Light-cone distribution amplitudes from Euclidean correlation functions

Philipp Wein

Institut für Theoretische Physik Universität Regensburg

January 21, 2020, Mainz

EPJ C78 (2018) 217, PRD 98 (2018) 094507

Definition of distribution amplitudes

$$|\pi\rangle = |\bar{q}q\rangle + |\bar{q}gq\rangle + \dots$$

- hard exclusive processes are sensitive to
 - Fock states with smallest number of partons
 - the distribution of the momentum within a Fock state at small transverse distances
- this information is contained in light-cone DAs; leading twist DA ϕ_π

$$\langle 0|\bar{u}(z)[z,-z] \not z \gamma_5 u(-z)|\pi(p)\rangle = iF_{\pi} \, p \cdot z \int_0^1 du \, e^{i(2u-1)p \cdot z} \phi_{\pi}(u,\mu) \qquad \underline{z^2 = 0}$$

- quark and antiquark carry the momentum fraction u and $\bar{u} = 1 u$, respectively
- physical information: complementary to PDFs
- lattice technique: very similar to PDFs

The BaBar Puzzle

plot taken from PRD 86 (2012) 077504

data from

CLEO (1998, blue trianlges) BaBar (2009, red circles) Belle (2012, green squares)

• solid line: result obtained for the asymptotic pion DA $\phi(u) = 6u(1-u)$

dashed lines: results for various DA models

- BaBar Puzzle: the continuous rising exhibited by the BaBar data seemed to contradict collinear factorization at intermediate momentum transfer
- the Belle data does not support such a conclusion anymore

 \Rightarrow additional information from lattice QCD is highly valuable

Lattice QCD in a nutshell

- evaluate pathintegral numerically on a 4D lattice
- the quark fields q live on lattice sites

- the gauge field U is represented by 3×3 matrices on the links between the sites
- after integrating out fermionic degrees of freedom, e.g.,

$$\langle q(x)\bar{q}(y)\rangle = \frac{1}{Z}\int \mathcal{D}U \det(M[U])e^{-S_E[U]} (M[U])_{xy}^{-1}$$

 $M \equiv \mathsf{Dirac} \ \mathsf{matrix}$

- one considers Euclidean space-time (i.e., imaginary times) $\Rightarrow \det(M[U])e^{-S_E[U]}$ can be used as weight in a Monte-Carlo integration
- small problem: we cannot evaluate quark fields at light-like separations

Lattice methods

Problem: on a Euclidean space-time one cannot realize nontrivial lightlike distances

- - higher moments \rightarrow problems with renormalization (operator mixing)
- new approach: relate DAs to correlation functions at spacelike distance
 - \rightarrow requires large hadron momenta
 - \rightarrow relies heavily on pQCD
 - ightarrow large higher twist contributions
 - **•** Option 1: use a nonlocal operator $\langle 0|\bar{q}(z)\Gamma[z,0]q(0)|\pi\rangle$ $\underline{z^2 < 0}$

Ji, PRL 110 (2013) 262002

• Option 2: use two local operators $\langle 0|\bar{q}(z)\Gamma_1q(z)\bar{q}(0)\Gamma_2q(0)|\pi\rangle = \frac{z^2 < 0}{|z|^2}$

Braun, Müller, EPJ **C55** (2008) 349 Ma, Qiu, PRL **120** (2018) 022003

... (e.g., scalar auxiliary quark, heavy quark, etc.)

Lattice methods

Problem: on a Euclidean space-time one cannot realize nontrivial lightlike distances

- <u>traditional solution</u>: calculate Mellin moments of the DAs (\doteq local derivative ops.) talk by Gunnar, yesterday (JHEP 1908 (2019) 065, EPJ A55 (2019) 116)
 - \blacktriangleright higher moments \rightarrow problems with renormalization (operator mixing)
- **new approach:** relate DAs to correlation functions at spacelike distance
 - \rightarrow requires large hadron momenta
 - \rightarrow relies heavily on pQCD
 - \rightarrow large higher twist contributions
 - **•** Option 1: use a nonlocal operator $\langle 0|\bar{q}(z)\Gamma[z,0]q(0)|\pi\rangle$ $\underline{z^2<0}$ Ji. PRL 110 (2013) 262002
 - **Option 2: use two local operators** $\langle 0|\bar{q}(z)\Gamma_1q(z)\bar{q}(0)\Gamma_2q(0)|\pi \rangle$

