Inferring hadron LCDAs using lattice $Q(C+E) D$

 Davide Giusti
JG|U

OUTLINE

LCDA of Hadrons in QCD and their Applications Mainz

21st January 2020

First lattice calculations

- C. Kane, C. Lehner, S. Meinel, A. Soni, arXiv:1907.00279
- RM123 \& Soton Collaboration, arXiv:1908.10160

Phenomenological motivations

Electromagnetic and isospin-breaking effects

Given the present exper. and theor. (LQCD) accuracy, an important source of uncertainty are long distance electromagnetic and $\mathrm{SU}(2)$-breaking corrections,
$\left.\frac{\Gamma\left(K^{+} \rightarrow \ell^{+} v_{\ell}(\gamma)\right)}{\Gamma\left(\pi^{+} \rightarrow \ell^{+} v_{\ell}(\gamma)\right)}=\left(\frac{\left|V_{u s}\right|}{\left|V_{u d}\right|} \frac{f_{K}}{f_{\pi}}\right)^{2} \frac{M_{K^{+}}\left(1-m_{\ell}^{2} / M_{K^{+}}^{2}\right)^{2}}{M_{\pi^{+}}\left(1-m_{\ell}^{2} / M_{\pi^{+}}^{2}\right)^{2}}\left(1+\delta_{E M}+\delta_{S U(2)}\right)\right) \mathrm{K} / \pi$

For $\Gamma_{\mathrm{KI2}} / \Gamma_{\mathrm{\pi l2}}$
At leading order in ChPT both δ_{EM} and $\delta_{\mathrm{SU}(2)}$ can be expressed in terms of physical quantities (e.m. pion mass splitting, $f_{K} / f_{\Pi}, \ldots$)

- $\delta_{E M}=-0.0069(17)$ 25% of error due to higher orders $\Rightarrow 0.2 \%$ on $\Gamma_{\mathrm{K} 12} / \Gamma_{\text {T12 }}$ M.Knecht et al., 2000; V.Cirigliano and H.Neufeld, 201 I
- $\delta_{S U(2)}=\left(\frac{f_{K^{+}} / f_{\pi^{+}}}{f_{K} / f_{\pi}}\right)^{2}-1=-0.0044(12)$
25% of error due to higher orders
$\Rightarrow 0.1 \%$ on $\Gamma_{\mathrm{Kl} 12} / \Gamma_{\mathrm{Tl} 12}$
J.Gasser and H.Leutwyler, I985; V.Cirigliano and H.Neufeld, 201 I

ChPT is not applicable to D and B decays

Radiative corrections to leptonic B-meson decays

$B^{-} \rightarrow \ell^{-} \bar{\nu}_{e \gamma}$

The emission of a real hard photon removes the $\left(m_{\ell} / M_{B}\right)^{2}$ helicity suppression
This is the simplest process that probes (for large E_{γ}) the first inverse moment of the B-meson LCDA

$$
\frac{1}{\lambda_{B}(\mu)}=\int_{0}^{\infty} \frac{d \omega}{\omega} \Phi_{B+}(\omega, \mu)
$$

λ_{B} is an important input in QCD-factorization predictions for non-leptonic B decays but is poorly known
M. Beneke,V. M. Braun, Y. Ji, Y.-B.Wei, 20 I 8

Belle 2018: $\mathscr{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell} \gamma, E_{\gamma}>1 \mathrm{GeV}\right)<3.0 \cdot 10^{-6} \quad \longrightarrow \quad \lambda_{B}>0.24 \mathrm{GeV}$
QCD sum rules in HQET: $\lambda_{B}(1 \mathrm{GeV})=0.46(11) \mathrm{GeV}$
$B_{q} \rightarrow \ell^{+} \ell^{-(}(\gamma)$

Enhancement of the virtual corrections by a factor $M_{B} / \Lambda_{Q C D}$ and by large logarithms M. Beneke, C. Bobeth, R. Szafron, 2019

The real photon emission process is a clean probe of NP: sensitiveness to $F_{V, A, T V, T A}\left(E_{\gamma}\right)$

