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Understanding the strong force is key to testing the SM 
- binds quarks into hadrons that we see in experiment

ATLAS@
LHC

Connecting observed hadron 
properties to those of quarks 
requires full nonperturbative 
treatment of Quantum 
Chromodynamics - lattice QCD
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Can calculate hadron 
masses and rates for 
simple weak/em 
decays and 
transitions to test 
Standard Model



Electromagnetic transitions provide good tests/probes of 
hadron structure free of CKM issues. Lattice QCD 
calculations can be compared directly to experiment for 
simple cases e.g. 

1) Vector meson annihilation to a photon (lepton pair)

(to be discussed here)

2) Scattering of a meson from a photon as 
a function of Q2

4⇡

3
↵2Q2 f2

V

MV
�(V ! e+e�) =

decay constant

d�

dq2
/ |F (q2)|2
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Fig. 1. Data on the squared modulus of F~ for Itl < l ( G e V / c )  2 from the reactions: (a) electroproduc- 
tion [1]; (b) direct 7re scattering [2-4]; (c) inverse electroproduction [5]; and (d) e+e  - annihilation [6-9]. 

The horizontal bar (b) indicates the range of our experiment. 

determines the normalisation F.(0) = 1, and the mean square charge radius is given 
by: 

( r  2 )  = 6 .  d F J d t l t =  o . 

In the space-like and near time-like regions (t < 4m~) F~ is real for real t. For 
t > 4m~ it is complex with phase equal to that of the ~r~r P-wave scattering 
amplitude up to about t = 1 ( G e V / c )  2. 

The modulus of F,r is measured in a number of reactions and in fig. 1 we show 
some of the available data to illustrate the broad features and the experimental 
techniques used. A large range of time-like t has been investigated directly by e+e - 
colliding beam experiments. In the space-like region data up to 10 (GeV/c )  2 have 
been obtained indirectly, from a model-dependent analysis of pion electroproduc- 
tion measurements. 

The dominant feature of the data is the O (770) resonance, with a small structure 
close to its peak due to w --+ ~r~r interference. A model for F~ derived from a two 

�form 
factor



The same is true for form factors hence Lattice QCD  
can provide additional “data” with which non-lattice 
theorists can test model relationships between form 
factors and decay constants. 

Lattice QCD can also provide decay constants for mesons 
that cannot be accessed experimentally (e.g. neutral pseudo 
scalars such as ηc) and for mesons that do not exist 
experimentally (e.g. ηs)

Meanwhile, a key aim of lattice QCD calculations is to  
map out the space-like form factor Q2F(Q2) from low to 
high Q2 ahead of experiment. 



Hall C, JLAB

Jefferson Lab 12 GeV upgrade - new expts E12-06-101 + 
E12-09-11 to determine  π /K form factors to 6 GeV2

2

Jefferson Lab 12 GeV Upgrade
New Hall

Add arc

Enhanced capabilities
in existing Halls

Add 5 cryomodules

Add 5 cryomodules

20 cryomodules

20 cryomodules

Upgrade arc magnets 
and supplies

CHL upgrade

JLab 12 GeV Upgrade expands 
physics reach by doubling maximum 
available beam energy:

6 GeV à 12 GeV

à New experimental Hall D –
experiments with (polarized) 
photons – gluonic excitations in  
meson spectrum

à Halls A, B, and C will build on 
their rich 6 GeV program to 
provide new insight into hadronic 
structure

3

Experimental Capabilities
Hall A
Existing HRS 
magnetic focusing
spectrometers + Big 
Bite + new, large 
acceptance Super Big 
Bite

Hall C
HMS + new SHMS 
magnetic focusing
spectrometers
à Precision cross 
sections, LT 
separations

Hall B
New CLAS12, large 
acceptance spectrometer
à Good hadron PID
à Simultaneous 

measurement of broad 
phase space

More new equipment in future
à Hall A: SOLID spectrometer, 

MOLLER
à Hall C: Neutral Particle 

Spectrometer

e�

new 
spectrometer 
being built

Driving improved theory for form factors:



Current experimental status for        -   
                                    for K direct determn. to 0.1 GeV2 

9 

Maris and Tandy, Phys. Rev. C62, 
055204 (2000)   
à relativistic treatment of bound 
quarks (Bethe-Salpether equation 
+ Dyson-Schwinger expansion) 

