Defects and brane transport in Abelian gauged linear sigma models

Ilka Brunner

Mainz, 27.09.2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

- Gauged linear sigma model: 2 dimensional SUSY Abelian gauge theory.
- Several phases: Landau-Ginzburg phase, geometric phase.
- Question: How can we transport "data" from one phase to another? From UV to IR?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- **Data?:** For example boundary conditions/D-branes.
- Tool: Defects.

2101.12314 with Fabian Klos and Daniel Roggenkamp 2109.04124 with Lukas Krumpeck and DR

Defects

- One dimensional lines which separate two possibly different 2d CFTs/TFTs
- On the defect, there are in general some additional defect degrees of freedom that couple to the bulk.
- Defects can be regarded as boundaries of a folded theory

- But they are more than just boundaries for folded theories.
- They can be moved, merged, intersect ...

Defects and flows, general theories

- Very special class of defects: Flow defects (RG domain wall).
- Defect that separates UV and IR theory
- Obtain them by starting with an initial (UV) theory and restricting the perturbation to a subdomain U ⊂ Σ.
- Defect will build up at the boundary of the subdomain ∂U .

$$UV |_{I_{UV}} UV \longrightarrow IR \downarrow UV$$

Functors between category of boundary conditions

$$UV \xrightarrow{B} \mapsto IR \xrightarrow{VV} B$$

► Merging RG defect with UV boundary condition → IR boundary condition.

RG defect in folded picture

- Sigma model with some target geometry
- Toy example: free boson on a circle S^1 , radius R
- \blacktriangleright Folding: Identity defect \rightarrow Diagonal brane on torus $S^1 \times S^1$

• Deformation of radius \Rightarrow Deformed identity

Features of RG defects

- RG defects are not topological. Fusion with other defects is highly singular.
- ► Favorable situations: SUSY and topological subsectors
- Fusion in one direction yields identity:

 $R \otimes T = id_{IR}$

...and a projector in the other direction

 $T \otimes R = P_{UV}$

Gauged linear sigma models

- ► UV theory: G = U(1)^k gauge theory, charged matter multiplets Y_i, superpotential, N = (2,2) supersymmetry
- Potential for scalars

$$U = \sum_{i=1}^{n} \left| \sum_{a=1}^{k} Q_{i}^{a} \sigma_{a} y_{i} \right|^{2} + \frac{e^{2}}{2} \sum_{a=1}^{k} \left(\sum_{i=1}^{n} Q_{i}^{a} |y_{i}|^{2} - r^{a} \right)^{2} + \sum_{i=1}^{n} \left| \frac{\partial W}{\partial y_{i}}(y_{1}, \dots, y_{n}) \right|^{2}.$$
(1)

- Classical vacuum manifold: U = 0/gauge-transformations
- ▶ Depends on *r^a*.
- Here: G = U(1),
- ► Examples with geometric phase: Fields P, X_i, Q(X_i) = 1, Q(P) = -d, homogeneous superpotential W = PG(X_i).
- $r \gg 0 \rightarrow$ Geometric phase: $G(X_i) = 0$ hypersurface in projective space
- r ≪ 0 →: stringy Landau Ginzburg phase:
 P = 1, Landau-Ginzburg orbifold, orbifold group Z_d

Non-geometric examples

- Fields P, X, superpotential $W = P^{d-n}X^d$
- charges of fields Q(X) = d n, Q(P) = -d
- r>> 0: X must not vanish, gets expectation value, LG model with W ~ P^{d-n}, gauge symmetry broken to Z_{d-n}
- r << 0: X must not vanish, gets expectation value, LG model with W ∼ X^d, gauge symmetry broken to Z_d
- Quantum effects: r gets renormalized.
- UV phase: $W \sim X^d$.
- ► IR phase: W ~ P^{d-n} and n massive vacua on the Coulomb branch.

