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OUTLINE

@ Effective Field Theories
e Resonances, unitarity and dispersion relations

e Unitarity and unitarization of EFTs
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EFFECTIVE FIELD THEORIES (EFT)

Effective Field Theory
@ Only relevant degrees of freedom below a scale A.

@ Separation (mass/energy gap) from other states leading to
well-defined 1/A" power counting.

@ At each order most general Lagrangian compatible with the
symmetries of the underlying theory (if known) or system.

@ Finite set of effective parameters fixed at every order.

@ Loops increase order. Infinities absorbed in higher order parameters.
(if renormalization scheme consistent with symmetries).

@ Finite calculations order by order.
@ Systematic and model independent approach.

Unfortunately, name not always used with this rigour...
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Effective Field Theories

FERMI ELECTROWEAK THEORY (1 934) (& FEYNMAN GELL-MANN 1958)

Electroweak processes with E, m; << My = A.

b)

2 NPT _ [P T 2
g9 g kPK® [ My,
g — =2V2G
2 M2, — k2 M2 vaGr
The W field propagator and vertices are reduced to an effective “contact
term” and constant. It has been “integrated out”.

13/358



Effective Field Theories
EFT BY INTEGRATING OUT A HEAVY STATE

This can be done rigorously and the heavy field is actually “integrated out”
of the action.

14/358



Effective Field Theories
EFT BY INTEGRATING OUT A HEAVY STATE

This can be done rigorously and the heavy field is actually “integrated out”
of the action. Schematically, if

Sl O] = / oxL(6,®) = S[4] + S[6, O],

with my << Mo = A,

15/358



Effective Field Theories
EFT BY INTEGRATING OUT A HEAVY STATE

This can be done rigorously and the heavy field is actually “integrated out”
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EFT BY INTEGRATING OUT A HEAVY STATE

This can be done rigorously and the heavy field is actually “integrated out”
of the action. Schematically, if

Sualo. ®] = [ axc(,9) = Slo] + Sl 0],
with my << Mo = A, then we define an “Effective action” through

ofSenlé] _ / (D] eiSe] — giSle] / [dP]eSee]

only depends on ¢
rewritten again formally as

Sert[9] = / AXLef(¢) = S[p] + Sdec[®] + Snon—dec[?],

where Sgec[¢] = “decoupling terms” suppressed by 1/M powers.
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Effective Field Theories
INTEGRATING OUT A HEAVY STATE

Decoupling Theorem Appelquist-Carrazone (1975)

If S[¢, @] is renormalizable, has no spontaneous symmetry breaking, no
chiral fermions and heavy fermions form a complete multiplet, then the
non-decoupling terms can be absorbed through renormalization in the
Lagrangian of the light fields, up to decoupling terms suppressed by 1/M.
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INTEGRATING OUT A HEAVY STATE

Decoupling Theorem Appelquist-Carrazone (1975)

If S[¢, @] is renormalizable, has no spontaneous symmetry breaking, no
chiral fermions and heavy fermions form a complete multiplet, then the
non-decoupling terms can be absorbed through renormalization in the
Lagrangian of the light fields, up to decoupling terms suppressed by 1/M.

Particularly interesting for vector gauge theories, where complete
multiplets of non-chiral heavy fermions can be decoupled.

@ In QED. Low energy theory of photons decoupling —
Euler-Heisenberg Lagrangian

@ In QCD we can decouple each heavy quark, one by one.
We can safely consider QCD only with u, d, s or just u, d.
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Effective Field Theories

EXAMPLE: EULER-HEISENBERG LAGRANGIAN (1936)

Start from the usual QED action

SaenlA 3] =~ [ dxFuF 4 [ axi(i D - Mo

7
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EXAMPLE: EULER-HEISENBERG LAGRANGIAN (1936)

Start from the usual QED action

SaenlA 3] =~ [ dxFuF 4 [ axi(i D - Mo

W\ﬁ ,

Integrate out the electron for photons with E << Mg = A

Sei[A] = /dxF,WF’“’ 3(an )2A / dxF,., F"" +— non-decoupling and divergent
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Effective Field Theories

EXAMPLE: EULER-HEISENBERG LAGRANGIAN (1936)

Start from the usual QED action

SaenlA 3] =~ [ dxFuF 4 [ axi(i D - Mo

7

Integrate out the electron for photons with E << M, = A.

Ser[A]= -1 / axF, F* — 3(dr )2A / dxF,., F** +— non-decoupling and divergent

2

/ AXF 0, 8°8,F" + O ( p

2
M2) <— new decoupling terms .

W
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Effective Field Theories
OTHER EFFECTIVE THEORIES

@ Heavy quark Effective Theory (HQET). For one heavy quark. A = M.

@ Non relativistic QCD (NRQCD), A =relative velocity of two heavy
quarks.

@ Soft collinear effective Theory (SCET). Only the hard parts of a field
integrated out.

@ For Electroweak Symmetry breaking sectors. A =scale of new
particles. Lagrangian consistent with SM Lagrangian, widely
considered an EFT.

@ For Gravity. Other operators consistent with general covariance,
expansion on 1/Mpznk. Also non-relativistic effective theory.

o Effective Theories for Solid State Physics

But this lecture is focused on hadron resonances, we will concentrate on
the low energy effective theory of QCD.
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Effective Field Theories

QCD

Quantum Chromodynamics: non-Abelian SU(3). gauge theory minimally
coupled to quarks

N21

Ny
Lacp = Z?Jj(x (ip—m;) gi(x Z x)Ga"(x)
j=1

Ga,(X) = 0,A2—0,AL+giRALAS, D= (0, — igT.A%/2)y"
with
my = 23737 MeV, my = 4.8737 MeV, mg = 95 + 5MeV
me = 1.275 £ 0.025GeV , m, = 4.18 =0.03GeV , m; = 173.5 + 1.4 GeV
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Quantum Chromodynamics: non-Abelian SU(3). gauge theory minimally
coupled to quarks

N21

Ny
Lacp = Z@j(x (ip—m;) gi(x Z x)Ga"(x)
j=1

G, (x) = 0,A%—0,A%+ gitALAS, Dy = (0, — igTA%/2)y"
with
my =233 MeV, mg = 48707 MeV, ms = 95 + 5MeV
me = 1.275 £ 0.025GeV, mp = 4.18 £ 0.03GeV, m; = 173.5 + 1.4 GeV

Decoupling theorem:
Below 1-1.5 GeV we can keep the lightest quarks: Ny = 2 or 3.
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Effective Field Theories

QCD: PERTURVATIVE VS. NON-PERTURBATIVE

After renormaliztion g = g2 /47 “runs”:

127
(33 — 2N;) log(@/Nogp)’

as(@®) = Aacp ~ 300 — 400MeV (1)

‘April 2016

v T decaygn3Lo)

» DIS jets(NLO)

o Heavy QuarkonignLo)

o €€ jets & shapeges. NNLO)
® e.w. precision fitgn3Lo)

v PP —> jetanLo)

v pp —> tt(NNLO)

agQ?)

0.3

0.2}

01}

= QCD ag(M,) =0.1181  0.0011

1 100 1000

© QGev]
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QCD: PERTURVATIVE VS. NON-PERTURBATIVE

After renormaliztion g = g2 /47 “runs”:

127

2
as(Q?) = Aacp ~ 300 — 400MeV (1)
(33 — 2Ny) Iog(Q2//\%CD)’
Al 2016
a 2 v T decaygn3Lo)
S(Q ) » DIS jets(NLO)
o Heavy QuarkonignLo)
03 o €'¢ jets & shapeges. NNLO)
® e.w. precision fitgn3Lo)
v PP —> jetanLo)
v pp —> tt(NNLO)
02+t
Bl
o1l piy T TR
= QCD ag(M,) =0.1181 £ 0.0011
1 ‘ 160 1600

© QGev]

@ Q >> Aqcp, perturbative. Asymptotically free quarks and gluons
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QCD: PERTURVATIVE VS. NON-PERTURBATIVE

After renormaliztion g = g2 /47 “runs”:

127

2
as(Q?) = Aacp ~ 300 — 400MeV (1)
(33 — 2Ny) Iog(Q2//\%CD)’
Al 2016
a 2 v T decaygn3Lo)
S(Q ) » DIS jets(NLO)
o Heavy QuarkonignLo)
03 o €'¢ jets & shapeges. NNLO)
® e.w. precision fitgn3Lo)
v PP —> jetanLo)
v pp —> tt(NNLO)
02+t
Bl
o1l piy T TR
= QCD ag(M,) =0.1181 £ 0.0011
1 ‘ 160 1600

© QGev]

@ Q >> Aqcp, perturbative. Asymptotically free quarks and gluons
@ for Q < Agep non-perturbative, confinement, hadrons!!
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Chiral limit mg — 0 interesting since my, Mg, Ms << Mhagrons-
Then Lqcp invariant under SU(Nr) x SU(Nf)g Chiral Symmetry:

. T. . 1
ql_,n — exp <_192,R2a> QL,Fh with QL,R = < i 75) q

2

L,R transformations: Lt=L—1 ,RT=R~1

with T, = A5 for Ny = 3 and T, = 75 (Pauli matrices) for Ny = 2.
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QCD AND CHIRAL SYMMETRY

Chiral limit mg — 0 interesting since my, Mg, Ms << Mhagrons-
Then Lqcp invariant under SU(Nr) x SU(Nf)g Chiral Symmetry:

. T. . 1
qL,R — exp <_192,R2a> QL,Fh with QL,R = < i 75) q.

2

L,R transformations: Lt=L—1 ,RT=R~1

with T, = A5 for Ny = 3 and T, = 75 (Pauli matrices) for Ny = 2.
Noether's Theorem = Conserved currents:

VE = gyMTaq, “Vector” 6L =68 SU(Ny)y Symmetry
Ay = gyisTLq. “Axial” 05 = —0F

Thus, SU(Ns), x SU(N¢)r multiplets expected, up to small my differences.
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Effective Field Theories

QCD AND CHIRAL SYMMETRY

But only SU(3)y multiplets seen. Example: vector J° = 1~ nonet

& o S=+1 \,.=892 MeV \

M,=770 MeV ,
M_,=782 MeV Mass difference due to

mgs>>m;,~m,
M,=1020 MeV~ss — &~ T~

My-=892 MeV
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& o S=+1 \,.=892 MeV \

M,=770 MeV .
520 M =782 MeV Mass difference due to

mgs>>m;,~m,
M,=1020 MeV~ss — &~ T~

o 7o S=-1 M=892 MeV
while the closest axial-vector J© = 11 is the a;(1260)...

...500 MeV too heavy!!
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QCD AND CHIRAL SYMMETRY

But only SU(3)y multiplets seen. Example: vector J° = 1~ nonet

& o S=+1 \,.=892 MeV \

M,=770 MeV .
520 M =782 MeV Mass difference due to

mgs>>m;,~m,
M,=1020 MeV~ss — &~ T~

o 7o S=-1 M=892 MeV
while the closest axial-vector J© = 11 is the a;(1260)...

...500 MeV too heavy!!

Cannot be explained by the small explicit breaking due to m.
SU(Nf), x SU(Ns)g for Ny = 2, 3 is broken “spontaneously”.
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Effective Field Theories

SPONTANEOUS SYMMETRY BREAKING (SSB)

Continuous symmetry U = Conserved current d,J5 =0, a = 1,N.
Symmetry charges Q, = [ dx J9(x) are group generators U = ¢/%aCa
If H is the Hamiltonian: UHU~! = H = [Q,, H] = 0.

Then: [Qa, H] |0) = Q;H|0) —H Q4 |0) = 0. Two possibilities:
=0
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SPONTANEOUS SYMMETRY BREAKING (SSB)

Continuous symmetry U = Conserved current d,J5 =0, a = 1,N.
Symmetry charges Q, = [ dx J9(x) are group generators U = ¢/%aCa
If H is the Hamiltonian: UHU~! = H = [Q,, H] = 0.

Then: [Qa, H] |0) = Q;H|0) —H Q4 |0) = 0. Two possibilities:
—~—
=0
@ Weyl-Wigner mode: Q,|0) = 0 symmetric vacuum and spectrum.
@ Nambu-Goldstone mode: |74) = Q,|0) #0, H|x%) =0
N “Nambu-Goldstone states” degenerate with the vacuum with
quantum numbers of the symmetry generators.
Necessary choice of vacuum for quantization and particle definition
“Spontaneously” breaks symmetry — non-symmetric spectrum.
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Effective Field Theories
SPONTANEOUS CHIRAL SYMMETRY BREAKING IN QCD

In QCD there are N2 — 1 broken Q, = [ dx A%, with A5gy" 5 Tagq.
Since Q; has no spin but negative parity...