Nesterenko and Radyushkin, 
Phys. Lett. B115, 410(1982) 
à Green’s function analyticity 
used to extract form factor 

A.P. Bakulev et al, Phys. Rev. D70, 
033014 (2004) 
 

Fπ(Q2)  Results and Models 

Brodsky and de Teramond 
Phys.Rev.D77, 056007 (2008) 

à Anti-de Sitter/Conformal Field 
Theory approach 

direct 
determin
ation

pion  
electro- 
production

⇡

asymptotic 
form

variety of  
(non-
lattice) 
theory 
predictns

Lattice QCD 
should be 
able to do 
better … 



Lattice QCD: fields defined on 4-d 
discrete space-(Euclidean) time. 
Lagrangian parameters: 

1) Generate sets of gluon fields for 
Monte Carlo integrn of Path Integral 
(inc effect of u, d, s, (c) sea quarks)
2) Calculate valence quark propagators 
and combine for “hadron correlators” . 
Fit for hadron masses and amplitudes
• Determine     to convert results in 
lattice units to  physical units. Fix        
from hadron mass

a
mq

a
• cost increases as               
and with statistics, volume.

*numerically extremely challenging*

↵s,mqa

a ! 0,mu/d ! phys



Quark formalisms
Many ways to discretise Dirac Lagrangian onto lattice. 
All should give same answers.  
Issues are: Discretisation errors at power 
                  Numerical speed of matrix inversion 
                  Chiral symmetry 
                  Fermion doubling                       

an

We use Highly Improved Staggered Quarks (HISQ) for 
u, d, s and c. Also (with extrapolation) for b.   
Disc. errors                 . Numerically fast. Chiral symm. 
Some complications from doublers (‘tastes’) which 
appear as discretisation effects.

↵2
sa

2, a4

HPQCD: hep-lat/0610092



Example parameters for ‘2nd generation’ calculations now 
being done with staggered quarks.

real 
world

mass of u,d 
quarks

Volume:

mu,d ⇡ ms/10

mu,d ⇡ ms/27

“2nd generation” 
lattices inc. c 
quarks in sea

m⇡L > 3

HISQ = Highly 
improved 
staggered quarks -
very accurate 
discretisation 

135 MeV
m⇡0 =

E.Follana, et al, 
HPQCD, hep-lat/
0610092.

mu = md

= ml

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.005  0.01  0.015  0.02  0.025  0.03

m
/2  / 

G
eV

2

a2 / fm2

MILC HISQ, 2+1+1

3 volumes



Hadron correlation functions (‘2point functions’) give 
masses and decay constants. 

h0|H†(T )H(0)|0i =
X

n

Ane
�mnT

masses of all 
hadrons with 
quantum 
numbers of H|h0|H|ni|2

2mn

decay constant parameterises amplitude to annihilate - a 
property of the meson calculable in QCD.

1% accurate experimental info. 
for f  and m for many mesons! 
Need accurate determination 
from lattice QCD to match

QCD HH

=
f2
nmn

2
An =

large! A0e
�m0T

T



Light meson decay constants
R. Dowdall et al, HPQCD, 1303.1670.

Use w0 to fix lattice 
spacing, with value of w0 
fixed from fπ.  
PCAC reln for HISQ means 
no renormln factors needed.  
Very small discretisation 
effects. 

= ml/ms

0.1805

0.1810

0.1815

0.1820

0.1825

0.1830
f h

s
(G

eV
)

0.156

0.158

0.160

0.162

0.164

f K
(G

eV
)

0.05 0.10 0.15 0.20
m2

p/(2m2
K �m2

p)

0.130

0.135

0.140

0.145

0.150

f p
(G

eV
)

 ηs meson defined within  
lattice QCD as  
meson that cannot mix.  
Can calculate its decay 
constant very accurately 
with full chiral analysis.  

ss

f⌘s = 181.14(55)MeV
M⌘s = 688.5(2.2)MeV



0.0 0.2 0.4 0.6 0.8
(amc)2

0.40

0.45

0.50

0.55
f J

/ 
[G

eV
]

PDG

D. Hatton et al, HPQCD, 
in prep.

PRELIMINARY

Heavy meson decay 
constants

0.0 0.2 0.4 0.6 0.8
(amc)2

0.400

0.425

0.450

0.475

0.500

f ⌘
c

[G
eV

]