 $z^2 < 0$ Braun, Müller, EPJ C55 (2008) 349 Ma, Qiu, PRL 120 (2018) 022003

- nice features of **Option 2**:
 - circumvents all problems with renormalization of nonlocal operators
 - off-axis directions possible (no problems with cusp anomalous dimension)

Motivation Calculation Results Brand-new Summary

$DA \leftrightarrow$ correlation function (schematically & oversimplified)

our ansatz: (also works when using the Wilson-line operator)

• parametrize DA (& higher twist effects) and fit directly to the lattice data

recently: JHEP 10 (2019) 137 (qPDF), PRD 100 (2019) 034516 (qPDF),

PRD 100 (2019) 114512 (pPDF), PRD 99 (2019) 074507 (latt- σ)

• basic idea very similar to the socalled "lattice cross section" approach for PDFs

cf. arXiv:2001.04960 (pion PDF)

[also called "factorizable matrix elements", PoS LATTICE2018 (2018) 018 (nice review by C. J. Monahan)]

$$\mathbb{T}_{XY}(p \cdot z, z^2) = \langle 0 | J_X^{\dagger}(\frac{z}{2}) J_Y(-\frac{z}{2}) | \pi^0(p) \rangle$$
$$J_S = \bar{q} u \,, \quad J_P = \bar{q} \gamma_5 u \,, \quad J_V^{\mu} = \bar{q} \gamma^{\mu} u \equiv J_{V^{\mu}} \,, \quad J_A^{\mu} = \bar{q} \gamma^{\mu} \gamma_5 u \equiv J_{A^{\mu}}$$

$$\begin{split} \mathbb{T}_{\rm SP} &= T_{\rm SP} \\ \mathbb{T}_{\rm VV}^{\mu\nu} &= \frac{i\varepsilon^{\mu\nu\rho\sigma}p_{\rho}z_{\sigma}}{p\cdot z} T_{\rm VV} \\ \mathbb{T}_{\rm VA}^{\mu\nu} &= \frac{p^{\mu}z^{\nu} + z^{\mu}p^{\nu} - g^{\mu\nu}p \cdot z}{p\cdot z} T_{\rm VA} + \frac{p^{\mu}z^{\nu} - z^{\mu}p^{\nu}}{p\cdot z} T_{\rm VA}^{(2)} + \frac{2z^{\mu}z^{\nu} - g^{\mu\nu}z^{2}}{z^{2}} T_{\rm VA}^{(3)} \\ &+ \frac{2p^{\mu}p^{\nu} - g^{\mu\nu}p^{2}}{p^{2}} T_{\rm VA}^{(4)} + g^{\mu\nu}T_{\rm VA}^{(5)} \end{split}$$

- similar for PS, AA, AV
- q is an auxiliary quark $q \neq u,d$, but $m_q = m_u = m_d$

$$T_{\rm XY}(p \cdot z, z^2) = F_{\pi} \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 du \, e^{i(u-1/2)p \cdot z} \phi_{\pi}(u) + \mathcal{O}(\alpha_s) + \text{higher twist}}_{\equiv \Phi^{\rm XY}(p \cdot z, z^2)}$$

$$T_{\rm XY}(p \cdot z, z^2) = F_{\pi} \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 du \, e^{i(u-1/2)p \cdot z} \phi_{\pi}(u) + \mathcal{O}(\alpha_s) + \text{higher twist}}_{\equiv \Phi^{\rm XY}(p \cdot z, z^2)}$$

$$T_{\rm XY}(p \cdot z, z^2) = F_{\pi} \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 du \, e^{i(u-1/2)p \cdot z} \phi_{\pi}(u) + \mathcal{O}(\alpha_s) + \text{higher twist}}_{\equiv \Phi^{\rm XY}(p \cdot z, z^2)}$$

$$T_{\rm XY}(p \cdot z, z^2) = F_{\pi} \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 du \, e^{i(u-1/2)p \cdot z} \phi_{\pi}(u) + \mathcal{O}(\alpha_s) + \text{higher twist}}_{\equiv \Phi^{\rm XY}(p \cdot z, z^2)}$$

$$T_{\rm XY}(p \cdot z, z^2) = F_{\pi} \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 du \, e^{i(u-1/2)p \cdot z} \phi_{\pi}(u) + \mathcal{O}(\alpha_s) + \text{higher twist}}_{\equiv \Phi^{\rm XY}(p \cdot z, z^2)}$$

$$T_{\rm XY}(p \cdot z, z^2) = F_{\pi} \frac{p \cdot z}{2\pi^2 z^4} \underbrace{\int_0^1 du \, e^{i(u-1/2)p \cdot z} \phi_{\pi}(u) + \mathcal{O}(\alpha_s) + \text{higher twist}}_{\equiv \Phi^{\rm XY}(p \cdot z, z^2)}$$

