$\mathrm{B}_{\mathrm{uds}} \rightarrow \gamma$ Form Factors in LCSRs @NLO and $1 / \lambda_{B}$

Cosmology \& Particle Physics

Edinburgh University

LCDA2020
Mainz MITP , 23-29 Sep 2020

Overview

(1) $\mathrm{B}_{\mathrm{uds}} \rightarrow \gamma$ Form Factors light-LCDA with LCSR (brief remark about off-shell FFs)
(2) Use of Equation of Motion for FFs
(3) Match leading $1 / m_{b}$ terms for FFs with light-LCDA and B-LCDA
in progress

$$
F_{L C S R}^{B \rightarrow \gamma}(0) \propto \frac{Q_{q}}{m_{b}^{1 / 2}} \quad F_{B-L C D A}^{B \rightarrow \gamma}(0) \propto \frac{Q_{q}}{m_{b}^{1 / 2}} \frac{1}{\lambda_{B}}
$$

\Rightarrow extract a value for $1 / \lambda_{B}$

Non-technical Prologue

- $\mathrm{B} \rightarrow \gamma^{*}$ Form Factors come in various forms
- Two independent contributions proportional to parton charges

- What is the particle(s) coming from weak vertex?

Particle(s) from weak vertex with momenta q

- $F C N C Q b=Q q$ (need long distance in addition) :

$$
\mathrm{H}^{\text {weak }} \sim \mathrm{O}_{9,10}: B_{d, s} \rightarrow \ell^{+} \ell^{-} \gamma
$$

$$
\mathrm{H}^{\text {weak }} \sim \mathrm{O}_{7}: B_{d, s} \rightarrow \ell^{+} \ell^{-} \gamma
$$

$$
F^{*}\left(k^{2}\right)=F\left(0, k^{2}\right)
$$

flavoured

$$
\mathrm{H}_{\text {weak }} \sim \bar{q} \gamma_{\mu} b_{L} \partial^{\mu} a: B_{d, s} \rightarrow \ell^{+} \ell^{-} a
$$

$$
F\left(m_{a}^{2}, k^{2}\right) \rightarrow F^{*}\left(k^{2}\right)
$$

axion

or dark photon, scalar DM, ...

- $\operatorname{FCCC} Q b \neq Q q$:

$$
\mathrm{H}^{\text {weak }} \sim V_{u b} \bar{u} \gamma_{\mu} b_{L} \ell \gamma^{\mu} \nu_{L}: B_{u} \rightarrow \ell^{+} \nu \gamma
$$

- Physics: helicity suppression of $B \rightarrow f_{i} \bar{f}_{j}$ relieved in radiative decay!

A few references

- Charged $F\left(q^{2}\right)=F\left(q^{2}, 0\right)$

Korchemsky,Pirjol,Yan,'99, Bosch, Lange, Neubert, Paz'01 Descotes-G. Sachrajda'02,
Rohrwild,Beneke'11, Braun,Kohodjamirian'12, Wang'16, Shen, Wang'18 Braun, Beneke, Ji, Wei'18, ...

- Neutral $F\left(q^{2}\right)=F\left(q^{2}, 0\right)$

Krueger, Melikhov'02, Nikitin, Melikhov, '04,'17

Toy model for QCD-factorisation \& extracting $1 / \boldsymbol{\Lambda}_{B}$ from experiment (Bellell ...)

Const. Quark model computations.

- People who worked $B_{s} \rightarrow \mu \mu \gamma$

Guadagnioli,Reboud,Detori,RZ,Nikitin,Melikhov,Hazard,Petrov
@LHCb soft photon undetected in $B_{s} \rightarrow \mu \mu$ tail

- Flavoured Axions $B_{s} \rightarrow \mu \mu a$ vs $B_{s} \rightarrow \mu \mu \gamma \quad$ In competition with Albrecht, Stamou,Ziegler, RZ '19,
- Weak annihilation@LO $B_{q} \rightarrow V \ell \ell$

Ali, Braun'95, Khodjamirian, stoll, Wyler'95 Beneke, Feldman, Seidel'01, Lyon, RZ '13,

