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Introduction

I Gauged linear sigma model: 2 dimensional SUSY Abelian
gauge theory.

I Several phases: Landau-Ginzburg phase, geometric phase.

I Question: How can we transport ”data” from one phase to
another? From UV to IR?

I Data?: For example boundary conditions/D-branes.

I Tool: Defects.
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Defects

I One dimensional lines which separate two possibly different 2d
CFTs/TFTs

I On the defect, there are in general some additional defect
degrees of freedom that couple to the bulk.

I Defects can be regarded as boundaries of a folded theory
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I But they are more than just boundaries for folded theories.

I They can be moved, merged, intersect . . .



Defects and flows, general theories

I Very special class of defects: Flow defects (RG domain wall).

I Defect that separates UV and IR theory

I Obtain them by starting with an initial (UV) theory and
restricting the perturbation to a subdomain U ⊂ Σ.

I Defect will build up at the boundary of the subdomain ∂U.

IUV
UV UV IR UV

I Functors between category of boundary conditions

B
UV 7−→ IR UV

B

I Merging RG defect with UV boundary condition → IR
boundary condition.



RG defect in folded picture

I Sigma model with some target geometry

I Toy example: free boson on a circle S1, radius R

I Folding: Identity defect → Diagonal brane on torus S1 × S1

R

R

I Deformation of radius ⇒ Deformed identity

R ′
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Features of RG defects

I RG defects are not topological. Fusion with other defects is
highly singular.

I Favorable situations: SUSY and topological subsectors

I Fusion in one direction yields identity:

UVIR IR
R T

R ⊗ T = idIR
I . . . and a projector in the other direction

IRUV UV
T R

T ⊗ R = PUV



Gauged linear sigma models

I UV theory: G = U(1)k gauge theory, charged matter
multiplets Yi , superpotential, N = (2, 2) supersymmetry

I Potential for scalars
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I Classical vacuum manifold: U = 0/gauge−transformations

I Depends on ra.

I Here: G = U(1),

I Examples with geometric phase:
Fields P, Xi , Q(Xi ) = 1,Q(P) = −d ,
homogeneous superpotential W = PG (Xi ).

I r >> 0→ Geometric phase:
G (Xi ) = 0 hypersurface in projective space

I r << 0→: stringy Landau Ginzburg phase:
P = 1, Landau-Ginzburg orbifold, orbifold group Zd



Non-geometric examples

I Fields P, X , superpotential W = Pd−nX d

I charges of fields Q(X ) = d − n, Q(P) = −d
I r >> 0: X must not vanish, gets expectation value, LG model

with W ∼ Pd−n, gauge symmetry broken to Zd−n
I r << 0: X must not vanish, gets expectation value, LG model

with W ∼ X d , gauge symmetry broken to Zd

I Quantum effects: r gets renormalized.

I UV phase: W ∼ X d .

I IR phase: W ∼ Pd−n and n massive vacua on the Coulomb
branch.

I RG flow drives the model to the IR phase.

I Both phases can be realized within the
GLSM.Clingempeel-leFloch-Romo



Setting and strategy

I Consider gauged linear sigma models with different phases.

I Go to the topological sector, B-twist

I Decouple gauge degrees of freedom.

I GLSM → U(1) equivariant LG model.

I We want to connect the phases with defects.

I Branes in a geometric phase: Derived category of coherent
sheaves.

I Branes in LG phase: Category of matrix factorizations of the
superpotential.

I We can transport D-branes between phases using defects.



GLSM situation

I Same UV theory, two different limits or phases

I Perturb differently on the two sides of the UV identity

I Embed two different phases into the GLSM

IUV
GLSM GLSM phase1 phase2

I If we manage to do this, we have constructed the desired
functors between phases.

I This involves understanding the identity, as well as how to go
to the phases.

I Factorize this defect:

GLSMphase1 phase2
R1 T 2



Transition defects T i

I Some preliminary considerations:

I Starting point: (known) Identity defect in a phase.

I “Lift” on one side to GLSM

Iphase
phase phase GLSM phase

I LG example

IphaseX d Zd Pd−nX d Zd

I U(1) vs Zd -invariance → Lift involves a choice a ∈ Z,
transition defects T i

a

I In general, there can be many lifts.



Flowing from the GLSM identity

I Other starting point: GLSM identity defect

IGLSM
GLSM GLSM GLSM phasei

I This constructs the right transition defects T i
a.

I ..... once we understand the identity defect of the GLSM

I .....and how to push it to a phase on one side.

I Indeed, we can then check that these T i
a factorize the phase

transition

GLSMphase1 phase2
R1 T 2

a

together with suitable R i .



Further properties

I For a fixed phase i , R i and T i
a can be used to embed the

phase into the GLSM

I R i ⊗ T i
a = id i

GLSMphasei phasei

R i T i
a

I T i
a ⊗ R i = P i

a

phaseiGLSM GLSM
T i
a R i

I P i
a is a projector and realizes the brane category of the phase

inside the GLSM.