Obtaining the matrix elements from Lattice

- the Z_X is the renormalization factor for the respective current (nonperturbatively calculated in Rl'-MOM \rightarrow conversion to $\overline{\text{MS}}$ in 3-loop PT)
- we set both, the renormalization and the factorization scale to $\mu=2/|\mathbf{z}|$
- phase factor shifts the currents to the symmetric position

Obtaining the matrix elements from Lattice

- smearing: momentum smearing
 - \rightarrow improved overlap with hadrons at large momentum

PRD 93 (2016) 094515

- new: we use stochastic estimation
 - \rightarrow get a volume average at the cost of some stochastic noise
 - ightarrow much smaller statistical error

Momentum smearing

plot taken from PRD 93 (2016) 094515

- idea: smear the quark fields such that they carry momentum
- can be achieved by appropriate phase factors
- \Rightarrow leads to larger overlap with hadrons carrying momentum
- essential ingredient for many lattice QCD calculations

Discretization effects of the free Wilson propagator

propagator comparison:

free Wilson $\underline{vs.}$ free continuum

- large effects in chiral even (blue, ∝ ≠) and chiral odd (red, ∝ 1) part
- in continuum: chiral odd part strongly suppressed
- problem on lattice: large artefacts from terms removing the doublers

solution:

1 use observables, where the chiral odd part does not contribute at tree-level

$$\frac{1}{2} \left(T_{\rm SP} + T_{\rm PS} \right), \qquad \qquad \frac{1}{2} \left(T_{\rm VA} + T_{\rm AV} \right), \qquad \qquad \frac{1}{2} \left(T_{\rm VV} + T_{\rm AA} \right)$$

- 2 introduce correction factor for chiral even part
- 3 most important: ignore distances where the correction > 10% or $|{f z}| < 3a$

Discretization effects of the free Wilson propagator

propagator comparison:

free Wilson $\underline{vs.}$ free continuum

- large effects in chiral even (blue, ∝ ≠) and chiral odd (red, ∝ 1) part
- in continuum: chiral odd part strongly suppressed
- problem on lattice: large artefacts from terms removing the doublers

note:

- 1 upper limit of range determined by $\mu=2/|\mathbf{z}|\geq 1\,\mathrm{GeV}$
 - $\Rightarrow a \rightarrow a/2$ shifts the upper limit by a factor 4 to the right
- 2 discretization effects are strongest along the axes (crosses)
 - \rightarrow similar for Wilson-line operators?

in case of the pseudo-DA formalism: reduced matrix elements might be beneficial

Numerical study

Simulation details:

from PRD 98 (2018) 094507

- mass-degenerate $N_f=2$ nonperturbatively improved Wilson (clover) fermions and Wilson gluon action
- $L^3 \times T = 32^3 \times 64$
- coupling parameter $\beta = 5.29 \doteq$ lattice spacing $a \approx 0.071 \, \text{fm} = (2.76 \, \text{GeV})^{-1}$
- mass parameter $\kappa = 0.13632 \doteq$ pion mass $m_{\pi} = 0.10675(59)/a \approx$ 295 MeV
- 12 momenta in different directions with 0.54 GeV $\leq |\mathbf{p}| \leq$ 2.03 GeV

DA parametrizations: at the scale $\mu = 2 \text{ GeV}$

• Expansion in orthogonal (Gegenbauer) polynomials (truncated at n = 2 or n = 4)

$$\phi_{\pi}(u,\mu) = 6u(1-u) \sum_{n=0,2,\dots}^{\infty} a_n^{\pi}(\mu) C_n^{3/2}(2u-1), \qquad a_0^{\pi} = 1 \text{ (normalization)}$$

alternatively we try

$$\phi_{\pi}(u,\mu) \propto \left[u(1-u)
ight]^{lpha}, \qquad {
m normalized to one}$$

Combined fit to all channels (Legacy Plot)

- two parameters: α , δ^{π}_2
- two parameters: a_2^{π} , δ_2^{π}
- three parameters: a_2^{π} , a_4^{π} , δ_2^{π} \leftarrow yields unreasonable values for a_4^{π}

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

- splitting between SP+PS and VV+AA data is consistent with the pQCD expectation
- "jumping" of the points shows large discretization effects
- probably 2 loop perturbative effects are crucial