Form factor Counting

- Off-shell: $q^{2}, k^{2} \neq 0$ like $B \rightarrow V$ FF with " $k^{2}=m_{V}^{2 "} \Rightarrow 7$ FFs
- Off-shell but: $q^{2}=0$ like $B \rightarrow V$ FF $A_{0}(0)=A_{3}(0), T_{1}(0)=T_{2}(0)$
- On-shell: $k^{2}=0$, two photon polarisation in vector and tensor 5 FFs

type $\backslash J^{P}$	$\#$	1^{-}	1^{+}	1^{+}	0^{-}			
$F^{*}\left(q^{2}, k^{2}\right)$	7	$V_{\perp}^{*}\left(q^{2}, k^{2}\right)$	$V_{\\|}^{*}\left(q^{2}, k^{2}\right)$	$\hat{V}_{\mathbb{L}}^{*}\left(q^{2}, k^{2}\right)$	$P^{*}\left(q^{2}, k^{2}\right)$			
		$T_{\perp}^{*}\left(q^{2}, k^{2}\right)$	$T_{\\|}^{*}\left(q^{2}, k^{2}\right)$	$T_{\mathbb{L}}^{*}\left(q^{2}, k^{2}\right)$	--			
$F\left(q^{2}\right) \equiv$	4	$V_{\perp}\left(q^{2}\right)$	$V_{\\|}\left(q^{2}\right)$	$V_{\mathbb{L}}\left(q^{2}\right)=V_{\\|}\left(q^{2}\right)$	$P\left(q^{2}\right)=0$			
$F^{*}\left(q^{2}, 0\right)$		$T_{\perp}\left(q^{2}\right)$	$T_{\\| \\|}\left(q^{2}\right)$	$T_{\mathbb{L}}\left(q^{2}\right)=T_{\\|}\left(q^{2}\right)$	--			
$F^{*}\left(0, k^{2}\right)$	5	$V_{\perp}^{*}\left(0, k^{2}\right)$	$V_{\\|}^{*}\left(0, k^{2}\right)$	$\hat{V}_{\mathbb{L}}^{*}\left(0, k^{2}\right)=P^{*}\left(0, k^{2}\right)$	$P^{*}\left(0, k^{2}\right)$			
		$T_{\perp}^{*}\left(0, k^{2}\right)$	$T_{\\|}^{*}\left(0, k^{2}\right)=\left(1-\hat{k}^{2}\right) T_{\perp}^{*}\left(0, k^{2}\right)$	$T_{\mathbb{L}}^{*}\left(0, k^{2}\right)$	--			

- Useful for $B \rightarrow \mu \mu \gamma$ background to flavoured axion searches at LHCb

$$
P^{B_{s} \rightarrow \gamma^{*}}\left(q^{2}, k^{2}\right)=-2 k^{2}\left(\frac{1}{m_{B_{q}}} \frac{f_{\phi}^{\mathrm{em}} A_{0}^{B_{s} \rightarrow \phi}\left(q^{2}\right)}{\left(m_{\phi}^{2}-k^{2}\right)}+\ldots\right) \quad \begin{array}{r}
\text { from dispersion } \\
\text { representation }
\end{array}
$$

QCD sum rules results at LO Albrecht, Stamou,Ziegler, RZ '19,

Part 1

On-shell photon form factor @NLO with

 Light-Cone Sum Rules (LCSR) [photon-DA]
On-shell photon FF computed with photon-meson DA Light-Cone Sum Rules (LCSR)

- LCSR cover $q^{2}<12 \mathrm{GeV}^{2}$, extension possible if residue pole known

$$
\begin{aligned}
\langle\gamma| O_{\mu}^{V}\left|\bar{B}_{q}\right\rangle & =P_{\mu}^{\perp} V_{\perp}\left(q^{2}\right)-P_{\mu}^{\|} V_{\|}\left(q^{2}\right) \\
\langle\gamma| O_{\mu}^{T}\left|\bar{B}_{q}\right\rangle & =P_{\mu}^{\perp} T_{\perp}\left(q^{2}\right)-P_{\mu}^{\|} T_{\|}\left(q^{2}\right)
\end{aligned}
$$

$$
\text { vector: } O_{\mu}^{V} \equiv-2 / e m_{B_{q}} \bar{q} \gamma_{\mu} b_{L}
$$

$$
\text { tensor: } O_{\mu}^{T} \equiv 2 / e \bar{s} i q^{\nu} \sigma_{\mu \nu} b_{R}
$$

2-photon pol. $P_{\mu}^{\perp} \equiv \varepsilon_{\mu}\left(\epsilon^{*}, p_{B}, k\right), \quad P_{\mu}^{\|} \equiv i\left(p_{B} \cdot k \epsilon_{\mu}^{*}-k_{\mu}\left(p_{B} \epsilon^{*}\right)\right)$
a) Algebraic constraint: $T_{\perp}(0)=T_{\|}(0)$ (analogous to $\left.T_{1}(0)=T_{2}(0)\right)$
b) Signs of FF depends on convention of cov.-derivative!!!
c) Other FF notation $F_{V}=V_{\perp}, \quad F_{A}=V_{\|}$