- RG flow drives the model to the IR phase.
- Both phases can be realized within the GLSM.Clingempeel-leFloch-Romo

Setting and strategy

- Consider gauged linear sigma models with different phases.
- Go to the topological sector, B-twist
- Decouple gauge degrees of freedom.
- GLSM $\rightarrow U(1)$ equivariant LG model.
- We want to connect the phases with defects.
- Branes in a geometric phase: Derived category of coherent sheaves.
- Branes in LG phase: Category of matrix factorizations of the superpotential.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ We can transport D-branes between phases using defects.

GLSM situation

- Same UV theory, two different limits or phases
- Perturb differently on the two sides of the UV identity
- Embed two different phases into the GLSM

GLSM
$$(J_{UV})$$
 GLSM (J_{UV}) phase₁ (J_{UV}) phase₂

- If we manage to do this, we have constructed the desired functors between phases.
- This involves understanding the identity, as well as how to go to the phases.
- Factorize this defect:

phase₁ GLSM phase₂
$$R^1$$
 T^2

Transition defects T^i

- Some preliminary considerations:
- Starting point: (known) Identity defect in a phase.
- "Lift" on one side to GLSM

- U(1) vs Z_d-invariance → Lift involves a choice a ∈ Z, transition defects Tⁱ_a
- In general, there can be many lifts.

Flowing from the GLSM identity

Other starting point: GLSM identity defect

- This constructs the right transition defects Tⁱ_a.
- once we understand the identity defect of the GLSM
-and how to push it to a phase on one side.
- Indeed, we can then check that these Tⁱ_a factorize the phase transition

phase₁
$$GLSM$$
 phase₂ T_a^2

together with suitable R^i .

Further properties

▶ For a fixed phase *i*, *Rⁱ* and *Tⁱ_a* can be used to embed the phase into the GLSM

$$\blacktriangleright R^i \otimes T^i_a = id^i$$

phase^{*i*} GLSM phase^{*i*}
$$T_a^i$$

$$\blacktriangleright T^i_a \otimes R^i = P^i_a$$

GLSM phase^{*i*} GLSM
$$T_a^i$$
 R^i

 Pⁱ_a is a projector and realizes the brane category of the phase inside the GLSM.

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Comparison

Brane transport in GLSMs was discussed before Herbst-Hori-Page,

Hori-Romo, Knapp-Romo-Scheidegger, Clingempeel-le Floch-Romo,

- There: Analysis of gauge sector, boundary potentials, amplitudes on hemispheres (...)
- Derivation of the "Grade restriction rule": Smooth transport of branes has to go through a "window" in the GLSM.
- Our work uses completely different arguments.
- The results on D-brane transport are in agreement.
- ► We construct a concrete defect: Explicit functor.
- At the heart of the whole construction is the identity defect of the GLSM.

Identity defect, simplified version

• Free boson: diagonal brane on torus $S^1 imes S^1$

- We want: Theories described by polynomial rings, $\mathbb{C}[x]$
- "doubled geometry" described by $\mathbb{C}[x, y]$.
- ► diagonal: mod out by the ideal generated by (x y), to get $M_{id} = \mathbb{C}[x, y]/\langle x y \rangle$
- ► 0 → $\mathbb{C}[x, y] \xrightarrow{x \cdot y} \mathbb{C}[x, y] \to M_{id} \to 0$
- ➤ "Branes": Described by polynomial ring modulo some ideal, here: polynomial ring in the y variable, e.g. C[y]/⟨yⁿ⟩
- $\bullet \ \mathbb{C}[x,y]/\langle x-y\rangle \otimes_{\mathbb{C}[y]} \mathbb{C}[y]/\langle y^n\rangle = \mathbb{C}[x]/\langle x^n\rangle$

Identity defect in LG

 Defects in LG models are matrix factorizations of the difference of the superpotential of the two theories.

•
$$p_1 p_0 = W_1(X_i) - W_2(X'_i)$$

- Replace this by the module $M_P = \operatorname{coker} p_1$.
- The matrix factorization provides a two periodic free resolution of M_P.
- ► Eg single variable case Identity defect is a MF of W(X) – W(X') with p₁ = X – X'.
- Straight forward generalization to many variables.