QCD in the chiral limit
N;2 — 1 pseudoscalar massless Nambu-Goldstone Bosons (NGB)
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SPONTANEOUS CHIRAL SYMMETRY BREAKING IN QCD

In QCD there are N2 — 1 broken Q, = [ dx A%, with A5gy" 5 Tagq.
Since Q; has no spin but negative parity...

QCD in the chiral limit

N;2 — 1 pseudoscalar massless Nambu-Goldstone Bosons (NGB)

In practice, mq # 0, thus just expect NGB to be much lighter than other
hadrons with similar quantum numbers.

@ Ny =2= N?—1=3NGB. The pions !I: 7%, 70
my ~ 140MeV << m, ~ 500MeV, m, = 770MeV
-0
o NF=3= N,2—1 =8NGB. 7t, 7% K+, K°, K , M
mx, my, ~ 500MeV << m, ~ 800MeV , M= gg2) = 900MeV
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Effective Field Theories
SPONTANEOUS CHIRAL SYMMETRY BREAKING IN QCD

Thus, axial charges do not annihilate the vacuum:

(0|AZ(0)|mp(py)) = i frp"dap # 0, fr = pion decay constant

§AZ

A(I,
i
a
(W1 AZ(0) [W2) = vy § Uy + U ;T Vs = RI+ P Ta
Current conservation: 0 = p“AfL = p“Rj +£T,=0=IlimT,=0
p—0
NGB interactions vanish at low energies. Derivative couplings!
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SPONTANEOUS CHIRAL SYMMETRY BREAKING IN QCD

Thus, axial charges do not annihilate the vacuum:

(0|AZ(0)|mp(py)) = i frp"dap # 0, fr = pion decay constant

§AZ

A(I,
i
<W1 | Az(O) |\U2> = U § Yo+ Y1 ;Ta Y = R/i + pr,u#Ta

Current conservation: 0 = p“AfL = p”Rj +£T,=0= ’I)i_r>n0 T.,=0
NGB interactions vanish at low energies. Derivative couplings!

But since there is an explicit violation my # 0:

(010, A5 |mb(py)) = fm234p, partially Conserved Axial Current

Thus interactions get small O(m2) corrections. ( In SU(3), different £y, fi, f,).
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!
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THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!

Let ®A = (0,¢%), a=1,2,3and & = |®|

1 2 A
Liom = §8H¢A6“¢A + %¢2 - Z¢4 « | Invariant under rotations
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!
Let A = (0,¢%),a=1,2,3and ¢ = |P|

A
Z<1>4 — \ Invariant under rotations \

1 A A 12 2
Liom = §8H<D otP +?¢ —

1 1 2
= 30,00"0 + 50,0°0"¢" + 5-(02 + 6°%6%) — (o + 7%,

potential V(x)
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!
Let A = (0,¢%),a=1,2,3and ¢ = |P|

)\ .
Z¢4 — \ Invariant under rotations \

1 A A p? 2
Liom = §8H<D otP +?¢ —

1 1 2
= 30,00"0 + 50,0°0"¢" + 5-(02 + 6°%6%) — (o + 7%,

potential V(x)

4-d rotations are linear transformations forming the O(4) group.
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!
Let A = (0,¢%),a=1,2,3and ¢ = |P|

)\ .
Z¢4 — \ Invariant under rotations \

1 A A p? 2
Liom = §8H<D otP +?¢ —

1 1 2
= 30,00"0 + 50,0°0"¢" + 5-(02 + 6°%6%) — (o + 7%,

potential V(x)

4-d rotations are linear transformations forming the O(4) group.

@ 12 < 0 — Ad*-theory. Unique minimum o = ¢2 = 0.

59/358



Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!
Let A = (0,¢%),a=1,2,3and ¢ = |P|

)\ .
Z¢4 — \ Invariant under rotations \

1 A A p? 2
Liom = §8H<D otP +?¢ —

1 1 2
= 30,00"0 + 50,0°0"¢" + 5-(02 + 6°%6%) — (o + 7%,

potential V(x)

4-d rotations are linear transformations forming the O(4) group.
@ 12 < 0 — Ad*-theory. Unique minimum o = ¢2 = 0.
@ ;2 > 0 — O(3) degenerate minima o2 + ¢2¢p? = u?/\
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

V(¢)

u? > 0 case:

O(3) degenerate minima
02 _|_d)a¢a — MZ/)\

Choose perturbative vacuum

ato =f=/p2/\

O(4) — O(3) Spontaneous Symmetry Breaking
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

Redefine fields around choice of vacuum o = o — f:

L= 20,6005 — L(@uP)5% + 10,6700 a5 + 6°6%) - 2(5% + 6°0°)

massive o with M2 =2\f2 3 Massless NGB

Only O(3) invariant.
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

Redefine fields around choice of vacuum o = o — f:

L= %aﬁaﬂ& — %(2;&)52 + %amaawa A6 (52 + ¢79%) — %(52 +¢%9%)?

massive o with M2 =2\f2 3 Massless NGB

Only O(3) invariant.

But... how does this relate to SU(2), x SU(2)g — SU(2)y in QCD?
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

Redefine fields around choice of vacuum o = o — f:

L= 20,6005 — L(@uP)5% + 10,6700 a5 + 6°6%) - 2(5% + 6°0°)

massive o with M2 =2\f2 3 Massless NGB

Only O(3) invariant.

But... how does this relate to SU(2), x SU(2)g — SU(2)y in QCD?

Reparameterization Theorem:

The same observables result from Lagrangians obtained by field
transformations: 0 =6 + ...¢% = 7@ 4 ...
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

Recast (o, ¢?) into ¥ = o + iT@¢p3. Then
1 i K rsts) — A st R
Liom = ZTr(é?MZ ML)+ ZTr(Z Y)— ﬁ[Tr(Z Y)]e, (2)

invariant under linear ¥ — LY R, with L € SU(2), and R € SU(2)x.
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THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

Recast (o, ¢?) into ¥ = o + iT@¢p3. Then
1 i K rsts) — A st R
Liom = ZTr(é?MZ ML)+ ZTr(Z Y)— ﬁ[Tr(Z Y)]e, (2)

invariant under linear ¥ — LY R, with L € SU(2), and R € SU(2)x.
Degenerate vacua Tr(£X ') = 2v2. Redefining fields...

Y=Y — vl =51+ irer?

the vacuum condition reads Tr(<%") = 0 which is invariant under L = R
transformations since & — LY L'

O(4) — O(3) is isomorphic to SU(2), x SU(2)g — SU(2)y
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

But where are the pions and the derivative interactions?
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THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

But where are the pions and the derivative interactions?

Recall that: ¥Xf = (02 + ¢%¢?%) 1= L (x) = S(x)U(x),
e’

a positive real function S(x)2=v2in vacuum
with U(x) = exp(iT@r?/v) € SU(2). Shifting S(x) = v + &(x):

1 1 A

A 2
4
Liom = 50u60"6— 7 (24%)6%-Av6° 2 (G+v)°

4

NGB with derivative interactions!!

AR (9, U9 U)
N—_—————
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Effective Field Theories

THE LINEAR 0 MODEL (LoM) GELL MANN-LEVY (1960)

But where are the pions and the derivative interactions?

Recall that: ¥Xf = (02 + ¢%¢?%) 1= L (x) = S(x)U(x),
e’

a positive real function S(x)2=v2in vacuum
with U(x) = exp(iT@r?/v) € SU(2). Shifting S(x) = v + &(x):

1 1 A

A 2
4
Liom = 50u60"6— 7 (24%)6%-Av6° 2 (G+v)°

4

NGB with derivative interactions!!

AR (9, U9 U)
N—_—————

’ Setting v = £, we can identify 72 with the pions. ‘
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Effective Field Theories

ADDING MASSES

mgq are small: linear perturbation at LO in the isospin limit m = m, = my
In the LoM Without masses all vacua are equivalent and ¢ is just a choice.
With an explicit breaking due to small mg, o is the preferred direction to
have a mass. Thus:
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Effective Field Theories

ADDING MASSES

mgq are small: linear perturbation at LO in the isospin limit m = m, = my
In the LoM Without masses all vacua are equivalent and ¢ is just a choice.
With an explicit breaking due to small mg, o is the preferred direction to
have a mass. Thus:

@ in SU(2)

(v+45)
T

c C C
EmaSS:CU:ZTr(ZT—i—Z): THU + U) = M2 =

f2
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Effective Field Theories
ADDING MASSES

mgq are small: linear perturbation at LO in the isospin limit m = m, = my
In the LoM Without masses all vacua are equivalent and ¢ is just a choice.
With an explicit breaking due to small mg, o is the preferred direction to
have a mass. Thus:

@ in SU(2)

(v+45)
T

c C C
EmaSS:CU:ZTr(ZT—i—Z): THU + U) = M2 =

f2

® in SU(3) Limass = = TH(ME(ZT + X)),  MZ = 2c diag(in, i, ms).
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Effective Field Theories
ADDING MASSES

mgq are small: linear perturbation at LO in the isospin limit m = m, = my
In the LoM Without masses all vacua are equivalent and ¢ is just a choice.
With an explicit breaking due to small mg, o is the preferred direction to
have a mass. Thus:

@ in SU(2)

(v+45)
T

c (o] c
EmaSS:CU:ZTr(ZT—i—Z): THU 4+ U) = M2 =

f2
® in SU(3) Limass = = TH(ME(ZT + X)),  MZ = 2c diag(in, i, ms).

@ This yields the Gell Mann-Okubo relation: 4Mg . — Mg, — 3Mg, = 0.
Fairly well satisfied experimentally.
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Effective Field Theories
THE LoM IS JUST A TOY MODEL

The LoM is just a toy model where the auxiliary ¢ is used to facilitate a
linear representation of chiral symmetry and to build an invariant L.

In hadron physics, there are more hadrons, not just the o, which in
addition is not quite the f,(500) meson.

Can we get a model independent effective Lagrangian only for pions?
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Effective Field Theories
THE LoM IS JUST A TOY MODEL

The LoM is just a toy model where the auxiliary ¢ is used to facilitate a
linear representation of chiral symmetry and to build an invariant L.

In hadron physics, there are more hadrons, not just the o, which in
addition is not quite the f,(500) meson.

Can we get a model independent effective Lagrangian only for pions?

YES, but we FIRST have to get rid of the sigma.
(There are other steps later)
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Effective Field Theories

FROM THE LoM TO THE NON-LINEAR-0 MODEL(NLoM)

@ Integrating out the o and expanding in powers of 1/M,:

f02
8M2

f2
Liom ~ % 9, U0 U) + [TH0, U0  U)]? + ...,

- a non-linear chiral Lagrangian for pions only
- but still with specific Linear-o-MODEL interactions at higher orders
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Effective Field Theories

FROM THE LoM TO THE NON-LINEAR-0 MODEL(NLoM)

@ Integrating out the o and expanding in powers of 1/M,:

f02
8M2

f2
Liom ~ % 9, U0 U) + [TH0, U0  U)]? + ...,

- a non-linear chiral Lagrangian for pions only
- but still with specific Linear-o-MODEL interactions at higher orders

@ Set M, — oo with f =constant, leads to
f2 |
Lnom = 5 TH(0,UT0"U)

Universal Leading order non-linear effective Lagrangian for pions
only. With SU(2), x SU(2)g — SU(2)y SSB.
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Effective Field Theories
THE NLoM AT LEADING ORDER

Including masses as perturbation:

Lniom = 5TH(0,UT0"U) + ETHME(UT + U))

@ Invariant under U — LUR'. Non-linear symmetry realization.
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Effective Field Theories
THE NLoM AT LEADING ORDER

Including masses as perturbation:

Lniom = 5TH(0,UT0"U) + ETHME(UT + U))

@ Invariant under U — LUR'. Non-linear symmetry realization.
ﬂ_o \/éﬂ.‘F )

@ In the charge basis: U(x) = e"w, d(x) = ( Y AR

79/358



Effective Field Theories
THE NLoM AT LEADING ORDER

Including masses as perturbation:

Lniom = 5TH(0,UT0"U) + ETHME(UT + U))

@ Invariant under U — LUR'. Non-linear symmetry realization.

, 20x) 0 +
@ In the charge basis: U(x) = e, o) = ( \/gf ‘E’rro )
@ Easy to generalize to SU(3), x SU(3)g — SU(3)1+r
1.0, 1 + +
Y200 Ve 'i‘\/ng 1 7(: 1 Ko
Ux)=¢€e"T7, okx) = T — ™+ mn K
K- K° -2
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Effective Field Theories
THE NLoM AT LEADING ORDER

Including masses as perturbation:

Laiom = = Tr(a,,UT(‘)“U) T(I\/IZ(UT+U))

@ Invariant under U — LUR'. Non-linear symmetry realization.