HPQCD [1008.4018]

Improved analysis  
of        case nearly 
complete (inc. 
impact of  c electric 
charge). Good 
agreement with 
expt. for J/ψ  .  

cc

Allows accurate 
determination of 
ηc decay constant.  PRELIMINARY



Summary of meson decay constants
Parameterises hadronic information needed 
for annihilation rate to W or photon: � / f2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

π ψηcψ′φ ΥηbΥ′BcB∗
cBsB∗

sBB∗ Ds D
∗
sDK

D
E
C
A
Y

C
O
N
S
T
A
N
T

[G
eV

]

Experiment : weak decays
: em decays

Lattice QCD : predictions
: postdictions

 HPQCD 1208.2855, 1312,5264, 1408.5768, 1503.05762, 1703.05552, FNAL/MILC 1712.09262
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Fig. 1. Data on the squared modulus of F~ for Itl < l ( G e V / c )  2 from the reactions: (a) electroproduc- 
tion [1]; (b) direct 7re scattering [2-4]; (c) inverse electroproduction [5]; and (d) e+e  - annihilation [6-9]. 

The horizontal bar (b) indicates the range of our experiment. 

determines the normalisation F.(0) = 1, and the mean square charge radius is given 
by: 

( r  2 )  = 6 .  d F J d t l t =  o . 

In the space-like and near time-like regions (t < 4m~) F~ is real for real t. For 
t > 4m~ it is complex with phase equal to that of the ~r~r P-wave scattering 
amplitude up to about t = 1 ( G e V / c )  2. 

The modulus of F,r is measured in a number of reactions and in fig. 1 we show 
some of the available data to illustrate the broad features and the experimental 
techniques used. A large range of time-like t has been investigated directly by e+e - 
colliding beam experiments. In the space-like region data up to 10 (GeV/c )  2 have 
been obtained indirectly, from a model-dependent analysis of pion electroproduc- 
tion measurements. 

The dominant feature of the data is the O (770) resonance, with a small structure 
close to its peak due to w --+ ~r~r interference. A model for F~ derived from a two 

�

Form factors give more info. on structure. Electromagnetic 
form factors provide test for those for weak decays
Simplest example is that of the meson electromagnetic 
form factor at space-like q2: 

small Q2 (=-q2):  direct        scattering 
(NA7, 1986, up to 0.26 GeV2); determine 
rms radius of electric charge distn. Many 
lattice QCD tests of this.

d�

dq2
/ |F (q2)|2

⇡e

large Q2 :  use electroproduction on a proton. 
Done up to Q2= 2.5 GeV2 . Key expt for JLAB  
upgrade: extend  to 6 GeV2. Pert. QCD 
prediction at very high Q2. Lattice QCD?
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Fig. 1. Data on the squared modulus of F~ for Itl < l ( G e V / c )  2 from the reactions: (a) electroproduc- 
tion [1]; (b) direct 7re scattering [2-4]; (c) inverse electroproduction [5]; and (d) e+e  - annihilation [6-9]. 

The horizontal bar (b) indicates the range of our experiment. 

determines the normalisation F.(0) = 1, and the mean square charge radius is given 
by: 

( r  2 )  = 6 .  d F J d t l t =  o . 

In the space-like and near time-like regions (t < 4m~) F~ is real for real t. For 
t > 4m~ it is complex with phase equal to that of the ~r~r P-wave scattering 
amplitude up to about t = 1 ( G e V / c )  2. 

The modulus of F,r is measured in a number of reactions and in fig. 1 we show 
some of the available data to illustrate the broad features and the experimental 
techniques used. A large range of time-like t has been investigated directly by e+e - 
colliding beam experiments. In the space-like region data up to 10 (GeV/c )  2 have 
been obtained indirectly, from a model-dependent analysis of pion electroproduc- 
tion measurements. 

The dominant feature of the data is the O (770) resonance, with a small structure 
close to its peak due to w --+ ~r~r interference. A model for F~ derived from a two 

e.g. HPQCD, 1511.07382
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x y

1� x 1� y
+ · · ·

!

�⇤
⇡

Perturbative QCD at very high Q2: high mom. photon 
accompanied by high mom. gluon. Hard scattering factorises 
from ‘distribution amplitude’ for        in meson.