Identity defect and orbifolds

Orbifold group G, G finite group

$$I_{\text{orb.}} = \bigoplus_{g \in G} {}_{g} I_{\text{non-orb.}}, \qquad {}_{g} I_{\text{non-orb.}} : \text{ symmetry defect}$$

- Standard orbifold construction as in string theory for D-branes.
- gl is a defect implementing a symmetry transformation.
- ► Example $W = X^d$, symmetry group \mathbb{Z}_d , generator $X \to \eta X$, $\eta = e^{2\pi i/d}$.

• $_gI$ as explicit MF: $p_1 = (X - \eta Y)$,

• ... and
$$p_0 = (X^d - Y^d)/(X - \eta Y)$$

GLSM identity defect

- Problem to solve: How to deal with continuous orbifold groups?
- Introduce two new defect fields α and α^{-1} .
- ► To formulate the matrix factorization, replace X Y by $X \alpha^{Q_X} Y$.
- Altogether, consider the module

$$M_{I} = C_{(X,P)(Y,Q)}[\alpha, \alpha^{-1}]/(P - \alpha^{Q_{P}}Q, X_{i} - \alpha^{Q_{i}}Y_{i}, \alpha\alpha^{-1} - 1)$$

where $C_{(X,P)(Y,Q)} = \mathbb{C}[X_1, ..., X_N, P, Y_1, ..., Y_N, Q]/(W(P, X_i) - W(Q, Y_i))$

 This is the identity defect of the GLSM. It acts on Branes as identity.

Descending from the GLSM identity

- This defect acts as identity on the GLSM brane category.
- Starting from it, we can construct the transition defects.
- Example: 2 different LG phases:

$$P^{d'}X^{d} \downarrow_{GLSM} Q^{d'}Y^{d} \longrightarrow X^{d} \land Q^{d'}$$

- Flow defect between different LG phases: P = Y = 1
- In addition, a cutoff for the α variable has to be specified.
- The cutoff is part of the data specifying the defect.

$$M_{I} = C_{(X,P)(Y,Q)}[\alpha, \alpha^{-1}]/(P - \alpha^{-d}Q, X - \alpha^{d'}Y, \alpha\alpha^{-1} - 1)$$

$$\to M_{F} = \alpha^{N}C_{(X,.)(.,Q)}[\alpha^{-1}]/(1 - \alpha^{-d}Q, X - \alpha^{d'}1)$$

 Resulting defects reproduce known results on RG flows between SUSY N = 2 minimal models.

Mirror perspective: A-branes in LG models

- LG orbifold X^d/\mathbb{Z}_d is mirror to LG model with $W = X^d$.
- B-branes get mapped to A-branes
- A-branes: described by straight lines emanating from a critical point, reality condition on W. Hori, Iqbal, Vafa
- ▶ RG flow: relevant perturbation by lower order polynomial

b + 3

b + 7

RG flows: Mirror perspective

- Under a perturbation, the critical point splits up and some (elementary) branes decouple.
- The defect describing the flow contains precisely the information on which "wedges" decouple.
- Here: We obtained a lift of known flows to the GLSM model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Transition to a geometric phase

- GLSM superpotential $W = PG(X_i)$.
- The transition defects LG-GLSM can be constructed as before.

$$PG(X) \downarrow_{GLSM} QG(Y) \longrightarrow PG(X) \downarrow G(Y)$$

• This defines a matrix factorization of PG(X) - G(Y).

- ► Applying *T_N* to LG branes, we lift them to "grade restricted" Herbst-Hori-Page branes of the GLSM.
- ► To go to the geometric phase, apply Knörrer periodicity. "Integrate out" the field P and restrict to G = 0.
- Result: Semi-twisted double complex, complex of matrix factorizations.
- Some steps:

$$T_s = T_s^0 \oplus PT_s^1 \oplus P^2T_s^2 \oplus \dots, \quad t_s = t_s^0 + Pt_s^1$$

Conclusions

- Discussion of functors between brane categories in different phases of a GLSM.
- ► Functors are given in terms of defects, e.g. *T* between phase and GLSM.
- Construction relies on rigidity of SUSY and defect constructions.
- Provides an alternative point of view on brane transport between phases.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Possible applications in many classes of examples.