, () 0 +
@ In the charge basis: U(x) = e, o) = ( \/gf ‘E’rro )
@ Easy to generalize to SU(3), x SU(3)g — SU(3)1+r
g + K+
) 7 J_r T 0
Ux)=¢€e"T7, okx) = T — T+ 5N K
K- 0 —%7]

@ Expanding U ~ I + it?n8/f + (iT?n?/f), provides kinetic terms and
interactions for 4, 6,... 2n pions (G-parity). Fixed from f and Mg.
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Effective Field Theories

MESON MASSES VS. QUARK MASSES

Due to explicit chiral symmetry breaking NGB—"pseudo-NGB”
Note that meson masses are M2 ;5 ~ mq.
This ensures the Gell Mann-Okubo relation (GMOR):

@ Other possibilities explored 12y
like Mo ~ my.

4MG — Mg, — 3MG, =0

0.4 |

0

0.8 |

4
o
2 f = 19/17 4
x?/dof =19/17 650
CL =0.30
7
7
280 ) .
continuum ht
£ = 3.90 fit
B =4.05 fit

B =3.90 data —e—
[ = 4.05 data —a—s

0 0.05

0.1

ETM Col., JHEP08(2010)097 7§ ur
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Effective Field Theories

MESON MASSES VS. QUARK MASSES

Due to explicit chiral symmetry breaking NGB—"pseudo-NGB”
Note that meson masses are M2 ;5 ~ mq.
This ensures the Gell Mann-Okubo relation (GMOR):

4MG — Mg, — 3MG, =0

4
74
@ Other possibilities explored L2} 2’1/<*°*'j19/17 /o5 |
. L = 0.30
like Mo ~ my.
. = 0.8 +
@ But GMOR on the lattice V.
confirms = e
2 0.4 280 continuum fi
MNGB ~ mq. J—:;.Q()ﬂi
3 =4.05 fit
. £ =3.90 data —e—
at least at leading order. § B =405 date —+—

0 0.05 0.1
ETM Col., JHEP08(2010)097 7§ ur
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Effective Field Theories

SCATTERING: DEFINITIONS AND NOTATION

1 3
D1 Ps3
P2 P4

Mandelstamm variables:

s = (p1 + p2)°

t = (p1 — ps)?

u= (p1 —p4)2, (redundant due to momentum conservation)
k =center of mass momentum.
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Effective Field Theories

SCATTERING: DEFINITIONS AND NOTATION

! 3 Mandelstamm variables:
Py P s=(pi+p2)?
t = (p1 — ps)?
u= (p1 —p4)2, (redundant due to momentum conservation)
P P k =center of mass momentum.
2 4

@ Partial waves: T(s,t) = 16Km)_,(2¢ 4+ 1)P;(cos 0)t;(s)
(K = 1or K = 2if particles identical)

Then t(s) = \[M d¢(s) =phase shift. n,(s) =elasticity
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Effective Field Theories

SCATTERING: DEFINITIONS AND NOTATION

! 3 Mandelstamm variables:
P B s=(pr + p2)?

t = (p1 — ps)?

u= (p1 —p4)2, (redundant due to momentum conservation)
b2 P4 k =center of mass momentum.
2 4

@ Partial waves: T(s,t) = 16Km)_,(2¢ 4+ 1)P;(cos 0)t;(s)
(K = 1or K = 2 if particles identical)

Then t(s) = \[M d¢(s) =phase shift. n,(s) =elasticity

o Ifelastic n = 1 and| t,(s) = LE€(5) sin §y(s),

86/358



Effective Field Theories

SCATTERING: DEFINITIONS AND NOTATION

1 3 Mandelstamm variables:
P P s=(p1 4 p2)?
t=(p1 - ps)?

u= (p1 —p4)2, (redundant due to momentum conservation)

). P
b2 P4 k =center of mass momentum.

2 4
@ Partial waves: T(s,t) = 16Km)_,(2¢ 4+ 1)P;(cos 0)t;(s)

(K = 1or K = 2if particles identical)

Then t(s) = \[M d¢(s) =phase shift. n,(s) =elasticity

o Ifelastic n = 1 and| t,(s) = LE€(5) sin §y(s),

@ Threshold parameters: ﬁRe t(s) ~ as + bek?...
ay =scattering length
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Effective Field Theories
THE NLoM AT LEADING ORDER

For instance, the NLoM provides a universal leading order prediction for
the 7+ 7~ — 7% amplitude T(s, t,u) = (s — M2)/f2

Weinberg Low Energy Theorems (LET):

For tlf')(s) of definite isospin /
t(o) _ 25s—M? t(1) _ s—4M2 t(2) _ 2M2—s
0 — 32g2° 1 T 96xf2’ ‘0 T~ 32xf2 -
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Effective Field Theories
THE NLoM AT LEADING ORDER

For instance, the NLoM provides a universal leading order prediction for
the 7+ 7~ — 7% amplitude T(s, t,u) = (s — M2)/f2

Weinberg Low Energy Theorems (LET):

For tlf')(s) of definite isospin /
t(o) _ 25s—M? t(1) _ s—4M2 t(2) _ 2M2—s
0 — 32g2° 1 T 96xf2’ ‘0 T~ 32xf2 -

e If M, — 0, NO interaction at threshold.
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Effective Field Theories
THE NLoM AT LEADING ORDER

For instance, the NLoM provides a universal leading order prediction for
the 7+ 7~ — 7% amplitude T(s, t,u) = (s — M2)/f2

Weinberg Low Energy Theorems (LET):

For tlf')(s) of definite isospin /
t(o) _ 25s—M? t(1) _ s—4M2 t(2) _ 2M2—s
0 — 32g2° 1 T 96xf2’ ‘0 T~ 32xf2 -

e If M, — 0, NO interaction at threshold.
@ Since M, # 0, "Adler zeros” for s = O(M2). Ex: s = M2 /2 for téo).
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Effective Field Theories
THE NLoM AT LEADING ORDER

For instance, the NLoM provides a universal leading order prediction for
the 7+ 7~ — 7% amplitude T(s, t,u) = (s — M2)/f2

Weinberg Low Energy Theorems (LET):

For tlf')(s) of definite isospin /
t(o) _ 25s—M? t(1) _ s—4M2 t(2) _ 2M2—s
0 — 32g2° 1 T 96xf2’ ‘0 T~ 32xf2 -

e If M, — 0, NO interaction at threshold.
@ Since M, # 0, "Adler zeros” for s = O(M2). Ex: s = M2 /2 for téo).
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Effective Field Theories
THE NLoM AT LEADING ORDER

For instance, the NLoM provides a universal leading order prediction for
the 7+ 7~ — 7% amplitude T(s, t,u) = (s — M2)/f2

Weinberg Low Energy Theorems (LET):

For tlf')(s) of definite isospin /
t(o) _ 25s—M? t(1) _ s—4M2 t(2) _ 2M2—s
0 — 32g2° 1 T 96xf2’ ‘0 T~ 32xf2 -

e If M, — 0, NO interaction at threshold.
@ Since M, # 0, "Adler zeros” for s = O(M2). Ex: s = M2 /2 for téo).

LET Exp.
a” 016  0.220+0.005
a"  0.030 0.038+0.002
a?)  -0.045 -0.044 +0.001
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Effective Field Theories
THE NLoM AT LEADING ORDER

For instance, the NLoM provides a universal leading order prediction for
the 7+ 7~ — 7% amplitude T(s, t,u) = (s — M2)/f2

Weinberg Low Energy Theorems (LET):

For tlf')(s) of definite isospin /
t(o) _ 25s—M? t(1) _ s—4M2 t(2) _ 2M2—s
0 — 32g2° 1 T 96xf2’ ‘0 T~ 32xf2 -

e If M, — 0, NO interaction at threshold.
@ Since M, # 0, "Adler zeros” for s = O(M2). Ex: s = M2 /2 for téo).
LET Exp.

a” 016 0.220+0.005 Fair for leading approximation

a” 0030 0.038+0.002  but higher orders needed
a?)  -0.045 -0.044 +0.001
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Effective Field Theories

THE NLoM AT LEADING ORDER

Actually, the NLoM at O(p?) describes rather well the quark mass
dependence of some observables calculated on the lattice:

T T T T
0 T
0.1 . 0.0 \ b
gl i 01 bl
b & ]
Sg Lo s —
w03 MA % - PT (One Loop) . ‘;
s — % - PT (Tree Level) :f - E ]
o u CP-PACS (2004) (n;=2)
04 B 025 — 2 b
4 E865(2003) XPT 3 $
B ® This work
e NPLQCD 03l --- physical line —
05 T
I . | . . I . 1 .
1 2 3 4 05 1 15 2
’nn/j; MnK/f%

NPLQCD Phys.Rev.D77:014505,2008, and Phys.Rev.D77:094507,2008

94/358



Effective Field Theories
THE QCD LOW-ENERGY EFFECTIVE THEORY

So far we only have an effective Lagrangian with the relevant d.o.f.

Weinberg’s power counting (1979):

D

A Feynman diagram is O(ﬁ) ,With D=2+ %" Ny(n—2) + 2N,
N, =number of vertices with n derivatives (or masses).

N; =number of loops. p =CM NGB momenta (or masses).

@ QCD Low energy Effective Theory=Chiral Perturbation Theory
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Effective Field Theories
THE QCD LOW-ENERGY EFFECTIVE THEORY

So far we only have an effective Lagrangian with the relevant d.o.f.

Weinberg’s power counting (1979):

D

A Feynman diagram is O(ﬁ) ,With D=2+ %" Ny(n—2) + 2N,
N, =number of vertices with n derivatives (or masses).

N; =number of loops. p =CM NGB momenta (or masses).

@ QCD Low energy Effective Theory=Chiral Perturbation Theory

@ Lniom = L2 = leading order. Two derivatives or masses. No loops so far.
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Effective Field Theories
THE QCD LOW-ENERGY EFFECTIVE THEORY

So far we only have an effective Lagrangian with the relevant d.o.f.

Weinberg’s power counting (1979):

D

A Feynman diagram is O(ﬁ) ,With D=2+ %" Ny(n—2) + 2N,
N, =number of vertices with n derivatives (or masses).

N; =number of loops. p =CM NGB momenta (or masses).

@ QCD Low energy Effective Theory=Chiral Perturbation Theory

@ Lniom = L2 = leading order. Two derivatives or masses. No loops so far.

2
@ Each loop (ﬁ) suppression
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Effective Field Theories
THE QCD LOW-ENERGY EFFECTIVE THEORY

So far we only have an effective Lagrangian with the relevant d.o.f.

Weinberg’s power counting (1979):

D

A Feynman diagram is O(ﬁ) ,With D=2+ %" Ny(n—2) + 2N,
N, =number of vertices with n derivatives (or masses).

N; =number of loops. p =CM NGB momenta (or masses).

@ QCD Low energy Effective Theory=Chiral Perturbation Theory

@ Lniom = L2 = leading order. Two derivatives or masses. No loops so far.

2
@ Each loop (ﬁ) suppression

@ Next order: Lagrangian with four derivatives or masses
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Effective Field Theories

CHIRAL PERTURBATION THEORY (CHPT) aussens tevrunen

At next-to-leading order (NLO), within SU(3):

La =L, Tr(@" u'a, u) 2+L2Tr<8" u'e” u) Tr (a,,b u'a, U)+L3Tr(8“ U'a,U8" U'a, u)
+L4Tr(8“ u'a, U) T (M§U + M§UT)+ L5Tr(8" U9, UMEU + UTMg))
4L [Tr (M§U + M§UT)]2+L7 [Tr(M§U - M§UT)]2+L8Tr<M§UM§U+ MSUTM(?UT)

@ Any other term is a combination of these (maybe using LO-EOM).
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Effective Field Theories

CHIRAL PERTURBATION THEORY (CHPT) aussens tevrunen

At next-to-leading order (NLO), within SU(3):

La =L, Tr(@" u'a, U) 2+L2Tr<8" u'e” u) Tr (a,,b u'a, U)+L3Tr(8“ U'a,U8" U'a, u)
+L4Tr(8“ u'a, U) T (M§U + M§UT)+ L5Tr(8" U9, UMEU + UTMg))
4L [Tr (M§U + M§UT)]2+L7 [Tr(M§U - M§UT)]2+L8Tr(M§UM§U+ MSUTM(?UT)

@ Any other term is a combination of these (maybe using LO-EOM).
@ L; =Low Energy Constants (LECs). Encode all other QCD dynamics
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Effective Field Theories

CHIRAL PERTURBATION THEORY (CHPT) aussens tevrunen

At next-to-leading order (NLO), within SU(3):

La =L, Tr(@" u'a, U) 2+L2Tr<8" u'e” u) Tr (a,,b u'a, U)+L3Tr(8“ U'a,U8" U'a, u)
+L4Tr(8“ u'a, U) T (M§U + M§UT)+ L5Tr(8" U9, UMEU + UTMg))
4L [Tr (M§U + M§UT)]2+L7 [Tr(M§U - M§UT)]2+L8Tr(M§UM§U+ MSUTM(?UT)

@ Any other term is a combination of these (maybe using LO-EOM).