Lepage, Brodsky 1979
qq

FM =
8⇡↵sf2

M

Q2Q2 ! 1
Asymptotic 
prediction: 
for meson M

decay constant
For lower 
Q2: FM (Q2) =

8⇡↵s(Q/2)f2
M

Q2

�����1 +
1X

n=2

aMn (Q/2)

�����

2

even n for 
‘symmetric’ meson

coeffs of Gegenbauer 
poly. , run to 0 at high Q2

Higher twist 
corrns: addnl 
powers of m2/Q2

form factor



Lattice QCD calculation: ’3-point functions’ 
needed for form-factors

2

TABLE I. The MILC gluon field ensembles (sets) used
here [20, 21]. The lattice spacing, a, is determined using
the w0 parameter [23], and has a correlated 0.5% uncertainty
from the physical value of w0, fixed using f⇡ [3]. Set 1 will
be referred to “very coarse”, 2 as “coarse” and 3 as “fine”.
Columns 3, 4 and 5 give the sea quark masses in lattice units
(mu = md = ml). Ls and Lt are the lengths in lattice units
in space and time directions for each lattice. The number
of configurations that we have used in each set is given in
the seventh column. The final column gives the values of the
end-point of the 3-point function, T , in lattice units.

Set a/fm aml,sea ams,sea amc,sea Ls ⇥ Lt ncfg T
1 0.1509 0.00235 0.0647 0.831 32⇥48 1000 9,12,15
2 0.1212 0.00184 0.0507 0.628 48⇥64 1000 12,15,18
3 0.0879 0.0012 0.0363 0.432 64⇥96 223 16,21,26

to include quark-line disconnected contributions. The ex-
pectation from chiral perturbation theory [17] is for the
disconnected contribution to the form factor at q2 = 0
to be small but for the impact on the radius as defined
in eq. (1) to be substantial. Our results are very much
in line with expectations from chiral perturbation theory
and we are able to distinguish disconnected contributions
coming from u/d and s quark loops.

Section II describes how the lattice calculation is done
and gives details of the results. Our results are com-
pared to experiment, to chiral perturbation theory ex-
pectations, and to other lattice calculations in Section III
and Section IV gives our conclusions, looking forward to
improved calculations in future.

II. LATTICE CALCULATION

For the lattice QCD calculation we use the Highly Im-
proved Staggered Quark (HISQ) action [18], which has
been demonstrated to have very small discretisation er-
rors [3, 19]. We use gluon field configurations generated
by the MILC collaboration [20, 21] that include u, d, s
and c sea quarks using the HISQ action along with a fully
O(↵sa2) improved gluon action [22]. The ensembles that
we use here have light quark masses mu = md = ml

with ml and hence m⇡ close to its physical value. The
parameters of the ensembles are given in Table I.

On these configurations we generate HISQ light quark
propagators with the same mass as that of the sea light
quarks. We use a local random wall source [3] and 4 time
sources per configuration for high statistics. The propa-
gators are combined into ⇡ meson correlation functions
(2-point correlators) that create a ⇡ meson at time 0 and
destroy it at time t0 and correlation functions that allow
for interaction with a current J at an intermediate time,
t, between a ⇡ meson source at 0 and sink at T (3-point
correlators). These are illustrated in Fig. 1. Results at
all t0(t) values are obtained for 2(3)-point functions and
we also use three values for T in the 3-point functions, so
that our fits can map out fully the t and T dependence

⇡ ⇡

J

p = 0

p1p2

0 T

t

⇡ ⇡

0 t0

⇡ ⇡

0 T

J

t

⇡ ⇡

J

p = 0

p1p2

0 T

t

⇡ ⇡

0 t0

⇡ ⇡

0 T

J

t

⇡ ⇡

J

p = 0

p1p2

0 T

t

⇡ ⇡

0 t0

⇡ ⇡

0 T

J

t

FIG. 1. 2-point (top) and 3-point quark-line-connected (mid-
dle) and quark-line disconnected (bottom) correlators.

for improved accuracy. When J is a vector current we
need to consider only one 3-point diagram for the flavour
non-singlet ⇡. This is shown as the central diagram of
Fig. 1 in which the current J is inserted into one of the
legs of the 2-point function. We simply multiply by 2
to allow for its insertion into the other leg. The ‘dis-
connected diagram’ which is the product of a ⇡ 2-point
function and a closed quark loop coupled to J is shown
as the lower diagram of Fig. 1. This vanishes for vec-
tor J in the ensemble average because it is odd under
charge-conjugation [24]. For scalar J this diagram needs
to be included and di↵erent combinations of flavours of
quarks in the closed quark loop give rise to di↵erent form
factors.

