 4 Q H

C
Σ ⊂ C3 (holo.) point 2 Q

yes
Σ ⊂ C2 (holo.) point 4 Q H, L

H Σ ⊂ R4 S2 1 Q

yes
subclass

{

L

N

Lagrangian S1 2 Q

Σ ⊂ R3 S2 2 Q (S)

S Σ ⊂ S3 S3 2 (Q+ S) yes
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Special examples with enhanced SUSY

Name Type Geometry nI in SUSYs see

cones
H over γ ⊂ S3 S2 Q, S [Mezei

Pufu
Wang

]

H, N over γ ⊂ S2 S2 2Q, 2S

crease R, H, N 2 half-planes S0 4Q, 4S ⊂ osp(4∗|2)
[

Agmon
Wang

]

tori
S T 2 ⊂ S3 S4 2(Q+ S)

H, L T 2 ⊂ R4 S1 2Q, 2S

spheres

H, N S2 ⊂ R3 S2 2Q, 2S [

Berenstein
Corrado
Fischler

Maldacena

]

S latitude S2 ⊂ S3 S3 4(Q+ S)

S large S2 ⊂ S3 point 16(Q+ S) ⊂ osp(4∗|2)2

plane R C H L N R2 point 8Q, 8S ⊂ osp(4∗|2)2
[

Maldacena
]
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Conclusion and outlook

• Surface operators are natural observables in the 6d theory.

• They are similar to Wilson loops.

• We can generalize some of the tools used for line operators to study the surface

operators.

• We found relations among b, a2 and c.

• Found very rich examples of BPS observables.
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Beyond anomalies

• Most calculations of surface operators lead to logarithmic divergences, which are the

surface anomalies.

• Those are like dimensions of local operators.

– There are more of them: a1, a2, b, c.

– They are known and have only classical, 1-loop and 2-loop corrections.

• We know how to define finite quantities for local operators with arbitrary quantum

corrections to their dimensions. In particular their structure constants.

• Likewise can define finite quantities for anomalous surface operators.

• See Maxime’s poster.
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The end
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