@ L; =Low Energy Constants (LECs). Encode all other QCD dynamics
@ L4 3 survive in the chiral limit.
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Effective Field Theories

CHIRAL PERTURBATION THEORY (CHPT) aussens tevrunen

At next-to-leading order (NLO), within SU(3):

La =L, Tr(@" u'a, U) 2+L2Tr<8" u'e” u) Tr (a,,b u'a, U)+L3Tr(8“ U'a,U8" U'a, u)
+L4Tr(8“ u'a, U) T (M§U + M§UT)+ L5Tr(8" U9, UMEU + UTMg))
4L [Tr (M§U + /\xféUT)rJrL7 [Tr(M§U - M§UT)]2+L8Tr(M§UM§U+ MSUTM(?UT)

@ Any other term is a combination of these (maybe using LO-EOM).

@ L; =Low Energy Constants (LECs). Encode all other QCD dynamics
@ L4 3 survive in the chiral limit.

@ L4 g is NLO explicit symmetry breaking
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Effective Field Theories

CHIRAL PERTURBATION THEORY (CHPT) aussens tevrunen

At next-to-leading order (NLO), within SU(3):

La =L, Tr(@" u'a, U) 2+L2Tr<8" u'e” u) Tr (a,,b u'a, U)+L3Tr(8“ U'a,U8" U'a, u)
+L4Tr(8“ u'a, U) T (M§U + M§UT)+ L5Tr(8" U9, UMEU + UTMg))
4L [Tr (M§U + M§UT)]2+L7 [Tr(M§U - M§UT)]2+L8Tr(M§UM§U+ MSUTM(?UT)

@ Any other term is a combination of these (maybe using LO-EOM).

@ L; =Low Energy Constants (LECs). Encode all other QCD dynamics
@ L4 3 survive in the chiral limit.

@ L4 g is NLO explicit symmetry breaking

@ All one-loop divergences renormalized in L;. Finite results to NLO.
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Effective Field Theories

CHIRAL PERTURBATION THEORY (CHPT) aussens tevrunen

At next-to-leading order (NLO), within SU(3):

La =L, Tr(@" u'a, u) 2+L2Tr<8" u'e” u) Tr (a,,b u'a, U)+L3Tr(8“ U'a,U8" U'a, u)
+L4Tr(8“ u'a, U) T (M§U + M§UT)+ L5Tr(8" U9, UMEU + UTMg))
4L [Tr (M§U + M§UT)]2+L7 [Tr(M§U - M§UT)]2+L8Tr<M§UM§U+ MSUTM(?UT)

Any other term is a combination of these (maybe using LO-EOM).

L; =Low Energy Constants (LECs). Encode all other QCD dynamics
L4 23 survive in the chiral limit.

L4_g is NLO explicit symmetry breaking

All one-loop divergences renormalized in L;. Finite results to NLO.

Higher orders with even number of derivatives (Lorentz invariance)
NNLO (two-loop) calculations exist. Many more parameters
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Effective Field Theories
MESON-MESON SCATTERING AT NLO CHPT

To(s,t,u)

T,(s,t,u)=0(p*)
O(p?)

X X K T oK K 5P

@ O(p?) from L; tree level

Better description of w7 threshold

parameters
Exp. LET  NLO
a” 0.220(5) | 0.16  0.20
a" 0.038(2) | 0.030 0.036
a? -0.044(1) | -0.045 -0.041
b 0.25(3) | 0.18 026
bl x 10° | 5.37(14) 0 4.4

b{? x 107 | -0.082(8) | -0.089 -0.082
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Effective Field Theories
MESON-MESON SCATTERING AT NLO CHPT

T,(s.t,u) T,(s,t,u)=0(p*)
O(p?) [ . 1
L
XX SOK T X Y Y
a b o d e f g
2
° O(p4) from L tree level Better description of 7 threshold
e O(p") from parameters
Exp. LET  NLO
a” 0.220(5) | 0.16  0.20

a 0.038(2) | 0.030 0.036
a? -0.044(1) | -0.045 -0.041
b 025(3) | 0.18 026

b{" x 10° | 5.37(14) 0 4.4
b{? x 10? | -0.082(8) | -0.089 -0.082

106/358



Effective Field Theories
MESON-MESON SCATTERING AT NLO CHPT

To(s,t,u)

T,(s,t,u)=0(p*)
O(p?)

X X K T oK K 5P

@ O(p?) from L; tree level

. Better description of w7 threshold
e O(p*) from parameters
o L4 tree level Exp. LET NLO
a” 0.220(5) | 0.16  0.20
a 0.038(2) | 0.030 0.036
a? -0.044(1) | -0.045 -0.041
b 025(3) | 0.18 026
b{" x 10° | 5.37(14) 0 4.4

b{? x 10? | -0.082(8) | -0.089 -0.082
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Effective Field Theories

MESON-MESON SCATTERING AT NLO CHPT

To(s,t,u)
O(p?)

I

Ty(s:t,u)=0(p?)

a

@ O(p?) from L; tree level
e O(p*) from
o L4 tree level
@ One loop with £, vertices

XX XX QO

E S

Better description of w7 threshold

parameters
Exp. LET  NLO
a” 0.220(5) | 0.16  0.20
a" 0.038(2) | 0.030 0.036
a? -0.044(1) | -0.045 -0.041
b 0.25(3) | 0.18 026
bl x 10° | 5.37(14) 0 4.4
b{? x 107 | -0.082(8) | -0.089 -0.082

108/358



Effective Field Theories

MESON-MESON SCATTERING AT NLO CHPT

Ty(s.tu) Ty(st,u)=0(p)
oM

X XSk T oK 5P

@ O(p?) from L; tree level
e O(p*) from

Better description of w7 threshold

parameters

o L4 tree level Exp. LET NLO

e One loop with £, vertices a” 0.220(5) | 0.16  0.20
@ Divergences renormalized into L; al" 0.038(2) | 0.030 0.036
r r r p a? -0.044(1) | -0.045 -0.041

Li(k) = Li(po) + 155 log (%) b 025(3) | 0.18  0.26

: bl x 10° | 5.37(14) 0 4.4
(2ry =2l =3l =Ts = 3/8, b{? x 10? | -0.082(8) | -0.089 -0.082

e =11/144,T3 =5/48, T3 =7 =0)
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Effective Field Theories

MESON-MESON SCATTERING AT NLO CHPT

Ty(s.tu) Ty(st,u)=0(p)
oM

X XSk T oK 5P

@ O(p?) from L; tree level
e O(p*) from

Better description of w7 threshold

parameters

o L4 tree level Exp. LET NLO

e One loop with £, vertices a” 0.220(5) | 0.16  0.20
@ Divergences renormalized into L; al" 0.038(2) | 0.030 0.036
r r r p a? -0.044(1) | -0.045 -0.041

Li(k) = Li(po) + 155 log (%) b 025(3) | 0.18  0.26

: bl x 10° | 5.37(14) 0 4.4
(2ry =2l =3l =Ts = 3/8, b{? x 10? | -0.082(8) | -0.089 -0.082

e =11/144,T3 =5/48, T3 =7 =0)
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Effective Field Theories

MESON-MESON SCATTERING AT NLO CHPT

Ty(s.tu) Ty(st,u)=0(p)
oM

X XSk T oK 5P

@ O(p?) from L; tree level
e O(p*) from

Better description of w7 threshold

parameters

o L4 tree level Exp. LET NLO

e One loop with £, vertices a” 0.220(5) | 0.16  0.20
@ Divergences renormalized into L; al" 0.038(2) | 0.030 0.036
r r r p a? -0.044(1) | -0.045 -0.041

Li(k) = Li(po) + 155 log (%) by 025(3) | 0.18  0.26

: bl x 10° | 5.37(14) 0 4.4
(2ry =2l =3l =Ts = 3/8, b{? x 10? | -0.082(8) | -0.089 -0.082

e =11/144,T3 =5/48, T3 =7 =0)
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Effective Field Theories

Low ENERGY CONSTANTS OBSERVED VALUES

Low Energy Constants (LECs) have been determined phenomenologically

(a few also from lattice)

10 GL NNLO NLO
[55] [255] [255]
L 0.7(3) 0.53(06) 1.0(1)
L 1.3(7) 0.81(04) 1.6(2)
L —4.4(2.5) —3.07(20) —3.8(3) , B
I ~0.3(5) =0.3 0.0(3) Typically O(10~°%)
i 1.4(5) 1.01(06) 1.2(1) Uncertainties 10-20%
L —0.2(0.15) 0.14(05) 0.0(4)
L —0.4(2) —0.34(09) —0.3(2)
I 0.9(3) 0.47(10) 0.5(2)
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Effective Field Theories

RESONANCES AND LOwW ENERGY CONSTANTS

The LECs receive contributions from the integration of heavier resonances.

T b
P T

p(770)

g g
At low energy

g° m g
2
S—Mp

@ Resonances are not explicit in the EFT, but we still see their
low-energy tail in the LECs.
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Effective Field Theories

RESONANCES AND LOwW ENERGY CONSTANTS

The LECs receive contributions from the integration of heavier resonances.

T b

T

T

p(770)

g g
At low energy

T gz s ~g_
s—M; M}
@ Resonances are not explicit in the EFT, but we still see their
low-energy tail in the LECs.

@ Intuitively... larger contributions from lowest heavy resonance with
given quantum numbers.
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Effective Field Theories

THE LoM IS not THE LOW-ENERGY EFT oF QCD

103 GL NNLO NLO
[55] [255] [255]
L 0.7(3) 0.53(06) 1.0(1)
L 1.3(7) 0.81(04) 1.6(2)
Ls —4.4(2.5) —3.07(20) —3.8(3)
L —0.3(5) =0.3 0.0(3)
Lk 1.4(5) 1.01(06) 1.2(1)
L —0.2(0.15) 0.14(05) 0.0(4)
Ly —0.4(2) —0.34(09) —0.3(2)
L 0.9(3) 0.47(10) 0.5(2)

Integrating out the o inthe LocM

(*] 2L1+L3—

4/\//2

Wrong sign
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Effective Field Theories

THE LoM IS not THE LOW-ENERGY EFT oF QCD

10° GL NNLO NLO
o) 25°] 2>9] Integrating out the o inthe LocM
I 0.7(3) 0.53(06) 1.0(1)
L 1.3(7) 0.81(04) 1.6(2) ) 2L1 —+ L3 — 4M2 Wrong S|gn
Ls —4.4(2.5) —3.07(20) —38(3)
L, —0.3(5) =03 0.0(3) @ lo=L[7=0
I 1.4(5) 1.01(06) 1.2(1)
L —0.2(0.15) 0.14(05) 0.0(4)
Ly —0.4(2) —0.34(09) —0.3(2)
L 0.9(3) 0.47(10) 0.5(2)
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Effective Field Theories

THE LoM IS not THE LOW-ENERGY EFT oF QCD

10° GL NNLO NLO
o) 25°] 2>9] Integrating out the o inthe LocM
I 0.7(3) 0.53(06) 1.0(1)
L 1.3(7) 0.81(04) 1.6(2) ) 2L1 —+ L3 — 4M2 Wrong S|gn
Ls —4.4(2.5) —3.07(20) —38(3)
L, —0.3(5) =03 0.0(3) @ lo=L[7=0
I 1.4(5) 1.01(06) 1.2(1)
L —0.2(0.15) 0.14(05) 0.0(4)
Ly —0.4(2) —0.34(09) —0.3(2)
L 0.9(3) 0.47(10) 0.5(2)
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Effective Field Theories