The ⇡ mesons in our correlators are the Goldstone
mesons whose mass vanishes with ml. We ensure this by
using the local �5 operator at source and sink. In stag-
gered quark parlance this is the �5⌦�5 operator. For J we
use a symmetric 1-link point-split spatial vector current,
Vi, or a local scalar current, S. A gluon field is included
in the vector current to make it gauge-covariant. Both
of these are ‘tasteless’ staggered quark operators (�i ⌦ 1
and 1⌦ 1) and so can be used in a 3-point function with
the Goldstone meson at source and sink.

e.g. for pion to pion 
transition via vector 
current J

Need to calculate correlators  
for multiple T values and 
0<t<T and fit as a function  of 
t, T simultaneously with 2pt.

Normln of J must be fixed, 
here                  from charge cons.f+(0) = 1

C3pt =
X

i,j

biJijbje
�Eite�Ej(T�t)

h⇡|Vµ|⇡i/(2Z
p

EiEj)

S.R. A mendolia et al. / Pion electromagnetic form factor 
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Fig. 1. Data on the squared modulus of F~ for Itl < l ( G e V / c )  2 from the reactions: (a) electroproduc- 
tion [1]; (b) direct 7re scattering [2-4]; (c) inverse electroproduction [5]; and (d) e+e  - annihilation [6-9]. 

The horizontal bar (b) indicates the range of our experiment. 

determines the normalisation F.(0) = 1, and the mean square charge radius is given 
by: 

( r  2 )  = 6 .  d F J d t l t =  o . 

In the space-like and near time-like regions (t < 4m~) F~ is real for real t. For 
t > 4m~ it is complex with phase equal to that of the ~r~r P-wave scattering 
amplitude up to about t = 1 ( G e V / c )  2. 

The modulus of F,r is measured in a number of reactions and in fig. 1 we show 
some of the available data to illustrate the broad features and the experimental 
techniques used. A large range of time-like t has been investigated directly by e+e - 
colliding beam experiments. In the space-like region data up to 10 (GeV/c )  2 have 
been obtained indirectly, from a model-dependent analysis of pion electroproduc- 
tion measurements. 

The dominant feature of the data is the O (770) resonance, with a small structure 
close to its peak due to w --+ ~r~r interference. A model for F~ derived from a two 

�

use Breit frame 

to maximise Q2 for a 
given (pa). Signal/noise 
degrades and syst. disc. 
errors grow with pa. 

~p1 = �~p2



How to do lattice QCD ff. 
calculation at high Q2?

J. Koponen et al, HPQCD, 
1701.04250 *updated*  

Need a formalism with small discretisation errors that is 
numerically fast. *HISQ* 
Studying  ηs and ηc is faster than π and K and with smaller 
stat. errors, so enabling behaviour to be mapped out to 
higher Q2. 
Need to test relationship of form factors to decay 
constants for a range of mesons. 
Also need to test relationship of form factors for different 
mesons containing same struck quarks e.g. K and ηs 
Can also compare form factors for different currents  
(e.g scalar) vs expectations from perturbative QCD helicity 
rules 



3 values of a (0.15fm to 0.09fm) + 2 mu/dsea (ms/5 and ms/10)
Use ‘twisted boundary 
conditions’ to insert 
momentum and test 
discretisation errors as a 
function of (pa). 
Stat. errors are key issue. 0.96

0.98
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Q2 = 2.53GeV2
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HPQCD, 1701.04250  Results for ηs



Results - Can reach Q2 of 6 GeV2 with small stat. errors 
                Disc. and sea quark mass effects very small

physical point from 
‘z-expansion’ fit

asymp. pert. 
QCD 

pert. QCD inc.  
�⇡(2GeV) =

[x(1� x)]0.52

Braun et al, 
1503.03656

F =
1

1 +Q2/M2
�

HPQCD, 1701.04250 Updated to 
add superfine points 

using f⌘s
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v. coarse
superfine

no sign of asymptotic 
form kicking in …

⌘s



z(t, tcut) =

p
tcut � t�

p
tcutp

tcut � t+
p
tcut

z-expansion
t = q2

tcut = 4M2
K

Maps t region into  
-1 < z < 1 

2 Flavor Physics and CP Violation Conference, Vancouver, 2006

Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.