Lattice calculations of

$$
P^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}(\gamma)
$$

Leptonic decays at tree level

Since the masses of the pion and kaon are much smaller than M_{W} we use the effective Hamiltonian

$$
H_{e f f}=\frac{G_{F}}{\sqrt{2}} V_{q_{1, q_{2}}^{*}}^{*}\left(\overline{q_{2}} \gamma^{\mu}\left(1-\gamma_{5}\right) q_{1}\right)\left(\bar{v}_{\ell} \gamma_{\mu}\left(1-\gamma_{5}\right) \ell\right)
$$

This replacement is necessary in a lattice calculation, since $1 / a \ll M_{w}$
The rate is: $\quad \Gamma_{p^{ \pm}}^{(t r e)}\left(P^{ \pm} \rightarrow \ell^{ \pm} v_{\ell}\right)=\frac{G_{F}^{2}}{8 \pi}\left|V_{q q_{q}}\right|^{2}\left[f_{p}^{(0)}\right]^{2} M_{p^{ \pm}} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{M_{p^{ \pm}}^{2}}\right)^{2}$
In the absence of electromagnetism, the non-perturbative QCD effects are contained in a single number, the pseudoscalar decay constant

$$
A_{P}^{(0)} \equiv\langle 0| \bar{q}_{2} \gamma_{4} \gamma_{5} q_{1}\left|P^{(0)}\right\rangle=f_{P}^{(0)} M_{P}^{(0)}
$$

In the presence of electromagnetism it is not even possible to give a physical definition of f_{P}
J. Gasser and G.R.S. Zarnauskas, PLB 693 (2010) 122

Leptonic decays at O(α)

$\Gamma(E)=\Gamma_{0}+\Gamma_{1}(E)$ with $0 \leq E_{\gamma} \leq E$ is infrared finite F. Bloch and A. Nordsieck, 1937

Both Γ_{0} and $\Gamma_{1}(E)$ can be evaluated in a fully non-perturbative way in lattice simulations

The first lattice calculations of $\Gamma[\pi, K \rightarrow \ell \nu(\gamma)]$ have been finalized N. Carrasco et al. V. Lubicz et al. DG et al. M. Di Carlo et al. arXiv:1502.00257 arXiv:1611.08497 arXiv:1711.06537 arXiv:1904.08731

Real photon emission amplitude

$$
H_{W}^{\alpha r}(k, p)=\epsilon_{\mu}^{r}(k) H_{W}^{\alpha \mu}(k, p)=\epsilon_{\mu}^{r}(k) \int d^{4} y e^{i k \cdot y} \mathrm{~T}\langle 0| j_{W}^{\alpha}(0) j_{e m}^{\mu}(y)|P(\boldsymbol{p})\rangle
$$

$H_{W}^{\alpha r}(k, p)=\epsilon_{\mu}^{r}(k)\left\{H_{1}\left[k^{2} g^{\mu \alpha}-k^{\mu} k^{\alpha}\right]+H_{2}\left[\left(p \cdot k-k^{2}\right) k^{\mu}-k^{2}(p-k)^{\mu}\right](p-k)^{\alpha}\right]$

$$
-\xlongequal[m_{P}]{F_{V}} E_{\left.E^{\mu \alpha \gamma \beta} k_{\gamma} p_{\beta}+\frac{F_{A}}{m_{P}}\left[\left(p \cdot k-k^{2}\right) g^{\mu \alpha}-(p-k)^{\mu} k^{\alpha}\right], ~\right]}
$$

$$
H_{S D}^{\alpha \mu}(k, p)
$$

$$
+f_{f_{P}\left[g^{\mu \alpha}+\frac{(2 p-k)^{\mu}(p-k)^{\alpha}}{2 p \cdot k-k^{2}}\right]}
$$

$$
\} H_{p t}^{\alpha \mu}(k, p)
$$

$$
k_{\mu} H_{W}^{\alpha \mu}(k, p)=k_{\mu} H_{p t}^{\alpha \mu}(k, p)=i\langle 0| j_{W}^{\alpha}(0)|P(\boldsymbol{p})\rangle=f_{P} p^{\alpha}
$$

Real photon emission amplitude

By setting $k^{2}=0$, at fixed meson mass, the form factors depend on $p \cdot k$ only. Moreover, by choosing a physical basis for the polarization vectors, i.e. $\epsilon_{r}(\mathbf{k}) \cdot k=0$, one has

$$
\left.H_{W}^{\alpha r}(k, p)=\epsilon_{\mu}^{r}(\boldsymbol{k})\left\{-i \frac{F_{V}}{m_{P}} \varepsilon^{\mu \alpha \gamma \beta} k_{\gamma} p_{\beta}+\frac{F_{A}}{m_{P}}+\frac{f_{P}}{p \cdot k}\right]\left(p \cdot k g^{\mu \alpha}-p^{\mu} k^{\alpha}\right)+\frac{f_{P}}{p \cdot k} p^{\mu} p^{\alpha}\right\}
$$