THE LoM IS not THE LOW-ENERGY EFT oF QCD

103 GL NNLO NLO
[55] [255] [255]
L 0.7(3) 0.53(06) 1.0(1)
L 1.3(7) 0.81(04) 1.6(2)
Ls —4.4(2.5) —3.07(20) —3.8(3)
L —0.3(5) =0.3 0.0(3)
Lk 1.4(5) 1.01(06) 1.2(1)
L —0.2(0.15) 0.14(05) 0.0(4)
Ly —0.4(2) —0.34(09) —0.3(2)
L 0.9(3) 0.47(10) 0.5(2)

Integrating out the o inthe LocM

0 2L+ L3=
(*] Lg = L7 =0
V and S; missing

4/\//2

Wrong sign
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Effective Field Theories

THE LoM IS not THE LOW-ENERGY EFT oF QCD

10°  GL NNLO NLO
55 255 255 . .
o) 25°] 2>9] Integrating out the o inthe LocM
I 07(3) 0.53(06) 1.0(1)
L 1.3(7) 0.81(04) 1.6(2) ) 2L1 —+ L3 — 4M2 Wrong S|gn
L3 —4.4(25) —307(20)  —38(3)
L, —0.3(5) =03 0.0(3) @ lo=L[7=0
L 1.4(5) 1.01(06) 1.2(1) o
I —02(0.15)  0.14(05) 0.0(4) V'and Sy missing
L —0.4(2) —034(09)  —03(2)
I 09(3) 0.47(10) 05(2)

@ But only scalars contribute to 2L4 + L5 + 8Lg + 4Lg = 72
Identifying o = f,(500) wrong by factor 2-3
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Effective Field Theories

THE LoM IS not THE LOW-ENERGY EFT oF QCD

10° GL NNLO NLO

55 255 255 . )

o) 25°] 2>9] Integrating out the ¢ in the LoM
L 0.7(3) 0.53(06) 1.0(1) 2
L 1.3(7) 0.81(04) 1.6(2) ) 2L1 —+ L3 — W Wrong Sign
Ly —4.4(2.5) —3.07(20) —3.8(3) o
I ~0.3(5) =03 0.0(3) e lr,=L;=0
Lk 1.4(5) 1.01(06) 1.2(1) P
I —02(0.15)  0.14(05) 0.0(4) V'and Sy missing
L —0.4(2) —0.34(09) —0.3(2)
L 0.9(3) 0.47(10) 0.5(2)

2

@ But only scalars contribute to 2L4 + L5 + 8Lg + 4Lg = Jﬁ.

Identifying o = f,(500) wrong by factor 2-3
@ LoM yields only correct LO. NLO wrong.
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Effective Field Theories

THE LoM IS not THE LOW-ENERGY EFT oF QCD

10° GL NNLO NLO

55 255 255 . )

o) 25°] 2>9] Integrating out the ¢ in the LoM
L 0.7(3) 0.53(06) 1.0(1) 2
L 1.3(7) 0.81(04) 1.6(2) ) 2L1 —+ L3 — W Wrong Sign
Ly —4.4(2.5) —3.07(20) —3.8(3) o
I ~0.3(5) =03 0.0(3) e lr,=L;=0
Lk 1.4(5) 1.01(06) 1.2(1) P
I —02(0.15)  0.14(05) 0.0(4) V'and Sy missing
L —0.4(2) —0.34(09) —0.3(2)
L 0.9(3) 0.47(10) 0.5(2)

2

@ But only scalars contribute to 2L4 + L5 + 8Lg + 4Lg = Jﬁ.

Identifying o = f,(500) wrong by factor 2-3
@ LoM yields only correct LO. NLO wrong.
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Effective Field Theories

THE LoM IS not THE LOW-ENERGY EFT oF QCD

10°  GL NNLO NLO
55 255 255 . .
o) 25°] 2>9] Integrating out the o inthe LocM
I 07(3) 0.53(06) 1.0(1)
L 1.3(7) 0.81(04) 1.6(2) ) 2L1 —+ L3 — 4M2 Wrong S|gn
L3 —4.4(25) —307(20)  —38(3)
L, —0.3(5) =03 0.0(3) @ lo=L[7=0
L 1.4(5) 1.01(06) 1.2(1) o
I —02(0.15)  0.14(05) 0.0(4) V'and Sy missing
L —0.4(2) —034(09)  —03(2)
I 09(3) 0.47(10) 05(2)

@ But only scalars contribute to 2L4 + L5 + 8Lg + 4Lg = 72
Identifying o = f,(500) wrong by factor 2-3
@ LoM yields only correct LO. NLO wrong.

No scalar dominance despite f,(500)being the lightest meson ???
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Effective Field Theories

R ESON AN C E SAT U RAT I O N DONOGHUE, ECKER, GASER, LEUTWYLER, PICH, VALENCIA...

Integrating out vector(V), scalar (S), and singlet-scalar (S) multiplets from
a general chirally invariant Lagrangian: L; = L,V + L,S + L,.S1

10° GL NNLO NLO RS 1% S S
[55] [255] [255] [56]

I 0.7(3) 0.53(06) 1.0(1) 06 0.6 —0.2 0.2 O(N,)
L 1.3(7) 0.81(04) 16(2) 12 1.2 0 0 O(N,)
L3 —4.4(2.5) —3.07(20) —3.8(3) —-3.0 —36 0.6 0 O(N,)
L —0.3(5) =0.3 0.0(3) 00 0 —05 05 o(1)
i 1.4(5) 1.01(06) 12(1) 14 0 1.4@ 0 O(N,)
L —0.2(0.15) 0.14(05) 0.0(4) 0.0 0 —0.3 0.3 0(1)
Ly —0.4(2) —0.34(09) —0.3(2) —0.3® 0 0 0 o(1)
L 0.9(3) 0.47(10) 05(2) 09 0 0.9@ 0 O(N,)

Single Resonance Approximation (SRA)

LEC values are saturated by the lowest multiplet of each kind.
Vector-Meson Dominance by the vector multiplet of the p(770)
Scalar contributions with Ms > 1 GeV. No LaMNo f,(500) contribution
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(Ny). x SU(Nf)g — SU(Ny)
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.
© Explicit symmetry breaking Mg ~ Mg as perturbation
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLocM
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(Ny), x SU(N¢)g — SU(Ns)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLoM

@ Systematic power counting. Loops ~ 1/(4rf,)? supression
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLoM

@ Systematic power counting. Loops ~ 1/(4rf,)? supression

© LECs absorb loop divergences. Finite results at each order.
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLoM

@ Systematic power counting. Loops ~ 1/(4rf,)? supression

© LECs absorb loop divergences. Finite results at each order.

@ LECs encode underlying QCD dynamics
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLoM

@ Systematic power counting. Loops ~ 1/(4rf,)? supression

© LECs absorb loop divergences. Finite results at each order.

@ LECs encode underlying QCD dynamics

© LECs understood from Single Resonance Saturation.
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLoM

@ Systematic power counting. Loops ~ 1/(4rf,)? supression

© LECs absorb loop divergences. Finite results at each order.

@ LECs encode underlying QCD dynamics

© LECs understood from Single Resonance Saturation.

© NNLO results available
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLoM

@ Systematic power counting. Loops ~ 1/(4rf,)? supression

© LECs absorb loop divergences. Finite results at each order.

@ LECs encode underlying QCD dynamics

© LECs understood from Single Resonance Saturation.

© NNLO results available

@ Successful in describing low-energy Physics (i.e., threshold parameters)
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLoM

@ Systematic power counting. Loops ~ 1/(4rf,)? supression

© LECs absorb loop divergences. Finite results at each order.

@ LECs encode underlying QCD dynamics

© LECs understood from Single Resonance Saturation.

© NNLO results available

@ Successful in describing low-energy Physics (i.e., threshold parameters)
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Effective Field Theories
CHIRAL PERTURBATION THEORY RECAPITULATION

@ Most general £ with spontaneous SU(N¢). x SU(Nf)g — SU(Ny)
@ Only 7, K, n in the Lagrangian, as NGB.

© Explicit symmetry breaking Mg ~ Mg as perturbation

© LO: massive NLoM

@ Systematic power counting. Loops ~ 1/(4rf,)? supression

© LECs absorb loop divergences. Finite results at each order.

@ LECs encode underlying QCD dynamics

© LECs understood from Single Resonance Saturation.

© NNLO results available

@ Successful in describing low-energy Physics (i.e., threshold parameters)

‘ ChPT = THE systematic and model independent low-energy EFT of QCD

Question: What is the applicability region?
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Effective Field Theories

CHPT IN THE RESONANCE REGION

ChPT: good results up to k = 100 — 200 MeV, beyond if no resonances.
But fails to describe resonances

DEE IS

)

1

I T T N

400 500 600 700 800 900
Vs

800 1000 1200

f) tK—>nK
)

n0
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== == = = ChPTNLO

IAM-I ChPT NLO

900 1000 1100 12
Vs

IAM-II ChPT NLO
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Resonances, unitarity and dispersion relations

OUTLINE

@ Effective Field Theories

e Resonances, unitarity and dispersion relations

e Unitarity and unitarization of EFTs
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Resonances, unitarity and dispersion relations
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Resonances, unitarity and dispersion relations
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Resonances, unitarity and dispersion relations

ANALYTICITY, CUTS AND POLES

Let us review scattering in NR-Quantum Mechanics.
Recall the radial Schrédinger eq. projected in partial waves:
d2U/(k2, I’)
dr?

+ [k2 —2V(r) — er ") u(k?,r)=0,

m = h =1, V(r) =real spherically symmetric. Only k? = 2E, but no k.
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Resonances, unitarity and dispersion relations

ANALYTICITY, CUTS AND POLES

Let us review scattering in NR-Quantum Mechanics.
Recall the radial Schrédinger eq. projected in partial waves:

0l +1)

d?u(k?, r
Ul r) )+[k2—2V(r)— | uk?.r) =0,

ar?

m = h =1, V(r) =real spherically symmetric. Only k? = 2E, but no k.
Scattering conditions for spherical waves:

A(k?)
2ik

Normalization

u(K?,r) = [0 (k)" + o (k*)e ™™ ] ~ [Si(k*)e" — (—1%)e "],
—_— Y

outgoing wave incoming wave
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Resonances, unitarity and dispersion relations

ANALYTICITY, CUTS AND POLES

Let us review scattering in NR-Quantum Mechanics.
Recall the radial Schrédinger eq. projected in partial waves:
d2U/(k2, I’)
dr?

+ [k2 —2V(r) — er ") u(k?,r)=0,

m = h =1, V(r) =real spherically symmetric. Only k? = 2E, but no k.
Scattering conditions for spherical waves:

o i i Ai(K? , .
Ug(kz,l’) — [¢€—(k2)e/kr+¢2»(k2)eflkr] ~ 5(. ) [Sg(kz)e’k’ _ (_‘If)eflkr]7
2ik ———— ———
... outgoing wave incoming wave
Normalization

S-matrix partial wave= | Sy(k?) = (—1)“*" Zég:j))
4

No interaction = Sy(k?) = 1
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Resonances, unitarity and dispersion relations

RIEMANN SHEETS

u(k2, f) is a function of k2, but we used the double valued k = v/2E.
Two Riemann sheets to map k on E—plane.

ImE sheet I
(physical sheet)

Define k > 0

Imk ;)' Y k= k'/?(cosa/2 + isina/2)

o0

>0

. —_— _— @ Sheet | or "Physical”:
T D mE " (nphysical sheet) 0 <a< 27.[.’ |m k > 0

7‘\ rxs
—x e ReE

v XO
i

143/358



Resonances, unitarity and dispersion relations

RIEMANN SHEETS

u(k2, f) is a function of k2, but we used the double valued k = v/2E.
Two Riemann sheets to map k on E—plane.

ImE sheet I

(physical sheet)
c Define x > 0
- ;)' B k= k"?(cosa/2 + isina/2)
A
8 8
. —_— _— @ Sheet | or "Physical”:
B % v T D mE " (nphysical sheet) 0 <a< 27_[_ Im k > O
< a<2m, .
7‘\ £y
—_—— ReE . »
¥ < @ Sheet Il or "unphysical”:
T
2r < a<4rm, Imk <0.
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Resonances, unitarity and dispersion relations

RIEMANN SHEETS

u(k2, f) is a function of k2, but we used the double valued k = v/2E.
Two Riemann sheets to map k on E—plane.

ImE sheet I

(physical sheet)
c Define x > 0
- ;)' B k= k"?(cosa/2 + isina/2)
A
8 8
. —_— _— @ Sheet | or "Physical”:
B % v T D mE " (nphysical sheet) 0 <a< 27_[_ Im k > O
< a<2m, .
7‘\ £y
—_—— ReE . »
¥ < @ Sheet Il or "unphysical”:
T
2r < a<4rm, Imk <0.
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Resonances, unitarity and dispersion relations

RIEMANN SHEETS

u(k2, f) is a function of k2, but we used the double valued k = v/2E.
Two Riemann sheets to map k on E—plane.