zt

Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

⟨L(p′)|V µ|H(p)⟩
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(

pµ + p′µ −
m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −
√

t+ − t0√
t+ − t +

√
t+ − t0

, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-
gion. Choosing t0 = t+(1 −

√

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].

fpcp06 324

r=1

(1 +Q2/M2
�)F = 1 +

X

i

ziAi


1 +Bi(a⇤)

i + Ci(a⇤)
4 +Di

�msea

10

�Fit:

q2 = 0 ! z = 0

⇤ = 1GeV no z-independent disc. errors by defn.



Higher Q2 is possible for heavier quarks - try ηc

pert. QCD : 
scalar ff 
should fall 
more rapidly 
than 1/Q2 - 
not true
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Electromagnetic form factors of the K from lattice QCD
For K must allow for both strange and light (u/d) current 
interacting with photon - they are quite different
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Electromagnetic form factors of the K from lattice QCD
K+ form factor is electric charge weighted combination 
2/3* s + 1/3*u - first lattice QCD calculation of this

J. Koponen et al, HPQCD, 
in prep.

*5% prediction* for JLAB expt
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Conclusion
www.physics.gla.ac.uk/HPQCD

• Lattice QCD can test behaviour of meson electro-
magnetic form factors - predictions from  asymptotic 
pert. QCD do NOT work well. 

• Lattice QCD calculation of K+ space-like electro-
magnetic form factor underway to make predictions for 
JLAB expt. - can reach Q2=4 GeV2 with 5% accuracy. 

• Lattice QCD gives very accurate map of meson decay 
constants now. New 1% test against experiment for J/ψ. 

• Q2F is flat at large Q2 (25 GeV2) but > asymptotic value . 
• F depends on struck quark - independent of spectator.  

• helicity rules do not seem to work for scalar current.  
• rethink needed?

• F does not depend on f in the expected way.

http://www.dirac.ac.uk
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electromagnetic form factor at small q2

J. Koponen et 
al, HPQCD, 
1511.07382

Working at 
physical u/d 
quark masses 
on HISQ 
2+1+1 configs, 
lattice QCD 
raw results on 
top of 
experiment
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Fig. 1. Data on the squared modulus of F~ for Itl < l ( G e V / c )  2 from the reactions: (a) electroproduc- 
tion [1]; (b) direct 7re scattering [2-4]; (c) inverse electroproduction [5]; and (d) e+e  - annihilation [6-9]. 

The horizontal bar (b) indicates the range of our experiment. 

determines the normalisation F.(0) = 1, and the mean square charge radius is given 
by: 

( r  2 )  = 6 .  d F J d t l t =  o . 

In the space-like and near time-like regions (t < 4m~) F~ is real for real t. For 
t > 4m~ it is complex with phase equal to that of the ~r~r P-wave scattering 
amplitude up to about t = 1 ( G e V / c )  2. 

The modulus of F,r is measured in a number of reactions and in fig. 1 we show 
some of the available data to illustrate the broad features and the experimental 
techniques used. A large range of time-like t has been investigated directly by e+e - 
colliding beam experiments. In the space-like region data up to 10 (GeV/c )  2 have 
been obtained indirectly, from a model-dependent analysis of pion electroproduc- 
tion measurements. 

The dominant feature of the data is the O (770) resonance, with a small structure 
close to its peak due to w --+ ~r~r interference. A model for F~ derived from a two 