In the case of off-shell photons $\left(k^{2} \neq 0\right) \longrightarrow \Gamma\left[K \rightarrow \ell \nu_{\ell} \ell^{+} \ell^{-}\right]$

For large photon energies and in the B-meson rest frame the form factors can be written as

$$
\begin{aligned}
& F_{V}\left(E_{\gamma}\right)=\frac{e_{u} M_{B} f_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)+\xi\left(E_{\gamma}\right)+\Delta \xi\left(E_{\gamma}\right) \\
& F_{A}\left(E_{\gamma}\right)=\frac{e_{u} M_{B} f_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)+\xi\left(E_{\gamma}\right)-\Delta \xi\left(E_{\gamma}\right)
\end{aligned}
$$

Euclidean correlators

$$
C_{W}^{\alpha r}(t, \boldsymbol{p}, \boldsymbol{k})=-i \varepsilon_{\mu}^{r}(\boldsymbol{k}) \int d^{4} y \int d^{3} \boldsymbol{x}\langle 0| \mathrm{T}\left\{j_{W}^{\alpha}(t, \mathbf{0}) j_{e m}^{\mu}(y)\right\} P(0, \boldsymbol{x})|0\rangle e^{E_{\gamma} t_{y}-i \boldsymbol{k} \cdot \boldsymbol{y}+i \boldsymbol{p} \cdot \boldsymbol{x}}
$$

The convergence of the integral over t_{y} is ensured by the safe analytic continuation from Minkowsky to Euclidean spacetime, because of the absence of intermediate states lighter than the pseudoscalar meson

$$
\left.\left.\begin{array}{c}
H_{W}^{\alpha r}(k, p)=\int d^{4} y e^{i k \cdot y} \epsilon_{\mu}^{r}(k) \mathrm{T}\langle 0| j_{W}^{\alpha}(0) j_{e m}^{\mu}(y)|P(p)\rangle \\
H_{W}^{\alpha r}(k, p)=H_{W, 1}^{\alpha r}(k, p)+H_{W, 2}^{\alpha r}(k, p) \quad j^{r}(\boldsymbol{k})=\int d^{3} y e^{-i \boldsymbol{k} \cdot \boldsymbol{y}} \epsilon_{\mu}^{r}(k) j_{e m}^{\mu}(0, \boldsymbol{y}) \\
H_{W, 1}^{\alpha r}(k, p)=-i \int_{-\infty}^{0} d t_{y}\langle 0| j_{W}^{\alpha}(0) e^{\left(H+E_{\gamma}-E_{P}\right) t_{y}} j^{r}(\mathbf{k})|P(p)\rangle \\
H_{W, 2}^{\alpha r}(k, p)=-i \int_{0}^{\infty} d t_{y}\langle 0| j^{r}(\mathbf{k}) e^{-\left(H-E_{\gamma}\right) t_{y}} j_{W}^{\alpha}(0)|P(p)\rangle
\end{array}\right] \sqrt{m_{P}^{2}+(\boldsymbol{p}-\boldsymbol{k})^{2}}+E_{\gamma}\right\rangle \sqrt{m_{P}^{2}+\boldsymbol{p}^{2}}, \quad|\boldsymbol{k}| \neq 0
$$

Form factors from Euclidean correlators

The physical form factors can be extracted directly from the Euclidean correlation functions (in the infinite-T limit)

$$
R_{W}^{\alpha r}(t ; \boldsymbol{p}, \boldsymbol{k})=\frac{2 E_{P}}{e^{-t\left(E_{p}-E_{\gamma}\right)}\langle P(\boldsymbol{p})| P|0\rangle} C_{W}^{\alpha r}(t ; \boldsymbol{p}, \boldsymbol{k})
$$

The numerical ratios $R_{W}^{\alpha r}(t ; \mathbf{p}, \mathbf{k})$ are expected to exhibit plateaux for $0 \ll t \ll T / 2$, where exponentially-suppressed contributions can be neglected. In that region the above ratios give access to matrix elements $H_{W}^{\alpha r}(k, p)$