ImE sheet I

(physical sheet)
¢ Define x > 0
- ;)' FM k= k'/2(cosar/2 + isina/2)
A
8 8
. —_— . @ Sheet | or "Physical”:
B I ty, I D mE " (unphysical sheet) 0<a< 27.[.’ Im k > 0.
A
ReE . »
¥ < @ Sheet Il or "unphysical”:
:
2r < a<4rm, Imk <0.

Since ¢, (k) = ¢, (—k) = S)(k®) = 1/S/(k?), info in both sheets redundant.
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Resonances, unitarity and dispersion relations

RIEMANN SHEETS

u(k2, f) is a function of k2, but we used the double valued k = v/2E.
Two Riemann sheets to map k on E—plane.

ImE sheet I

(physical sheet)
c Define x > 0
- ;)' B k= k"?(cosa/2 + isina/2)
A
8 8
. —_— _— @ Sheet | or "Physical”:
B % v T D mE " (nphysical sheet) 0 <a< 27_[_ Im k > O
< a<2m, .
\\in e
—_—— ReE . »
¥ < @ Sheet Il or "unphysical”:
T
2r < a<4rm, Imk <0.

Since ¢, (k) = ¢, (—k) = S)(k®) = 1/S/(k?), info in both sheets redundant.

Observables: Sppysicai(k) = lim  S(Re k+ilm k))  (i.e. sheet )
Im k—o+
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Incoming packet: ®ip(r, t) = — [~ dE A(E)e™ "~ (similar outgoing)
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Incoming packet: ®ip(r, t) = — [~ dE A(E)e™ "~ (similar outgoing)

Scattering wave = outcoming “with interaction”-"without interaction”
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Incoming packet: ®ip(r, t) = — [~ dE A(E)e™ "~ (similar outgoing)

Scattering wave = outcoming “with interaction”-"without interaction”

be(r, t) = /OOO dE A(E)[S(E) — 1]e—Et
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Incoming packet: ®ip(r, t) = — [~ dE A(E)e™ "~ (similar outgoing)

Scattering wave = outcoming “with interaction”-"without interaction”

bee(r,t) = /0 h dE A(E)[S(E) — 1]e"~Et = 21 /0 h dE A(E)e "~ G(r, E)
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Incoming packet: ®ip(r, t) = — [~ dE A(E)e™ "~ (similar outgoing)

Scattering wave = outcoming “with interaction”-"without interaction”

bee(r,t) = /0 h dE A(E)[S(E) — 1]e"~Et = 21 /0 h dE A(E)e "~ G(r, E)

Fourier transform: g(r,7) = [ G(r, E) exp(—iET)dE. Then:
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Incoming packet: ®ip(r, t) = — [~ dE A(E)e™ "~ (similar outgoing)

Scattering wave = outcoming “with interaction”-"without interaction”

bee(r,t) = /0 h dE A(E)[S(E) — 1]e"~Et = 21 /0 h dE A(E)e "~ G(r, E)

Fourier transform: g(r,7) = [ G(r, E) exp(—iET)dE. Then:

Do(r,t) = / at'g(r,t —t') ®in(r, t)
N — 0 N’

Effect Cause
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Seo(r,t) = / at'g(r,t —t') din(r, t)
N—_—— 0o ——

Effect Cause
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Seo(r,t) = / at'g(r,t —t') din(r, t)
N—_—— 0o ——

Effect Cause

Effect not influenced by Cause if t' >t = g(7) =0fort =t—t' <0
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Seo(r,t) = / at'g(r,t —t') din(r, t)
N—_—— 0o ——

Effect Cause

Effect not influenced by Cause if t' >t = g(7) =0fort =t—t' <0

o0

1 .
Thus:  G(r,E)=— | dr g(r,7)e"".

21 Jo «zero!!
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Seo(r,t) = / at'g(r,t —t') din(r, t)
N—_—— ——

—00
Effect Cause

Effect not influenced by Cause if t' >t = g(7) =0fort =t—t' <0

o0

1 .
Thus:  G(r,E)=— | dr g(r,7)e"".

21 Jo «zero!!

Converges for E = Eg + iE;, with E; > 0, due to e~ 5™ suppression

(if g(r, ) well-behaved)
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALYTICITY

Seo(r,t) = / at'g(r,t —t') din(r, t)
N—_—— 0o ——

Effect Cause

Effect not influenced by Cause if t' >t = g(7) =0fort =t—t' <0

o0

1 .
Thus:  G(r,E)=— | dr g(r,7)e"".

21 Jo «zero!!

Converges for E = Eg + iE;, with E; > 0, due to e~ 5™ suppression
(it o(r, ) wellvenaves) THUS G(r, E) is analytic in the upper half complex E-plane.

On the first sheet S(E) is analytic in the upper half complex E-plane
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALITICITY

Since the coefficients of the Schrddinguer eq. are real:

O (K1) = [OF (k)" & (k) = [&] (k)"
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALITICITY

Since the coefficients of the Schrddinguer eq. are real:

O (K1) = [OF (k)" & (k) = [&] (k)"

there is a Schwartz Reflection Symmetry: ’ S(E*) = S(E)*
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Resonances, unitarity and dispersion relations

CAUSALITY AND ANALITICITY

Since the coefficients of the Schrddinguer eq. are real:

O (K1) = [OF (k)" & (k) = [&] (k)"

there is a Schwartz Reflection Symmetry: ‘ S(E*) = S(E)*

This defines the S-matrix in the lower half of the E-complex plane. Hence:

Due to causality

On the first Riemann sheet S(E) is analytic in the complex E-plane, except
possibly on the real axis
The same occurs for the scattering amplitude T(E) ~ S(E) — 1
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

@ |‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |l (also has Schwartz Symmetry)
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

@ |‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |l (also has Schwartz Symmetry)
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

@ |‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |l (also has Schwartz Symmetry)

@ Poles: ¢ (k3) =0
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

@ |‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |l (also has Schwartz Symmetry)

@ Poles: ¢ (k3) =0
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

@ |‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |l (also has Schwartz Symmetry)

@ Poles: & (kZ) = 0 = not scattering but bound states. Thus,
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

@ |‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |l (also has Schwartz Symmetry)

@ Poles: & (kZ) = 0 = not scattering but bound states. Thus,

kg <0, and Ug(kg’ r) — d)Z(kg)eirRekoe_rIka

with Im kp > 0 (sheet I) is normalizable.
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

@ |‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |l (also has Schwartz Symmetry)

@ Poles: & (kZ) = 0 = not scattering but bound states. Thus,

kg <0, and Ug(kg’ r) — d)Z(kg)eirRekoe_rIka

with Im kp > 0 (sheet I) is normalizable.

] Bound states: poles below threshold on sheet |
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Resonances, unitarity and dispersion relations

CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

@ |‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |l (also has Schwartz Symmetry)

@ Poles: & (kZ) = 0 = not scattering but bound states. Thus,

kg <0, and Ug(kg’ r) — d)Z(kg)eirRekoe_rIka

with Im kp > 0 (sheet I) is normalizable.

] Bound states: poles below threshold on sheet |

what about the second sheet?
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | Sl/(k2) = %
4
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | Sl/(k2) = %
4

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | Sl/(k2) = %
4

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | Sl/(k2) = %
4

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |

@ Poles=Zeroes on sheet |.
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | Sl/(k2) = %
4

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |

@ Poles=Zeroes on sheet |.
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | S//(k?) = %
14

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |

@ Poles=Zeroes on sheet |.

@ On the real axis below threshold="Virtual bound states”, since they are
not normalizable.
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | S//(k?) = %
14

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |

@ Poles=Zeroes on sheet |.

@ On the real axis below threshold="Virtual bound states”, since they are
not normalizable.
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | S//(k?) = %
14

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |

@ Poles=Zeroes on sheet |.

@ On the real axis below threshold="Virtual bound states”, since they are
not normalizable.

o Outside the real axis. “Quasi-bound states” or “Resonances”
Not normalizable solution.
Schwartz Reflection = always in conjugated pairs
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | S//(k?) = %
14

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |

@ Poles=Zeroes on sheet |.

@ On the real axis below threshold="Virtual bound states”, since they are
not normalizable.

o Outside the real axis. “Quasi-bound states” or “Resonances”
Not normalizable solution.
Schwartz Reflection = always in conjugated pairs
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Resonances, unitarity and dispersion relations

CUTS AND POLES

Singularities on the SECOND SHEET. Recall | S//(k?) = %
14

@ | ‘Physical cut”|. Already seen. From threshold to oo, that gives
access to sheet |

@ Poles=Zeroes on sheet |.

@ On the real axis below threshold="Virtual bound states”, since they are
not normalizable.

o Outside the real axis. “Quasi-bound states” or “Resonances”
Not normalizable solution.
Schwartz Reflection = always in conjugated pairs

Resonances: conjugated pairs of poles on sheet II
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Resonances, unitarity and dispersion relations

SHEETS, CUTS AND POLES

E plane

Sheet I

Resonance

pole @D
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Resonances, unitarity and dispersion relations

SHEETS, CUTS AND POLES

The physical cut connects continuously sheet-I with sheet-II.
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Resonances, unitarity and dispersion relations

SHEETS, CUTS AND POLES

The physical cut connects continuously sheet-I with sheet-II.

Imt,s) Imt,(s)
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Resonance poles in the lower half plane are connected continuously with
the physical amplitude and can yield “bumps” or other structure
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Resonances, unitarity and dispersion relations

RESONANCES AS POLES

When those poles are well isolated, the bumps become clearly visible:
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Resonances, unitarity and dispersion relations
RESONANCES AS POLES

Intuitively for a bound state at rest whose energy is just the mass E = M,
its time evolution is (A = 1):

W(t) = w(0)e M — (D) = [W(0)%,

i.e, the state does not disappear.
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Resonances, unitarity and dispersion relations
RESONANCES AS POLES

Intuitively for a bound state at rest whose energy is just the mass E = M,
its time evolution is (A = 1):

W(t) = w(0)e M — (D) = [W(0)%,

i.e, the state does not disappear.
But if we allow an imaginary part‘ E=M-il/2 ‘ then

W(t) = w(0)e ™M 1T2 — [W(t)? = [W(0)[Pe ",

i.e, the state disintegrates with lifetime 1/I"
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

@ (E,f0) — (s,t) Mandelstam variables
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

@ (E,f) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to co.
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

@ (E,f) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to co.
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

@ (E,f0) — (s, t) Mandelstam variables

@ Physical cut for real s, from threshold to oc.

@ Schwartz reflection: T(s*,t) = T*(s,t)
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

@ (E,f0) — (s, t) Mandelstam variables

@ Physical cut for real s, from threshold to oc.

@ Schwartz reflection: T(s*,t) = T*(s,t)
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

@ (E,f0) — (s, t) Mandelstam variables

@ Physical cut for real s, from threshold to co.

@ Schwartz reflection: T(s*,t) = T*(s,t)

@ two sheets at each threshold
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

@ (E,f0) — (s, t) Mandelstam variables

@ Physical cut for real s, from threshold to co.

@ Schwartz reflection: T(s*,t) = T*(s,t)

@ two sheets at each threshold
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

(E,0) — (s, t) Mandelstam variables

Physical cut for real s, from threshold to cc.

Schwartz reflection: T(s*,t) = T*(s,t)

two sheets at each threshold

poles for bound states and resonances
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

(E,0) — (s, t) Mandelstam variables

Physical cut for real s, from threshold to cc.