* principle we have all off-shell results @NLO not in form of dispersion relation yet ** charged case contact term $\sim \Delta \mathrm{Q}$ - need to include further photon emission e.g. lepton

Aspect of Computation

- Information on FF contained 3-pt function

$$
\int_{x, y} e^{-i p_{B} \cdot x} e^{i k \cdot y}\langle 0| T j_{\rho}(y) J_{B_{q}}(x) O_{\mu}^{V}(0)|0\rangle
$$

Off-shell $k^{2} \neq 0$ photon
On-shell $k^{2}=0$ photon

> Twist= dim-spin

Aspects of the photon light-cone distribution amplitude

Balitsky, Braun, Kolesnichenko '88 Ball, Braun, Kivel '02

- Analogue of decay constant f_{π} is $f_{\gamma} "=\langle\bar{q} q\rangle \chi$, where χ is magnetic susceptibility of quarks w.r.t B-field (SR \& lattice similar size)
- Photon-DA taken to be asymptotic form $\phi_{\gamma}(u)=6 u \bar{u}$
- Gegenbauer moments "undetermined ", sum rúle not stable BBK'02
- cf. instanton model Polyakov et al indicate small corrections)

Aspects of the photon light-cone distribution amplitude

- Interpretation $\langle\gamma| \bar{q}(0) \sigma_{\alpha \beta} q(z)|0\rangle=i e Q_{q} f_{\gamma} \epsilon_{[\alpha}^{*} k_{\beta]}^{1} d u \int_{0}^{i \bar{u} k z} \phi_{\gamma}^{t=2}(u)+\ldots$

- Analogue of decay constant f_{π} is $f_{\gamma} "=\langle\bar{q} q\rangle \chi$, where χ is vacuum susceptibility of quarks w.r.t B-field (SR \& lattice similar res.)
- Photon-DA taken to be asymptotic form $\phi_{\gamma}(u)=6 u \bar{u}$
(Gegenbauer moments "undetermined", small cf. instanton model Polyakov et al (no indication large effects))

Computation per se

- Computed PT ($\mathrm{t}=1$) \& twist NLO and twist 3,4 LO in α_{s}

Main work PT @ NLO
3-pt function NLO

3 off-shell momenta \& massive and massless lines Master Integrals (fully analytic) in terms of $O\left(10^{3}\right)$ Goncharov fits
Mastrolia, Primo, Schubert, di Vita '17
\Rightarrow consistency checks

1) Algebraic identity: $T_{\perp}(0)=T_{\|}(0)$ (checks γ_{5}-implementation)
2) Renormalisation \& scale dep.
3) Equation of Motion (more shortly)

Preliminary plots: vector Form Factors *

- Charged \& neutral differ since Qq-part >> Qb-part.

[^0]
Preliminary plots: tensor Form Factors

- Recall: algebraic constraint: $T_{\perp}(0)=T_{\|}(0)$ (analogous to $T_{1}(0)=T_{2}(0)$)
- Qualitatively similar to vector FFs as D-FF small (recall EOM or LEET)

Breakdown \& scale-dependence

- Breakdown at specific point of charged and neutral vector FF

	$\mathrm{V}_{\perp}(0)^{B_{u} \rightarrow \gamma}(0)$	$\mathrm{V}_{\perp}(0)^{B_{d} \rightarrow \gamma}(0)$
$\mathrm{t}=1, \mathrm{LO}$	55%	60%
$\mathrm{t}=1, \mathrm{NLO}$	-7%	-7%
$\mathrm{t}=2, \mathrm{LO}$	33%	35%
$\mathrm{t}=2, \mathrm{NLO}$	-8%	-7%
$\mathrm{t}=3, \mathrm{LO}$	1%	1.2%
$\mathrm{t}=4, \mathrm{LO}$	-5%	-4.5%

Attention:

Breakdowns slightly misleading as different parts vary under scale \& Borel Mass variation but are rather stable as a sum.

$$
\langle\gamma| \bar{q} F_{\mu \nu} q|0\rangle \neq 0
$$

- Dependance on μ_{m} is much reduced due to NLO

[^1]
Part 2- Use of Equation of Motion

- Use of EOMs for Form Factors

Grinstein Pirjol'04 study correction to Isgur-Wise relation at low recoil
Hambrock, Hiller, Schacht, RZ '13 first application LCSR
Bharucha, Straub, RZ'15 more systematic exploitation
Janowskim Pullin, RZ 'in prep full check at NLO