Form factors from Euclidean correlators

RMI23 \& Soton Coll., arXiv:I908.10160
Within the electro-quenched approximation
 it is possible to choose arbitrary values of the spatial momenta by using different spatial b.c.for the quark fields

$$
\psi(x+\hat{\boldsymbol{k}} L)=\exp \left(2 \pi i \hat{\boldsymbol{k}} \cdot \boldsymbol{\theta}_{s} / L\right) \psi(x)
$$

$$
\begin{aligned}
& \boldsymbol{p}=\frac{2 \pi}{L}\left(\boldsymbol{\theta}_{0}-\boldsymbol{\theta}_{s}\right) \\
& \boldsymbol{k}=\frac{2 \pi}{L}\left(\boldsymbol{\theta}_{0}-\boldsymbol{\theta}_{t}\right)
\end{aligned}
$$

Finite-volume effects are exponentially suppressed
We set:

$$
\boldsymbol{p}=(0,0,|\boldsymbol{p}|), \quad \boldsymbol{k}=\left(0,0, E_{\gamma}\right) \quad \epsilon_{1}^{\mu}=\left(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right), \quad \epsilon_{2}^{\mu}=\left(0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)
$$

Thus

$$
H_{A}^{i r}(k, p)=\frac{\epsilon_{r}^{i} m_{P}}{2} x_{\gamma}\left[F_{A}+\frac{2 f_{P}}{m_{P} x_{\gamma}}\right], \quad H_{V}^{i r}(k, p)=\frac{i\left(E_{\gamma} \boldsymbol{\epsilon}_{r} \wedge \boldsymbol{p}-E \boldsymbol{\epsilon}_{r} \wedge \boldsymbol{k}\right)^{i}}{m_{P}{ }^{P}} F_{V}
$$

$$
x_{\gamma}=\frac{2 p \cdot k}{m_{P}^{2}} \quad \text { with } \quad 0 \leq x_{\gamma} \leq 1-\frac{m_{2}^{2}}{m_{P}^{2}}
$$

Form factors from Euclidean correlators

We build the following estimators

$$
\begin{aligned}
& R_{A}(t)=\frac{1}{2 m_{P}} \sum_{r=1,2} \sum_{j=1,2} \frac{R_{A}^{j r}(t ; \boldsymbol{p}, \boldsymbol{k})}{\epsilon_{r}^{j}} \rightarrow G_{A}\left(x_{\gamma}\right)=\left[x_{\gamma} F_{A}\left(x_{\gamma}\right)+\frac{2 f_{P}}{m_{P}}\right] \\
& R_{V}(t)=\frac{m_{P}}{4} \sum_{r=1,2} \sum_{j=1,2} \frac{R_{V}^{j r}(t ; \boldsymbol{p}, \boldsymbol{k})}{i\left(E_{\gamma} \boldsymbol{\epsilon}_{r} \wedge \boldsymbol{p}-E_{P} \boldsymbol{\epsilon}_{r} \wedge \boldsymbol{k}\right)^{j}} \rightarrow F_{V}\left(x_{\gamma}\right)
\end{aligned}
$$

In our numerical calculation the above ratios are built in terms of finite- T correlators and timereversal symmetries are exploited

Preliminary results

RMI23 \& Soton Coll., arXiv:I908.IOI60

$N_{f}=2+1+1$ twisted mass fermions

$a[\mathrm{fm}]=0.0885(36), 0.0815(30), 0.0619(18)$

- 17 ensembles; 3-4 different pion masses for each lattice spacing
- Pion masses down to $\simeq 230 \mathrm{MeV}$
- $\mathbf{2 5}$ different momentum configurations
$O(100)$ gauge configurations for each ensemble
Conserved electromagnetic current