Summary

GLSM branes

P j -invariant
subcategory

P i -invariant
subcategory

phasej
branes

phasei
branes

R ipush down R j

transition P j

lift T j lift T i

transition R j ⊗ T i

⊂ ⊂



Comparison

I Brane transport in GLSMs was discussed before Herbst-Hori-Page,

Hori-Romo, Knapp-Romo-Scheidegger, Clingempeel-le Floch-Romo,

I There: Analysis of gauge sector, boundary potentials,
amplitudes on hemispheres (...)

I Derivation of the “Grade restriction rule”: Smooth transport
of branes has to go through a ”window” in the GLSM.

I Our work uses completely different arguments.

I The results on D-brane transport are in agreement.

I We construct a concrete defect: Explicit functor.

I At the heart of the whole construction is the identity defect of
the GLSM.



Identity defect, simplified version

I Free boson: diagonal brane on torus S1 × S1

R

R

I We want: Theories described by polynomial rings, C[x ]

I ”doubled geometry” described by C[x , y ].

I diagonal: mod out by the ideal generated by (x − y), to get
Mid = C[x , y ]/〈x − y〉

I 0→ C[x , y ]
x-y−−→ C[x , y ]→ Mid → 0

I ”Branes”: Described by polynomial ring modulo some ideal,
here: polynomial ring in the y variable, e.g. C[y ]/〈yn〉

I C[x , y ]/〈x − y〉 ⊗C[y ] C[y ]/〈yn〉 = C[x ]/〈xn〉



Identity defect in LG

I Defects in LG models are matrix factorizations of the
difference of the superpotential of the two theories.

P :P1

p1

p0

P0

I p1p0 = W1(Xi )−W2(X ′i )

I Replace this by the module MP = coker p1.

I The matrix factorization provides a two periodic free
resolution of MP .

I Eg single variable case
Identity defect is a MF of W (X )−W (X ′) with p1 = X − X ′.

I Straight forward generalization to many variables.



Identity defect and orbifolds

I Orbifold group G , G finite group

Iorb. =
⊕
g∈G

g Inon-orb., g Inon-orb. : symmetry defect

I Standard orbifold construction as in string theory for D-branes.

I g I is a defect implementing a symmetry transformation.

I Example W = X d , symmetry group Zd , generator X → ηX ,
η = e2πi/d .

I g I as explicit MF: p1 = (X − ηY ),

I ... and p0 = (X d − Y d)/(X − ηY )



GLSM identity defect

I Problem to solve: How to deal with continuous orbifold
groups?

I Introduce two new defect fields α and α−1.

I To formulate the matrix factorization, replace X − Y by
X − αQXY .

I Altogether, consider the module

MI = C(X ,P)(Y ,Q)[α, α
−1]/(P − αQPQ,Xi − αQiYi , αα

−1 − 1)

where C(X,P)(Y ,Q) = C[X1, . . . , XN , P, Y1, . . . , YN ,Q]/(W (P, Xi )−W (Q, Yi ))

I This is the identity defect of the GLSM. It acts on Branes as
identity.



Descending from the GLSM identity

I This defect acts as identity on the GLSM brane category.

I Starting from it, we can construct the transition defects.

I Example: 2 different LG phases:

IGLSM
Pd ′X d Qd ′Y d X d Qd ′

I Flow defect between different LG phases: P = Y = 1

I In addition, a cutoff for the α variable has to be specified.
I The cutoff is part of the data specifying the defect.

MI = C(X ,P)(Y ,Q)[α, α
−1]/(P − α−dQ,X − αd′

Y , αα−1 − 1)

→ MF = αNC(X ,.)(.,Q)[α
−1]/(1− α−dQ,X − αd′

1)

I Resulting defects reproduce known results on RG flows
between SUSY N = 2 minimal models.



Mirror perspective: A-branes in LG models

I LG orbifold X d/Zd is mirror to LG model with W = X d .

I B-branes get mapped to A-branes

I A-branes: described by straight lines emanating from a critical
point, reality condition on W . Hori, Iqbal, Vafa

I RG flow: relevant perturbation by lower order polynomial

b + 1

b + 2

b + 3
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RG flows: Mirror perspective

I Under a perturbation, the critical point splits up and some
(elementary) branes decouple.

I The defect describing the flow contains precisely the
information on which ”wedges” decouple.

I Here: We obtained a lift of known flows to the GLSM model.



Transition to a geometric phase
I GLSM superpotential W = PG (Xi ).
I The transition defects LG-GLSM can be constructed as before.

IGLSM
PG (X ) QG (Y ) PG (X ) G (Y )

I This defines a matrix factorization of PG (X )− G (Y ).

TN :T1

t1

t0

T0

I Applying TN to LG branes, we lift them to ”grade restricted”
Herbst-Hori-Page branes of the GLSM.

I To go to the geometric phase, apply Knörrer periodicity.
”Integrate out” the field P and restrict to G = 0.

I Result: Semi-twisted double complex, complex of matrix
factorizations.

I Some steps:

Ts = T 0
s ⊕ PT 1

s ⊕ P2T 2
s ⊕ . . . , ts = t0s + Pt1s



Conclusions

I Discussion of functors between brane categories in different
phases of a GLSM.

I Functors are given in terms of defects, e.g. T between phase
and GLSM.

I Construction relies on rigidity of SUSY and defect
constructions.

I Provides an alternative point of view on brane transport
between phases.

I Possible applications in many classes of examples.