- Essence

1) check of computation \& formalism
2) can reduce uncertainty of tensor vs vector Form Factors

EOM in QFT \Leftrightarrow relations between correlation functions

- EOM (straightforward) on physical states: $\left\langle\mathrm{K}^{*}\right| \ldots|\mathrm{I}\rangle$:

$$
i \partial^{\nu}\left(\bar{s} i \sigma_{\mu \nu}\left(\gamma_{5}\right) b\right)=-\left(m_{s} \pm m_{b}\right) \bar{s} \gamma_{\mu}\left(\gamma_{5}\right) b+i \partial_{\mu}\left(\bar{s}\left(\gamma_{5}\right) b\right)-2 \bar{s} i \overleftarrow{D}_{\mu}\left(\gamma_{5}\right) b
$$

- leads to 4 equation of motion

$$
\begin{aligned}
& T_{1}\left(q^{2}\right)+\left(m_{b}+m_{s}\right) \mathcal{V}_{1}\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0, \\
& T_{2}\left(q^{2}\right)+\left(m_{b}-m_{s}\right) \mathcal{V}_{2}\left(q^{2}\right)+\mathcal{D}_{2}\left(q^{2}\right)=0, \\
& T_{3}\left(q^{2}\right)+\left(m_{b}-m_{s}\right) \mathcal{V}_{3}\left(q^{2}\right)+\mathcal{D}_{3}\left(q^{2}\right)=0, \\
& \left(m_{b}-m_{s}\right) \mathcal{V}_{P}\left(q^{2}\right)+\left(\mathcal{D}_{P}\left(q^{2}\right)-\frac{q^{2}}{m_{b}+m_{s}} \mathcal{V}_{P}\left(q^{2}\right)\right)=0
\end{aligned}
$$

where Di's are form factors of derivative operator:
$\left\langle K^{*}(p, \eta)\right| \bar{s}(2 i \overleftarrow{D})^{\mu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{D}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{D}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{D}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{D}_{P}\left(q^{2}\right)$

1) EOM as consistency check

$$
T_{1}\left(q^{2}\right)+\left(m_{b}+m_{s}\right) \mathcal{V}_{1}\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0
$$

- Any form factor determination has to obey $\mathrm{EOM} \Rightarrow$ consistency check

new class of
diagrams due to
covariant derivative
- $B \rightarrow V$: LCSR checked LO up to twist 5 , including $\mathbf{O}\left(\mathbf{m}_{\mathbf{s}}\right)$-corrections
- $B \rightarrow \gamma$: checked @LO up to twist 3-particle: $P T, \chi, f_{3 \gamma},\langle\bar{q} q\rangle$, @NLO twist-1 (2-loop diagram) \& twist-2
\Rightarrow non-trivial check Photon-DA classification of Ball, Braun, Kivel '02
*more involved off-shell photon, further terms

$$
\begin{aligned}
& \left\langle T \bar{q} i\left(D^{\nu} i \sigma_{\mu \nu}+\stackrel{\leftrightarrow}{D}_{\mu}\right) \gamma_{5} b(x) j_{B}(y) j_{\rho}(0)\right\rangle+\left(m_{q}-m_{b}\right)\left\langle T \bar{q} \gamma_{\mu} \gamma_{5} b(x) j_{B}(y) j_{\rho}(0)\right\rangle= \\
& -i \delta(x-0) g_{\mu \rho}\left(Q_{b}+Q_{q}\right)\left\langle T j_{B}(y) j_{B}(0)\right\rangle+i \delta(x-y)\left\langle T V_{\mu}(y) j_{\rho}(0)\right\rangle
\end{aligned}
$$

2) EOM reducing uncertainty

- $B \rightarrow V: \mathrm{D}\left(\mathrm{q}^{2}\right)$ small (related to LEET/SCET)

$$
\begin{array}{ccc}
T_{1}\left(q^{2}\right)+\left(m_{b}+m_{s}\right) \mathcal{V}_{1}\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0 \\
0.294 & -0.272 & -0.022
\end{array}
$$

- Hence if $D\left(q^{2}\right)$ is not pathological (growing evidence)*, the sum rule specific parameters are stabilised by EOM.