C. Kane, C. Lehner, S. Meinel, A. Soni, arXiv: I 907.00279

- $N_{f}=2+1$ domain wall fermions
- $M_{\pi}=340$ (1) $\mathrm{MeV}, a=\mathrm{fm}$
- $\mathbf{p}_{K / D_{s}}=0$ and $\mathbf{p}_{\gamma}^{2} \in\{1,2,3,4,5\}\left(\frac{2 \pi}{L}\right)^{2}$
- 25 gauge configurations
- Local electromagnetic current + non-perturbative RCs

$$
\begin{aligned}
& \frac{4 \pi}{\alpha \Gamma_{0}^{\text {tree }}} \frac{d \Gamma_{1}^{\mathrm{SD}}}{d x_{\gamma}}=\frac{m_{P}^{2}}{6 f_{P}^{2} r_{\ell}^{2}\left(1-r_{\ell}^{2}\right)^{2}}\left[F_{V}\left(x_{\gamma}\right)^{2}+F_{A}\left(x_{\gamma}\right)^{2}\right] f^{\mathrm{SD}}\left(x_{\gamma}\right) \\
& \frac{4 \pi}{\alpha \Gamma_{0}^{\text {tree }}} \frac{d \Gamma_{1}^{\mathrm{INT}}}{d x_{\gamma}}=-\frac{2 m_{P}}{f_{P}\left(1-r_{\ell}^{2}\right)^{2}}\left[F_{V}\left(x_{\gamma}\right) f_{V}^{\mathrm{INT}}\left(x_{\gamma}\right)+F_{A}\left(x_{\gamma}\right) f_{A}^{\mathrm{INT}}\left(x_{\gamma}\right)\right]
\end{aligned}
$$

$K^{\mathrm{SD}\left(x_{\gamma}\right)}=\frac{m_{P}^{2}}{6 f_{p}^{2} r_{\ell}^{2}\left(1-r_{\ell}^{2}\right)^{2}}{ }^{\text {sD }}\left(x_{\gamma}\right)$
$K_{V, A}^{\mathrm{NT}}\left(x_{\gamma}\right)=-\frac{2 m_{P}}{f_{P}\left(1-r_{\ell}^{2}\right)^{2}} f_{V, A}^{\mathrm{NT}}\left(x_{\gamma}\right)$
$\mathrm{K} \rightarrow \mathrm{P}_{\mathrm{Hv} \mathrm{\gamma}}$

$\mathrm{K} \rightarrow \mathrm{evy}$

Figure 2: The kernels $K^{\mathrm{SD}}\left(x_{\gamma}\right)$ (blue, left plots), $K_{V}^{\mathrm{INT}}\left(x_{\gamma}\right)$ (orange, right plots) and $-K_{A}^{\mathrm{INT}}\left(x_{\gamma}\right)$ (green, right plots) for the $K \rightarrow \mu \nu \gamma$ and $K \rightarrow e \nu \gamma$ decays.

Conclusions and future perspectives

- Full lattice calculations of radiative corrections to leptonic decay rates are possible
-The form factors for real emissions are accessible from Euclidean correlators
- Preliminary results are very encouraging. Still more work is needed and refined analyses are ongoing

OLattice calculations of radiative leptonic B-meson decays at high photon energy could provide useful information to constrain the first inverse moment of the B-meson LCDA

Supplementary
 slides

A strategy for Lattice QCD:

The isospin-breaking part of the Lagrangian

is treated as a perturbation

RM123 Collaboration

(1) The (md-mu) expansion

- Identify the isospin-breaking term in the QCD action

$$
\begin{aligned}
S_{m} & =\sum_{x}\left[m_{u} \bar{u} u+m_{d} \bar{d} d\right]=\sum_{x}\left[\frac{1}{2}\left(m_{u}+m_{d}\right)(\bar{u} u+\bar{d} d)-\frac{1}{2}\left(m_{d}-m_{u}\right)(\bar{u} u-\bar{d} d)\right]= \\
& =\sum_{x}\left[m_{u d}(\bar{u} u+\bar{d} d)-\Delta m(\bar{u} u-\bar{d} d)\right]=S_{0}-\Delta m \hat{S} \longleftarrow \hat{\mathrm{~S}}=\Sigma_{x}(\bar{u} u-\bar{d} d)
\end{aligned}
$$

- Expand the functional integral in powers of Δm
$\langle O\rangle=\frac{\int D \phi O e^{-s_{+}+\Delta m \hat{S}}}{\int D \phi e^{-s_{0}+\Delta m \hat{S}}} \simeq \frac{\int D \phi O e^{-s_{0}}(1+\Delta m \hat{S})}{\int D \phi e^{-s_{0}}(1+\Delta m \hat{S})} \simeq \frac{\langle O\rangle_{0}+\Delta m\langle O \hat{\mathrm{~S}}\rangle_{0}}{1+\Delta m|\hat{S}|_{0}}=\langle O\rangle_{0}+\Delta \stackrel{\downarrow}{m}\langle O \hat{S}\rangle_{0}$
for isospin symmetry
- At leading order in Δm the corrections only appear in the valence-quark propagators:
(disconnected contractions of ūu and
dd vanish due to isospin symmetry)