244 masses is defined as
P

u;d;sðmq−mtuned
q Þ and values of

245 δmsea=ms;phys values for these ensembles are tabulated in
246 [30]. The values are all less than 0.05, but not zero because
247 of mistuning of the sea s quark mass.
248 The final logarithmic term in Eq. (7) comes from chiral
249 perturbation theory [4] and is the source of the divergence
250 in the radius as mπ → 0. We use it, rescaling the argument
251 of the logarithm so that it vanishes at the physical pion
252 mass, to make small adjustments for the fact that our u=d
253 quark masses are not exactly at their physical values (in fact
254 they are slightly too low). Λχ ¼ 1.16 GeV. Because we are
255 very close to the physical light quark mass point we do not
256 need to include further terms in a chiral perturbation theory
257 expansion since they will be negligible.
258 We apply the functional form of Eqs. (6) and (7) to our
259 result taking account of the correlations between results at
260 different values of q2 obtained on a given ensemble. The
261 fit has χ2=d:o:f: ¼ 0.9 and gives the physical result for
262 the electric charge radius of the π of hr2iV ¼
263 10.35ð46Þ GeV−2, or 0.403ð18Þ fm2.
264 We can also use the final logarithmic term in Eq. (7) to
265 estimate the impact of isospin and electromagnetic effects
266 by varying the value of mπ;phys used there. The physical
267 value of mπ corresponding to our lattice world in which u
268 and d quark masses are equal and there is no electromag-
269 netism is mπ0 ¼ 0.135 GeV [31], and we use this for our
270 central value above. The experimental results correspond to
271 mπþ ¼ 0.139 GeV and we substitute that for the physical
272 value in the logarithm to assess the uncertainty from the
273 fact that the real world has different u=d quark masses and
274 the quarks have electric charge. This gives an estimate for
275 the systematic uncertainty from isospin/electromagnetism
276 of 0.5%.
277 We must also include a systematic uncertainty from
278 working on lattices with finite spatial volume, albeit large.
279 Finite-volume effects are small on these lattices for the π

280mass and decay constant [3] and effects of similar size are
281expected in the form factor at fixed q2. Because the mean
282squared radius is defined from the small difference in
283values for the form factor as q2 moves away from zero
284(where the form factor is defined to be 1), a small effect on
285the form factor at nonzero q2 can become a significant
286effect on the radius. These effects can be estimated from
287chiral perturbation theory. Continuum chiral perturbation
288theory is a good guide here and we do not need staggered
289chiral perturbation theory because, as shown in [32],
290staggered quark taste effects which might be expected to
291affect π masses appearing in chiral loops in fact tend to
292cancel against associated hairpin diagrams. It turns out that
293this cancellation happens for a wide range of quantities
294(including decay constants and form factors) for a specific
295value of the hairpin coefficients that seems to be close to
296the value obtained in practice. We therefore use continuum
297analyses and specifically results from analyses that are
298relevant to our use of twisted boundary conditions [33,34]
299because this modifies the expected finite-volume depend-
300ence. From [33] the relative finite-volume effect in the
301vector squared radius varies in the range 1–1.5% for lattice
302sizes that we use in the range 4.8 to 5.8 fm for physical π
303masses. Note that the direction of the finite-volume effect is
304such that the radius would be larger in the infinite-volume
305limit. We do not make a correction for this but include an
306uncertainty of 1.5% for finite-volume effects.
307Our error budget for hr2iV is given in Table III. Adding
308the systematic uncertainties in quadrature as the second
309uncertainty gives our result:

hr2iðπÞV ¼ 0.403ð18Þð6Þ fm2 ð8Þ

310to be compared to 0.431ð10Þ fm2 from the experimental
311results of [1] using the same fit form. The Particle Data
312Group [35] gives a mean square radius from averaging over
313several experimental results of 0.452ð11Þ fm2.

314B. Scalar form factor

3151. Results for the connected contribution

316We begin by discussing our results for the connected
317contribution to the scalar form factor of the π. This is
318the result calculated from 3-point functions of the form

F3:1 FIG. 3. Lattice QCD results for the vector form factor on each
F3:2 ensemble compared directly to the experimental results from [1].
F3:3 Fit curves for both experiment and lattice QCD results are given
F3:4 to a “monopole” form.

TABLE III. Error budget for the mean square radii of the π, as a
percentage of the final answer. See the discussion in the text for a
description of each component.

hr2iV hr2iconnS hr2isinglet=octetS

Statistics/Fitting 4.5 5 7.5=8.5
Isospin/Electromagnetism 0.5 3 3
Finite volume 1.5 10 10
Total 4.8 12 13=14

3

SIZE OF THE PION FROM FULL LATTICE QCD WITH … PHYSICAL REVIEW D 93, 000000 (XXXX)

5

⇡

h⇡(p1)|Vµ|⇡(p2)i = f+(q
2)(p1 + p2)µ

= F⇡(q
2)



Stat errors on form factor as a function of Q2
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