Result for DAs

- errorbands show only the statistical error
- parameters: $\alpha = 0.13(5)$, $\delta_2^{\pi} = 0.223(4) \,\text{GeV}^2$ $a_2^{\pi} = 0.30(3)$, $\delta_2^{\pi} = 0.223(4) \,\text{GeV}^2$
- both agree perfectly well with our data: Why?
- only relevant information from DA for our data points is a_2^{π} and $a_2^{\pi} = 0.31(3)$
- **Disclaimer:** current systematic uncertainty for a_2^{π} , δ_2^{π} is at least $\approx 50\%$ (fit range variation, estimate for two-loop correction)

Whats the problem with a_4^{π} ?

$$\phi_{\pi}(u,\mu) = 6u(1-u) \sum_{n=0,2,\dots}^{\infty} a_n^{\pi}(\mu) C_n^{3/2}(2u-1)$$

$$\Rightarrow \quad \Phi^{XY} = \sum_{n=0,2,\dots}^{\infty} a_n^{\pi}(\mu) \mathcal{F}_n(p \cdot z/2) + \mathcal{O}(\alpha_s) + \text{higher twist}$$

Expansion in conformal partial waves \mathcal{F}_n

- one needs $|p\cdot z|\gtrsim 5$ to constrain a_4^π to reasonable values
- to discriminate between DAs on last slide: $|p \cdot z| \gtrsim 8$?

Summary (so far)

- we have analysed Euclidean correlation functions with two local currents
- global fit to multiple channels yields qualitatively reasonable results (universality)
- first determination of HT normalization δ_2^{π} from lattice QCD (in the ballpark of QCD sum rule estimates)
- statistical accuracy very good for a_2^π and δ_2^π

BUT:

- systematic uncertainty for a_2^{π} and δ_2^{π} is very large (discretization effects, two-loop perturbative correction not taken into account)
- with current data no determination of a_4^{π} possible

Next steps:

- goto smaller lattice spacings ($a \approx 0.04 \, \text{fm}$ would be nice)
- perturbative two-loop calculation for coefficient functions
- to be sensitive to a_4^{π} : goto larger momenta ($|\mathbf{p}| > 3 \, {\sf GeV}$ would be nice)

Summary (so far)

- we have analysed Euclidean correlation functions with two local currents
- global fit to multiple channels yields qualitatively reasonable results (universality)
- first determination of HT normalization δ_2^{π} from lattice QCD (in the ballpark of QCD sum rule estimates)
- statistical accuracy very good for a_2^π and δ_2^π

BUT:

- systematic uncertainty for a_2^{π} and δ_2^{π} is very large (discretization effects, two-loop perturbative correction not taken into account)
- with current data no determination of a_4^{π} possible

Next steps:

- goto smaller lattice spacings (approx 0.04 fm would be nice) \checkmark
- perturbative two-loop calculation for coefficient functions \checkmark (for VV)
- to be sensitive to a_4^{π} : goto larger momenta ($|\mathbf{p}| > 3 \, {\sf GeV}$ would be nice) not yet

Ensemble details (CLS ensemble J501)

- $N_f = 2 + 1$ nonperturbatively improved Wilson (clover) fermions and Wilson gluon action
- $L^3 \times T = 64^3 \times 192$
- coupling parameter $\beta = 3.85 \doteq$ lattice spacing $a \approx 0.039 \text{ fm} = (5.06 \text{ GeV})^{-1}$
- mass parameter:
 - $\kappa_{\ell} = 0.1369032 \stackrel{\circ}{=} \text{pion mass } m_{\pi} \approx 333 \,\text{MeV}$
 - ▶ $\kappa_s = 0.136749715 \doteq$ kaon mass $m_K \approx$ 445 MeV
- currently: 4 momenta with $|\mathbf{p}| = 0.86 \text{ GeV}$ and $|\mathbf{p}| = 1.72 \text{ GeV}$ (space diagonal direction)
- data stored for $z_i = -8a, \ldots, 8a$, i.e., 17^3 data points in position space

- planned: $|\mathbf{p}| = 2.58 \,\text{GeV}$
- test runs with $|\mathbf{p}| = 3.44 \,\text{GeV} \rightarrow$ no signal possible (prohibitively expensive...)