Schwartz reflection: T(s*,t) = T*(s,t)

two sheets at each threshold

poles for bound states and resonances
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:
@ (E,f) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to oc.
@ Schwartz reflection: T(s*,t) = T*(s,t)
@ two sheets at each threshold
@ poles for bound states and resonances
But also some differences:
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

@ (E,f) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to co.
@ Schwartz reflection: T(s*,t) = T*(s,t)
@ two sheets at each threshold
@ poles for bound states and resonances
But also some differences:

@ Inelastic cuts due to particle creation. More Riemann sheets
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ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:
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@ Physical cut for real s, from threshold to co.
@ Schwartz reflection: T(s*,t) = T*(s,t)
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@ Inelastic cuts due to particle creation. More Riemann sheets
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:
@ (E,f) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to oc.
@ Schwartz reflection: T(s*,t) = T*(s,t)
@ two sheets at each threshold
@ poles for bound states and resonances
But also some differences:

@ Inelastic cuts due to particle creation. More Riemann sheets
@ Crossing Symmetry. New “left cuts”
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ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:
@ (E,f) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to oc.
@ Schwartz reflection: T(s*,t) = T*(s,t)
@ two sheets at each threshold
@ poles for bound states and resonances
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@ Crossing Symmetry. New “left cuts”
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:
@ (E,f) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to oc.
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@ two sheets at each threshold
@ poles for bound states and resonances
But also some differences:

@ Inelastic cuts due to particle creation. More Riemann sheets
@ Crossing Symmetry. New “left cuts”

203/358



Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:
@ (E,f) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to oc.
@ Schwartz reflection: T(s*,t) = T*(s,t)
@ two sheets at each threshold
@ poles for bound states and resonances
But also some differences:

@ Inelastic cuts due to particle creation. More Riemann sheets
@ Crossing Symmetry. New “left cuts”

204/358



Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING
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ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:
@ (E,0) — (s,t) Mandelstam variables
@ Physical cut for real s, from threshold to oc.
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Resonances, unitarity and dispersion relations

POLES AND RELATIVISTIC RESONANCES

Relativistic partial-wave amplitudes still have a physical cut giving access

to two sheets

Sheet 1
Assume a pole at:

SP:MZ—i’y —f\
S1

Sheet 2 N ’

snonujjuo)y
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Resonances, unitarity and dispersion relations
POLES AND RELATIVISTIC RESONANCES

Relativistic partial-wave amplitudes still have a physical cut giving access
to two sheets

Sheet 1
Assume a pole at:

Sp = M? — iy

S1 g 52
Define; " °s, [
a(s) = (s —sp)i(s), \ !

. . Sheet 2 N ,
which is regular

Expand around sp:  g(s) ~ g(sp) + (s — sp)d'(s) + ...,
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Resonances, unitarity and dispersion relations

POLES AND RELATIVISTIC RESONANCES

Relativistic partial-wave amplitudes still have a physical cut giving access
to two sheets

Sheet 1
Assume a pole at:

sp = M2 — iy _f\
S1

Define; " o ‘
a(s)=(s—sp)t(s), . .\
which is regular

snonuiluo)

Expand around sp:  g(s) ~ g(sp) + (s — sp)d'(s) + ...,
which converges in a circle up to the nearest singularity (a cut, another pole..)
including some part of the real axis, where we see

b(s) ~ —9(s)

——— <— a bum around M2|| if g(s) varies slowly around M2
M2 —s— iy
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Resonances, unitarity and dispersion relations

RELATIVISTIC BREIT WIGNER FORMULA

If the pole is near the real axis. i.e, if v is small, we can approximate
9(s)~g(sp) = g for s near M2. Defining I = v/M
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RELATIVISTIC BREIT WIGNER FORMULA

If the pole is near the real axis. i.e, if v is small, we can approximate
9(s)~g(sp) = g for s near M2. Defining I = v/M

-9

") = 3 s imr

Relativistic Breit-Wigner formula
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Resonances, unitarity and dispersion relations

RELATIVISTIC BREIT WIGNER FORMULA

If the pole is near the real axis. i.e, if v is small, we can approximate
9(s)~g(sp) = g for s near M2. Defining I = v/M

-9

") = 3 s imr

Relativistic Breit-Wigner formula
in the real axis:

2
|te(8) 1~ sz
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Resonances, unitarity and dispersion relations

RELATIVISTIC BREIT WIGNER FORMULA

If the pole is near the real axis. i.e, if v is small, we can approximate
9(s)~g(sp) = g for s near M2. Defining I = v/M

-9
M2 — s — iMT

Relativistic Breit-Wigner formula

ty(s) ~

5,9
|nf* 200 T T T T
— From form factor. Nofit. M,_W%?L
. . ol [P ol
in the real axis: " Extroskos Mt
+ Hyamseta
100- | ° Protopopescu (set 2) ]
2 r __. PY (high energy fit)

|tg(S)|2§ (M2—S§]2+M2r2

ad L L L L L
200 400 600 800 1000 1200 1400
s”2 (Mev)
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Resonances, unitarity and dispersion relations

RESONANCES AS POLES

BW-formula is an approximation, only valid for:
\ narrow resonances, well-isolated from other singularities
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Resonances, unitarity and dispersion relations

RESONANCES AS POLES

BW-formula is an approximation, only valid for:
\ narrow resonances, well-isolated from other singularities

Unfortunately, very often used well beyond this approximation

BW resonances “easier” to identify. But complications arise if:

@ multiple channels (several thresholds)

thresholds nearby (difficulty for "molecular” states)
overlapping resonances (several poles nearby)

very wide resonances (poles deep in complex plane)
there are backgrounds (g(s) is not slowly varying)
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Resonances, unitarity and dispersion relations

RESONANCES AS POLES

BW-formula is an approximation, only valid for:
\ narrow resonances, well-isolated from other singularities

Unfortunately, very often used well beyond this approximation

BW resonances “easier” to identify. But complications arise if:

@ multiple channels (several thresholds)

@ thresholds nearby (difficulty for "molecular” states)

@ overlapping resonances (several poles nearby)

@ very wide resonances (poles deep in complex plane)

@ there are backgrounds (g(s) is not slowly varying)
It is important then to implement correctly the amplitude analytic
properties and perform sensible analytic continuations to the complex

plane. For this, dispersion relations and/or models with good analytic

properties (cuts, sheets, etc...) are essential.
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Physical Regions in Mandelstam plane:

Physical s region

=0

s
Physical‘ \ \‘Physical

region .
ureglo t region
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Resonances, unitarity and dispersion relations

ANALYTICITY IN RELATIVISTIC SCATTERING

Analyticity properties follow from crossing symmetry and the

Mandelstamm Hypothesis
There is a unique analytic function that satisfies:

Tiaaa(s, t,u), s>4m?, t<0, u<O,
T(s,t,u) =< Tz a(t,s,u), t>4m?, s<0, u<O,
Ta(u,t,s), u>4m?, s<0, t<O0.

+ “Minimal set of sigularities demanded by Physics” like cuts due to thresholds
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Resonances, unitarity and dispersion relations

DISPERSION RELATIONS

Cauchy’s Integral Formula:

Imz

l

Let D be a domain of the complex plane where the function f(z) is analytic
tolomorphicy &N let C be the closed curve™® defined by its boundary. Then, for

anyze D
f(Z)
f(z) = 740 = Zdz’

*rectifiable, taken counter clock-wise, and with winding number 1

v
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Resonances, unitarity and dispersion relations

DISPERSION RELATIONS

Dispersion Relation= Cauchy’s Integral Formula applied to amplitudes.
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Dispersion Relation= Cauchy’s Integral Formula applied to amplitudes.
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Particular case: Forward Dispersion Relations

@ Integrate the previous ones to obtain "partial wave Dispersion
Relations” for t(s).

235/358



Resonances, unitarity and dispersion relations

DISPERSION RELATIONS

Dispersion Relation= Cauchy’s Integral Formula applied to amplitudes.
But the Formula only applies to functions of one variable. Two options:

@ Fix one variable = "Fixed-t" Dispersion Relations for f(s) = T(s, fy).
Particular case: Forward Dispersion Relations

@ Integrate the previous ones to obtain "partial wave Dispersion
Relations” for t(s).

236/358



Resonances, unitarity and dispersion relations

DISPERSION RELATIONS

Dispersion Relation= Cauchy’s Integral Formula applied to amplitudes.
But the Formula only applies to functions of one variable. Two options:

@ Fix one variable = "Fixed-t" Dispersion Relations for f(s) = T(s, fy).
Particular case: Forward Dispersion Relations

@ Integrate the previous ones to obtain "partial wave Dispersion
Relations” for t(s).
Particular cases: Roy eqgs., Roy-Steiner eqs, GKPY egs., Inverse
Amplitude Method
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DISPERSION RELATIONS

Dispersion Relation= Cauchy’s Integral Formula applied to amplitudes.
But the Formula only applies to functions of one variable. Two options:

@ Fix one variable = "Fixed-t" Dispersion Relations for f(s) = T(s, fy).
Particular case: Forward Dispersion Relations

@ Integrate the previous ones to obtain "partial wave Dispersion
Relations” for t(s).

Particular cases: Roy eqgs., Roy-Steiner eqs, GKPY egs., Inverse
Amplitude Method

Interest of Dispersion Relations:
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@ To constrain data analyses
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DISPERSION RELATIONS

Dispersion Relation= Cauchy’s Integral Formula applied to amplitudes.
But the Formula only applies to functions of one variable. Two options:

@ Fix one variable = "Fixed-t" Dispersion Relations for f(s) = T(s, fy).
Particular case: Forward Dispersion Relations

@ Integrate the previous ones to obtain "partial wave Dispersion
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Particular cases: Roy eqgs., Roy-Steiner eqs, GKPY egs., Inverse
Amplitude Method

Interest of Dispersion Relations:

@ To constrain data analyses

@ To calculate: {
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DISPERSION RELATIONS

Dispersion Relation= Cauchy’s Integral Formula applied to amplitudes.
But the Formula only applies to functions of one variable. Two options:

@ Fix one variable = "Fixed-t" Dispersion Relations for f(s) = T(s, fy).
Particular case: Forward Dispersion Relations

@ Integrate the previous ones to obtain "partial wave Dispersion
Relations” for #(s).

Particular cases: Roy eqgs., Roy-Steiner eqs, GKPY egs., Inverse
Amplitude Method

Interest of Dispersion Relations:

@ To constrain data analyses

e the amplitude where there is no data
@ To calculate: {
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Resonances, unitarity and dispersion relations

DISPERSION RELATIONS

Dispersion Relation= Cauchy’s Integral Formula applied to amplitudes.
But the Formula only applies to functions of one variable. Two options:

@ Fix one variable = "Fixed-t" Dispersion Relations for f(s) = T(s, fy).
Particular case: Forward Dispersion Relations

@ Integrate the previous ones to obtain "partial wave Dispersion
Relations” for #(s).

Particular cases: Roy eqgs., Roy-Steiner eqs, GKPY egs., Inverse
Amplitude Method

Interest of Dispersion Relations:
@ To constrain data analyses

e the amplitude where there is no data
@ To calculate: {

e Poles of resonances. Rigorous analytic continuation
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS

Now we have two cuts.
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FIXED-t DISPERSION RELATIONS

Now we have two cuts.

w X

Assume the integral on the circu-
lar parts of C vanish if radius sent
to oo.
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS

Now we have two cuts.

Assume the integral on the circu-
lar parts of C vanish if radius sent
to oo.

Above and below the real axis
the amplitude is conjugated
(Schwartz reflection)
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS

Now we have two cuts.

Assume the integral on the circu-
lar parts of C vanish if radius sent
to oo.

Above and below the real axis
the amplitude is conjugated
(Schwartz reflection)

1
™

T(s, t,u) = —

4m?

d,Ist tu)

/ g7 1)

s'—s

Right cut

Left cut

Provides T anywhere in the complex plane except the real axis
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS

We have found

)

1 [ ImT(s,t,0) 1 (7'  ImT(s,t,u
T(s,t,u) = — g TR LY (88 )+7/ e SALIL (st )
T Jame s’ —s T J_o s’ —s

When calculating T on the real axis, the (s — s’) denominator diverges
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS

We have found

1 o0 I 7' / / 1 —t I 7— / t ’
T(s,t,u) = — s,w+,/ 4o T (s 1)
™ —o0

T Jame s—s §—s

When calculating T on the real axis, the (s — s’) denominator diverges

But I’eca” that ﬁ — PV% + I7r(5(s/ - S), ( PV =principal value )
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS

We have found

1 ImT(s/,t,u/) 1 (7'  ImT(s tu
T(s;tu) = — s '% */ ds’%
T Jame S S ™ J_ S S

)

When calculating T on the real axis, the (s — s’) denominator diverges
. 1 1 ; -
But I’eca” that m — PV@ + I7r(5(s/ - S), ( PV =principal value )

Thus, on the real axis:

1 I T ( I T (
ReT(s,t,u) = - PV d’“1 CRULY) / e AL St“).

e 4m?
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS

We have found

1 ImT 1 7t ImT(s, tu
T(s,t,u) = — d’im (s, 6,0) 7/ ds' = SS’ ,u)7
™ — 00

T Jame s’ —s s —s

When calculating T on the real axis, the (s — s’) denominator diverges

But I’eca” that ﬁ — PV% + I7r(5(s/ - S), ( PV =principal value )

Thus, on the real axis:

1 ImT 17 ImT(s, t,u
ReT(s,t,u) = —PV d /M 2 ds'w _
T a2 s'—s T ) oo s'—s

For physical values of s dispersion relations provide Re T from Im T.
(sometimes you may see a —ie instead of the PV and the real part)

DATA SHOULD SATISFY THIS.
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

If T 40 or does it very slowly at oo, the C circular part 0.
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

If T 40 or does it very slowly at oo, the C circular part 0.
By subtracting T at other point sp:

T(37 t) - T(SO, t) = Ziﬂ'l(s — SO)de,(s’js()s(,;’t)—so)’

converges if T(s,t,u)/s — 0 at oo faster than 1/s.
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

If T 40 or does it very slowly at oo, the C circular part 0.