(2) The QED expansion

- Non-compact QED: the dynamical variable is the gauge potential $\mathrm{A}_{\mu}(\mathrm{x})$ in a fixed covariant gauge $\left(\nabla_{\mu}^{-} A_{\mu}(x)=0\right)$

$$
S_{Q E D}=\frac{1}{2} \sum_{x ; \mu v} A_{v}(x)\left(-\nabla_{\mu}^{-} \nabla_{\mu}^{+}\right) A_{v}(x) \stackrel{(p . b . c .)}{=} \frac{1}{2} \sum_{k ; \mu v} \tilde{A}_{v}^{*}(k)\left(2 \sin \left(k_{\mu} / 2\right)\right)^{2} \tilde{A}_{v}(k)
$$

- The photon propagator is IR divergent \rightarrow subtract the zero momentum mode
- Full covariant derivatives are defined introducing QED and QCD links:

$$
A_{\mu}(x) \rightarrow E_{\mu}(x)=e^{-i a e A_{\mu}(x)}
$$

$$
\underbrace{D_{\mu}^{+} q_{f}(x)=\left[E_{\mu}(x)\right]^{e_{f}} U_{\mu}(x) q_{f}(x+\hat{\mu})-q_{f}(x)}_{\text {QED }} \longleftrightarrow \text { QCD }
$$

- Since $E_{\mu}(x)=e^{-i e A_{\mu}(x)}=1-i e A_{\mu}(x)-1 / 2 e^{2} A_{\mu}^{2}(x)+\ldots$ the expansion leads to:

$$
\left(e_{f} e\right)^{2} \xrightarrow{M_{3}}
$$

+ counterterms

The QED expansion

for the quark propagator

$$
\begin{aligned}
& \Delta \longrightarrow{ }^{ \pm}= \\
& \left(e_{f} e\right)^{2} \xrightarrow{\text { SM}}+\left(e_{f} e\right)^{2} \xrightarrow{\text { MN }}-\left[m_{f}-m_{f}^{0}\right]-\otimes-\infty\left[m_{f}^{c r}-m_{0}^{c r}\right] \text {-Q- } \\
& -e^{2} e_{f} \sum_{f_{1}} e_{f_{1}} \xrightarrow{\text { Sn }}-e^{2} \sum_{f_{1}} e_{f_{1}}^{2} \xrightarrow{\text { () }}-e^{2} \sum_{f_{1}} e_{f_{1}}^{2} \xrightarrow{\text { 〇~/ }}+e^{2} \sum_{f_{1} f_{2}} e_{f_{1}} e_{f_{2}} \xrightarrow{\text { On }}
\end{aligned}
$$

In the electro-quenched approximation:
$\Delta \longrightarrow{ }^{ \pm}=\left(e_{f} e\right)^{2}\left[\stackrel{\Im}{M}_{\longrightarrow}^{\mathcal{N}^{\mathcal{M}}}\right]-\left[m_{f}-m_{f}^{0}\right]-\otimes-\mp\left[m_{f}^{c r}-m_{0}^{c r}\right]$

Lattice calculation of Γ_{0} at $\mathrm{O}(\alpha)$

- A technical but important point:

$$
\begin{aligned}
\delta C^{(q)}(t)_{\alpha \beta}= & -\int d^{3} \vec{x} d^{4} x_{1} d^{4} x_{2}\langle 0| T\left\{J_{W}^{v}(0) j_{\mu}\left(x_{1}\right) \phi^{\dagger}(\vec{x},-t)\right\}|0\rangle \\
& \times \Delta\left(x_{1}, x_{2}\right)\left(\gamma_{v}\left(1-\gamma^{5}\right) S\left(0, x_{2}\right) \gamma_{\mu}\right)_{\alpha \beta} e^{E_{\ell} t_{2}-i \vec{p}_{\ell} \cdot \vec{x}_{2}}
\end{aligned}
$$