Ratio of tensor to vector Form Factor with reduced uncertainty)

- $B \rightarrow \gamma: \mathrm{D}\left(\mathrm{q}^{2}\right)$ not that small in all cases (due to PT, twist -1)

Can understand partly from dispersion relation ...

* converging twist, conformal spin and a_{s}-expansion

Part 3- Inverse moment B-LCDA

$$
\begin{gathered}
\int_{0}^{\infty} \frac{d \omega \phi_{+}(\omega)}{\omega}=\frac{1}{\lambda_{B}} \\
\langle 0| \bar{q}(z) z_{\mu} \gamma^{\mu} \gamma_{5} b(0)\left|\bar{B}\left(p_{B}\right)\right\rangle_{z^{2}=0}=-i f_{B} v z \int_{0}^{\infty} d \omega e^{-i \omega t} \phi_{+}^{B}(\omega) \\
t=v z \quad p_{B}=m_{B} v
\end{gathered}
$$

a) not related to local operator (unlike Gegenbauer moments) \Rightarrow determination difficult (next slide)
b) enters B-meson DA FF (also B-> $>\pi$) computation at leading order e.g. QCDF, SCET, B-meson LCSR

$$
V_{\perp}^{B \rightarrow \gamma}(0) \sim \frac{m_{B} f_{B}}{E_{\gamma} \lambda_{B}(\mu)}\left(1+O\left(\alpha_{s}(\mu)\right)+O\left(1 / m_{b}\right)\right)
$$

Methods of determination

-This talk: $\quad F_{L C S R}^{B \rightarrow \gamma}(0) \propto \frac{Q_{q}}{m_{b}^{1 / 2}} \quad F_{B-L C D A}^{B \rightarrow \gamma}(0) \propto \frac{Q_{q}}{m_{b}^{1 / 2}} \overline{\lambda_{B}}$
extension of Ball, Kou'03 at LO ($\lambda_{B}=600 \mathrm{MeV}$ no uncertainty given)

- Non-local condensate sum rule $\lambda_{B}=460(110) \mathrm{MeV}$ Braun,Ivanov,Korchemsky'03
- SCET/QCDF $B \rightarrow \gamma$ @NLO \& some NLO in $1 / \mathrm{mb}$ vs Experiment Belle'18 @771 $\mathrm{fb}^{-1} \Rightarrow \lambda_{B}>240 \mathrm{MeV} @ 90 \% C L$
.Descotes-G. Sachrajda'02, Rohrwild,Beneke'11, Braun,Khodjamirian'12, Wang'16, Braun, Beneke, Ji, Wei'18,
- B-meson LCSR = light-meson LCSR (no $1 / m_{b}$ as ill-behaved) @LO $\quad \lambda_{B}=460(160) \mathrm{MeV}$ Khodjamirian Mannel, Offen '05 $@ \mathrm{NLO} \lambda_{B}=354(40) \mathrm{MeV}$ Wang, Shen'15 (dep. model B-meson DA)
- New proposal for indirect lattice determination, via quasi-distribution amplitude Wang, Wang, Xu, Zhao et al 1908.09933

"Heavy quark limes" in Sum Rules

- Possible to extract leading power of quantities
- Concretely our FF assume the form

$$
V_{\perp}\left(q^{2}\right)=\frac{1}{f_{B} m_{B}^{2}} \int_{m_{b}^{2}}^{s_{0}} d s e^{\left(m_{B}^{2}-s\right) / M^{2}} \rho_{f_{B} V_{\perp}}\left(s, q^{2}\right)
$$

- All hadronic quantities need to be replaced/rescaled

$$
m_{B} \rightarrow m_{b}+\bar{\Lambda}, \quad s_{0} \rightarrow\left(m_{b}+\omega_{0}\right)^{2}, \quad M^{2} \rightarrow 2 m_{b} \tau
$$

- Scaling agrees with HQET/SCET-literature e.g.

$$
\begin{array}{lll}
f_{B} \sim m_{b}^{-1 / 2} & \text { (e.g. HQET sum rules @NLO Bagan,Ball, Braun, Dosch'92) } \\
f_{+}^{B \rightarrow \pi}(0) \sim m_{b}^{-3 / 2} & \text { (e.g. LCSR twist-2@NLO } & \text { Bagan,Ball,Braun,'97) } \\
T_{\perp}^{B \rightarrow \gamma}(0) \sim m_{b}^{-1 / 2} & \text { (e.g. LCSR twist-1,2@NLO } & \text { Pullin, RZ to appear) }
\end{array}
$$