Discretization effects

1.51.00.5

0.0

- relevant for discretization effects: distance measured in units of the lattice spacing
- upper limit for $|\mathbf{z}|$ due to $\mu = \frac{2}{|\mathbf{z}|} \gtrsim 1 \text{ GeV}$ less problematic
- note: only points plotted, where we have data

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- improved statistics due to:
 - larger lattice volume
 - forward-backward averaging implemented
- statements concerning universality still hold (multichannel fit possible)
- But: 2-loop coefficient function for VV+AA available
 - \rightarrow concentrate on this case in the following

- do we need even higher loop orders?
- are we sensitive to twist-6 contributions?

Higher twist formula (VV): twist 4

$$\frac{z^2}{4} \int_{0}^{1} du \, \cos[(u - \frac{1}{2})p \cdot z] \left[\frac{80}{3} \delta_2^{\pi} u^2 \bar{u}^2 + \frac{m_{\pi}^2}{12} u^2 \bar{u}^2 \left[42u\bar{u} - 13 + 18a_2^{\pi}(7 - 30u\bar{u}) \right] \right]$$

- do we need even higher loop orders?
- are we sensitive to twist-6 contributions?

Higher twist formula (VV): twist 4 (most important part)

$$\frac{z^2}{4} \int_{0}^{1} du \, \cos[(u - \frac{1}{2})p \cdot z] \left[\frac{80}{3} \delta_2^{\pi} u^2 \bar{u}^2 + \dots\right]$$

- do we need even higher loop orders?
- are we sensitive to twist-6 contributions?

Higher twist formula (VV): twist 4 (most important part) + twist 6

$$\frac{z^2}{4} \int_{0}^{1} du \, \cos[(u - \frac{1}{2})p \cdot z] \left[\frac{80}{3} \left(\delta_2^{\pi} + \delta_4^{\pi, VV} z^2 \right) u^2 \bar{u}^2 + \dots \right]$$

- do we need even higher loop orders?
- are we sensitive to twist-6 contributions?

Higher twist formula (VV): twist 4 (most important part) + twist 6 + twist 8

$$\frac{z^2}{4} \int_{0}^{1} du \, \cos[(u - \frac{1}{2})p \cdot z] \left[\frac{80}{3} \left(\delta_2^{\pi} + \delta_4^{\pi, VV} z^2 + \delta^{\pi_6, VV} z^4 \right) u^2 \bar{u}^2 + \dots \right]$$

- do we need even higher loop orders?
- are we sensitive to twist-6 contributions?
- fitted twist 6 term > twist 4 term at roughly $\mu = 1.5\,{
 m GeV}$
- \Rightarrow only allow for $\mu > 1.5 \,\text{GeV}$?
- \Rightarrow almost no sensitivity for DAs anymore! (even larger momenta necessary)

other possible explanations:

- remaining descretization artifact
- volume effect

• . . .

Preliminary conclusions and outlook

we have a window problem

- discretization effects \Rightarrow large distances preferable
- sensitivity to DAs/PDFs \Rightarrow large distances required (or even larger momenta)
- controlling higher twist \Rightarrow only at relatively small distances possible
- perturbation theory applicable \Rightarrow requires quite small distances

 $\underline{note:}$ this problem is also present in the quasi-/pseudo-DA/PDF approach

solutions?

- we need a better treatment of discretization effects (maybe "reduced" matrix elements similar to pseudo-DA/PDF approach helpful)
- data at even larger hadron momenta would be helpful
- higher twist: get better parametrization for large distance behavior from EFT? (maybe one can simultaneously address volume effects)
- two-loop PT for all channels (and eventually three-loop)

Preliminary conclusions and outlook (II)

- sensitivity to higher moments of DAs/PDFs very limited
 - a_2^{π} seems to be possible
 - a_4^{π} very challenging
 - (probably also true for other position space methods)
- systematic uncertainties are very large (discretization, perturbative expansion, higher twist effects, volume effects)
- we are not even talking about extrapolation to the continuum, to physical quark masses, and to infinite volumes yet
- \Rightarrow for the time being the moments method is the choice for quantitative results

cf. the talk by Gunnar, yesterday

This sounds so depressing...

Lets look on the bright side!

- we have two-loop coefficient functions for the VV channel
- statistics are very good
 - it is possible to identify systematic problems
 - one has a chance to analyze systematic effects
 - we might be able to find better ways to control the systematics
- there are large higher twist contributions
 ⇒ we can study higher twist effects!
- a systematic uncertainty of $\gtrsim 50\%$ for δ^{π}_2 is not too bad
 - considering its the very first determination from lattice QCD
 - once we understand the systematics: perfect playground to study higher twist effects