We need to ensure that the t_{2} integration converges as $t_{2} \rightarrow \infty$. The large t_{2} behavior is given by the factor $\exp \left[\left(E_{\ell}-\omega_{\ell}-\omega_{\gamma}\right) t_{2}\right]$

$$
\begin{gathered}
E_{\ell}=\sqrt{\vec{p}_{\ell}^{2}+m_{\ell}^{2}} \quad \omega_{\ell}=\sqrt{\vec{k}_{\ell}^{2}+m_{\ell}^{2}} \quad \omega_{\gamma}=\sqrt{\vec{k}_{\gamma}^{2}+m_{\gamma}^{2}} \\
\\
\Rightarrow\left(\omega_{\ell}+\omega_{\gamma}\right)_{\min }=\sqrt{\left(m_{\ell}^{2}+m_{\gamma}^{2}\right)+\vec{p}_{\ell}^{2}}>E_{\ell}
\end{gathered}
$$

$$
\vec{k}_{\ell}+\vec{k}_{\gamma}=\vec{p}_{\ell}
$$

The integral is convergent and the continuation from Minkowski to Euclidean space can be performed (same if we set $m_{r}=0$ but remove the photon zero mode in FV).

CONDITIONS: - mass gap between the decaying particle and the intermediate states - absence of lighter intermediate states

The strategy

$$
\Gamma\left[P_{\ell 2}\right]=\left(\Gamma_{0}-\Gamma_{0}^{p t}\right)+\left(\Gamma_{0}^{p t}+\Gamma_{1}^{p t}(E)\right)
$$

The contributions from soft virtual photon to Γ_{0} and Γ_{0}^{pt} in the first term are exactly the same and the IR divergence cancels in the difference $\Gamma_{0}-\Gamma_{0}^{\mathrm{pt}}$.

The sum $\Gamma_{0}^{p t}+\Gamma_{1}^{p t}(E)$ in the second term is also IR finite since it is a physically well defined quantity. This term can be thus calculated in perturbation theory with a different IR cutoff.

The two terms are also separately gauge invariant.

$$
\begin{gathered}
\Delta \Gamma_{0}(L)=\Gamma_{0}(L)-\Gamma_{0}^{p t}(L) \\
\left.\Gamma^{p t}(E)=\lim _{m_{\gamma} \rightarrow 0}\left[\Gamma_{0}^{p t}\left(m_{\gamma}\right)+\Gamma_{1}^{p t}\left(E, m_{\gamma}\right)\right)\right]
\end{gathered}
$$

Leptonic decays at $O(\alpha)$: RESULTS

Structure dependent contributions to decays of D and B mesons

- For the studies of D and B mesons decays we cannot apply ChPT
- For B mesons in particular we have another small scale, $m_{B^{*}}-m_{B} \simeq 45 \mathrm{MeV}$ \square the radiation of a soft photon may still induce sizeable SD effects
- A phenomenological analysis based on a simple pole model for F_{V} and F_{A} confirms this picture D. Becirevic et al., PLB 681 (2009) 257

$F_{V} \simeq \frac{\tilde{C}_{V}}{1-\left(p_{B}-k\right)^{2} / m^{2}} \quad$ Under this assumption the SD contributions to $B \rightarrow e V(\gamma)$ for $\mathrm{E}_{\gamma} \simeq 20 \mathrm{MeV}$ can be very large, but are small for
$F_{A} \simeq \frac{\tilde{C}_{A}}{1-\left(p_{B}-k\right)^{2} / m_{B_{1}}^{2}}$ $B \rightarrow \mu \nu(\gamma)$ and $B \rightarrow \tau v(\gamma)$
A lattice calculation of F_{V} and F_{A} would be very useful

$$
R_{1}^{A}(\Delta E)=\frac{\Gamma_{1}^{\mathrm{A}}(\Delta E)}{\Gamma_{0}^{\alpha, \mathrm{pt}}+\Gamma_{1}^{p \mathrm{t}}(\Delta E)}, \quad \mathrm{A}=\{\mathrm{SD}, \mathrm{INT}\}
$$

SD = structure dependent INT = interference

R

- Interference contributions are negligible in all the decays
- Structure-dependent contributions can be sizable for $K \rightarrow e v(\gamma)$ but they are negligible for $\Delta E<20 \mathrm{MeV}$ (which is experimentally accessible)