- B-LCDA approach
$E_{\gamma}=\frac{m_{B}^{2}-q^{2}}{2 m_{B}}$

$$
F_{V}=-V_{\perp}=\frac{Q_{q} f_{B} m_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)+\left[\xi\left(E_{\gamma}\right)+\frac{Q_{b} f_{B} m_{B}}{2 E_{\gamma} m_{b}}+\frac{Q_{u} f_{B} m_{B}}{\left(2 E_{\gamma}\right)^{2}}\right]
$$

Bosch, Lange, Neubert, Paz'01, Hardmeier, Lunghi, Wyler'01 Descotes-G. Sachrajda'02, Rohrwild,Beneke'11, Braun,Khodjamirian'12, Wang'16, Shen, Wang'18, Braun, Beneke, Ji, Wei'18,

- Replace $\left.f_{B} \rightarrow m_{b}^{-1 / 2} C\left(m_{b} / \mu, \alpha_{s}\left(m_{b}\right)\right)\left(f_{B}^{\text {stat }}\left(m_{b}\right)+O 1 / m_{b}\right)\right)$ with the latter HQET sum rules* Bagan,Ball,Braun,Dosch'92

$$
V_{\perp}\left(q^{2}\right)=\frac{1}{f_{B}^{s t a t} m_{b}^{3 / 2}} \int_{0}^{1} d z e^{\left(\bar{\Lambda}-z \omega_{0}\right) / \tau} \underbrace{\rho_{f_{B} V_{\perp}}\left(\left(m_{b}+\omega_{0} z\right)^{2}, q^{2}\right)}_{\rho_{0}\left(z, \ln ^{(1,2)}\left(\omega_{0} / m_{b}\right)\right)+\frac{1}{m_{b}} \rho_{1}}
$$

[^2]
Preliminary Discussion \& Open questions

- Match and get $\lambda_{B}(\mu)=f\left(\mu, \tau, \omega_{0}\right)$
- Good stability in Borel parameter τ (Borel window) NLO stabilises it
- NLO: "Stability" in continuum threshold ω_{0} (i.e. cancellation in ratio etc in progress) NLO it's too early however Borel stability is a good sign
- LO get higher value than $\lambda_{B}^{\text {Ball-Kou }}=600 \mathrm{MeV}$ due to including condensates
- We do find double logs $\ln ^{2} \omega_{0} / m_{b}$ and they are in B-LCDA there $\ln ^{2} \omega / m_{b}$ in addition $E i\left(-\omega_{0} / \tau\right)$ with contain further logs (small ones).

$$
m_{B} \rightarrow m_{b}+\bar{\Lambda}, \quad s_{0} \rightarrow\left(m_{b}+\omega_{0}\right)^{2}, \quad M^{2} \rightarrow 2 m_{b} \tau
$$

conclusions and summary

- $\mathrm{B}_{\mathrm{uds}} \rightarrow \gamma$ Form Factors from LCSR @NLO on their way at low q^{2} anticipated uncertainties: 10-15\% with z-expansion fits with error correlations
- $\mathrm{D}_{\mathrm{uds}} \rightarrow \gamma$ will do them as well (can cover less of physical domain)
- Extension to high q^{2} possible

1) If $\mathrm{gBB}^{\star} \gamma$ couplings known (pole residues)
2) Match to upcoming lattice QCD computation e.g. Lehner, Meinel,

Detmold,Soni, in prep

- Nice application and test of photon DA \&

Possibility to extract competitive: $1 / \lambda_{B}$ helpful for B-meson DA computations

- $\mathrm{LHCb} B_{s} \rightarrow \mu \mu \gamma$ and Bellell $B_{s} \rightarrow \ell \ell \gamma, B \rightarrow \ell^{+} \nu \gamma$ in the making

Thanks for your
altention

BACKUP

- (Comparison vector meson \& photon DA @twist 4

$$
\begin{array}{ccc}
\varphi_{V}^{t=4} \sim m_{V}^{2} \ldots+\langle V| \bar{q} G_{\mu \nu} q|0\rangle & \varphi_{\gamma}^{t=4} \sim\langle\gamma| \bar{q} G_{\mu \nu} q|0\rangle+\langle\gamma| \bar{q} F_{\mu \nu} q|0\rangle \\
\text { sizeable } & \text { small } & \text { small }
\end{array}
$$

[^0]: * checking, thorough numerical analysis, Qb NLO not included (Qq NLO is and is larger),

[^1]: * checking, thorough numerical analysis, Qb NLO not included (Qq NLO is and is larger),

[^2]: * includes quark and mixed condensate at LO