By subtracting T at other point sp:
_ 1 A CRL))
T(S7 t) - T(307 t) - 277_”(8 - SO) % ds (s, — S)(SI — 30)7
converges if T(s,t,u)/s — 0 at oo faster than 1/s.

If the circular contribution now cancels, the “once subtracted” dispersion
relation reads:

Subtraction constant

—
T(s,t) = T(so,t) +
s—s [ , T(s', 1) s—so/” , T(s',t)
a g ——2 7
T /mz CE-E—w) 7 ) T E-eE =)
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

The price to pay is that one should know the amplitude at the subtraction
point sp.
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

The price to pay is that one should know the amplitude at the subtraction
point sp.

If that is not enough... make more subtractions, typically at the same point.

T(s,t)

T(s0,t) + (s — )aTézZ’ (S _ SO) %d _Z(?S,t_ o

Two subtraction constants
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Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

The price to pay is that one should know the amplitude at the subtraction
point sp.

If that is not enough... make more subtractions, typically at the same point.

Mo = T+ (s-s)?T(0 Coal o T

%o —8)(s' — s0)?’

Two subtraction constants

In principle, two-subtractions should be enough (Froissart bound) although
more could be used to suppress the high energy region.

259/358



Resonances, unitarity and dispersion relations

FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

The price to pay is that one should know the amplitude at the subtraction
point sp.

If that is not enough... make more subtractions, typically at the same point.

T(s.t) = T(so,t)+(s—s )Wézza (s~ =) ?gd _Z(?S,t_so)

Two subtraction constants

In principle, two-subtractions should be enough (Froissart bound) although
more could be used to suppress the high energy region.

Subtraction constants will be fundamental to combine analyticity with EFT
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Resonances, unitarity and dispersion relations

FORWARD DISPERSION RELATIONS

The problem now is to describe the input to the DR=the data.

261/358



Resonances, unitarity and dispersion relations

FORWARD DISPERSION RELATIONS

The problem now is to describe the input to the DR=the data.

Most often ImT (s, t) is not known in the whole energy region, nor on the
left cut.
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FORWARD DISPERSION RELATIONS

The problem now is to describe the input to the DR=the data.

Most often ImT (s, t) is not known in the whole energy region, nor on the
left cut.

This why the most popular fixed-t DR are "Forward”, t = 0. There are two
reasons:
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reasons:

@ At high energy ImT (s, 0) ~ o, Which is much easier to measure.
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Resonances, unitarity and dispersion relations

FORWARD DISPERSION RELATIONS

The problem now is to describe the input to the DR=the data.

Most often ImT (s, t) is not known in the whole energy region, nor on the
left cut.

This why the most popular fixed-t DR are "Forward”, t = 0. There are two
reasons:

@ At high energy ImT (s, 0) ~ o, Which is much easier to measure.

© The most relevant reactions 7w, K7, prr... have crossing symmetries
that allow to re-write the left cut into in terms of the physical cut.
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FORWARD DISPERSION RELATIONS

The problem now is to describe the input to the DR=the data.
Most often ImT (s, t) is not known in the whole energy region, nor on the
left cut.

This why the most popular fixed-t DR are "Forward”, t = 0. There are two
reasons:

@ At high energy ImT (s, 0) ~ o, Which is much easier to measure.

© The most relevant reactions 7w, K7, prr... have crossing symmetries
that allow to re-write the left cut into in terms of the physical cut.

But they also have a drawback. It is not possible to continue analytically to
the second sheet. the relation S” = 1/S’ was only valid for partial waves.
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Still, they are very powerful to constrain the data parameterizations
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Resonances, unitarity and dispersion relations

FORWARD DISPERSION RELATIONS

The problem now is to describe the input to the DR=the data.
Most often ImT (s, t) is not known in the whole energy region, nor on the
left cut.

This why the most popular fixed-t DR are "Forward”, t = 0. There are two
reasons:
@ At high energy ImT (s, 0) ~ o, Which is much easier to measure.

© The most relevant reactions 7w, K7, prr... have crossing symmetries
that allow to re-write the left cut into in terms of the physical cut.

But they also have a drawback. It is not possible to continue analytically to
the second sheet. the relation S” = 1/S’ was only valid for partial waves.
Still, they are very powerful to constrain the data parameterizations

—Examples: 77, K7
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Resonances, unitarity and dispersion relations

PARTIAL WAVE DISPERSION RELATIONS

Recall the definition of scattering Partial wave:

t(s) = 321% f11 T(s,t(cos8))Py(cosf)d cosB (k=1ork = 2i particies identical)

Their analytic structure is:

s - plane
@ Right cut
;(Mz—}Jz) (M-FZ/M )2\ /MZ&Z}JZ
: i
o w-pf (Mep)® Re s

o] == p?
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PARTIAL WAVE DISPERSION RELATIONS

Recall the definition of scattering Partial wave:

t(s) = 321% f11 T(s,t(cos8))Py(cosf)d cosB (k=1ork = 2i particies identical)

Their analytic structure is:

s - plane
@ Right cut
@ Left cut from —oo to 0 R I s PP

o (mM-py (Mep) Re's

s| = - p?
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Resonances, unitarity and dispersion relations

PARTIAL WAVE DISPERSION RELATIONS

Recall the definition of scattering Partial wave:

t(s) = 321% f11 T(s,t(cos8))Py(cosf)d cosB (k=1ork = 2i particies identical)

Their analytic structure is:

s - plane
@ Right cut
@ Left cut from —oo to 0 R I s PP
. . T -1 2
@ Circularcutif m= M o m-py Mrp) Re's

s| = - p?
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Resonances, unitarity and dispersion relations

PARTIAL WAVE DISPERSION RELATIONS

Recall the definition of scattering Partial wave:

t(s) = 321% f11 T(s,t(cos8))Py(cosf)d cosB (k=1ork = 2i particies identical)

Their analytic structure is: |=-piane
@ Right cut
@ Left cut from —oo to 0 R s LA e
@ Circularcutift m# M 0 tpr Mp)? Re's
@ other cuts if bound %
states Il =%-p
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Resonances, unitarity and dispersion relations

PARTIAL WAVE DISPERSION RELATIONS

Dispersion relations can be written as before but with contributions from all
these singularities.

2 Imt,(s')ds’
te(S)ZCo+C1S+* L

— + LC(s)+CC(s) + P(s
™ (My+Ms)2 3/2(3/ — S — I€) Rﬁ—l R/(—Z \(,.2

Left cut Circular cut bound-state poles
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Resonances, unitarity and dispersion relations

PARTIAL WAVE DISPERSION RELATIONS

Dispersion relations can be written as before but with contributions from all
these singularities.

s [ Imt,(s')ds’
S L T

— + LC(s)+CC(s) + P(s
™ (My+Ms)2 3/2(3/ — S — I€) Rﬁ—l R/(—Z \(,_2

Left cut Circular cut bound-state poles

Only right and left cuts if particles identical i.e, w7 scattering.

So far all DR were formulated on the first sheet, just providing constraints.
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Resonances, unitarity and dispersion relations

PARTIAL WAVE DISPERSION RELATIONS

Dispersion relations can be written as before but with contributions from all
these singularities.

s [ Imt,(s')ds’
tl(s) = Co+ Cis+ — (s)

—————————— +1LC(s)+CC(s) + P(s
™ (My+Ms)2 3/2(3/ — S — I€) Rﬁ—l R/(—)’ \(,_2

Left cut Circular cut bound-state poles
Only right and left cuts if particles identical i.e, w7 scattering.
So far all DR were formulated on the first sheet, just providing constraints.

The additional interest of partial-wave DR is that they allow for a
continuation to the second sheet. For an elastic partial wave, the S-matrix
is just a number and we saw that S = 1/S’. We can look for poles on
sheet-Il (resonances) as zeros on sheet-I.
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Resonances, unitarity and dispersion relations

RoY AND ROY-STEINER DISPERSION RELATIONS

For w7 scattering the problem is the left cut.
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Resonances, unitarity and dispersion relations

RoY AND ROY-STEINER DISPERSION RELATIONS

For w7 scattering the problem is the left cut.

Rigorous Solution: rewrite the left cut in {-channel partial basis using
crossing symmetry. Infinite f-channel waves needed. All crossed
amplitudes 7 again. Roy Eqs.= system of oo coupled pw-Dispersion
relations. Truncation possible at low energies. Solve numerically the
equations.
You can use ChPT for subtraction constants. No closed-form solution.
Weak connection with QCD parameters.

The most rigorous way to extract resonance poles
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Resonances, unitarity and dispersion relations

RoY AND ROY-STEINER DISPERSION RELATIONS

For w7 scattering the problem is the left cut.

Rigorous Solution: rewrite the left cut in {-channel partial basis using
crossing symmetry. Infinite f-channel waves needed. All crossed
amplitudes 7 again. Roy Eqs.= system of oo coupled pw-Dispersion
relations. Truncation possible at low energies. Solve numerically the
equations.
You can use ChPT for subtraction constants. No closed-form solution.
Weak connection with QCD parameters.

‘ The most rigorous way to extract resonance poles

But limited to low energies < 1 GeV:
7(500), K;(800), p(770), K*(892), f,(980)
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Resonances, unitarity and dispersion relations

RoY AND ROY-STEINER DISPERSION RELATIONS

For w7 scattering the problem is the left cut.

Rigorous Solution: rewrite the left cut in {-channel partial basis using
crossing symmetry. Infinite f-channel waves needed. All crossed
amplitudes 7 again. Roy Eqs.= system of oo coupled pw-Dispersion
relations. Truncation possible at low energies. Solve numerically the
equations.
You can use ChPT for subtraction constants. No closed-form solution.
Weak connection with QCD parameters.

‘ The most rigorous way to extract resonance poles

But limited to low energies < 1 GeV:
7(500), K;(800), p(770), K*(892), f,(980)

Roy-Steiner egs. Similar but for Km, Nw or vy — wmw. Even more
amplitudes coupled.
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Unitarity and unitarization of EFTs

UNITARITY

For physical values of s, the S-matrix is unitary: SSt = S'S = I, which for
the T-matrix or amplitude Sy = d5 + i(2m)*5*(pr — p;) Ty, means:

: 4 4
Tp — T} = i(2n) 25 (Pn — Pi) T}, Toi
n
~—~
sum over intermediate states n
Where we have used I = > |n) (n|, with |n) physically accessible="open states”

Forf=i: 2mT;= 271')4254 — pi)| Tuif?

For two-body states, the angles of the 3-momenta can be integrated out by
projecting into partial waves.
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Unitarity and unitarization of EFTs

UNITARITY FOR PARTIAL WAVES

Let us assume all states are two-body states. Then we find
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Unitarity and unitarization of EFTs

UNITARITY FOR PARTIAL WAVES

Let us assume all states are two-body states. Then we find

Using the usual relations for Legendre polynomials and Sphencal Harmonics:

fl1Pl(X)Py(X)dx: 00! o )

i1 Fe (p-k)= 2p+1 Z YZm )Yem(K), /dQ YEm(k)Yl’m’(k):‘sM’é

mm’
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Unitarity and unitarization of EFTs

UNITARITY FOR PARTIAL WAVES

Let us assume all states are two-body states. Then we find

Using the usual relations for Legendre polynomials and Sphencal Harmonics:

Sy Pe(x)Py (x)dx = % Pe(p- k) = 5% Z Yim(®) Yem(k), /dQ Yo (RYY 1 o (K) = 8401 8 s

The coupled channel partial-wave unitarity relation:

Im tf(s) = Za(s)té‘"(s)tf"(s)* o(s) = 2\55 ~Phase space
n

oi(s) 0

with £(s) = [ © O

in matrix form: ‘ Im T(s) = T(s)XT(s)*
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Unitarity and unitarization of EFTs

UNITARITY FOR PARTIAL WAVES

Let us assume all states are two-body states. Then we find

Using the usual relations for Legendre polynomials and Spherical Harmonics:

I4
25 o R . . N N
Sy Pe(x)Pyr (x)dx = 725%’, Pe(p- k) = 5855 D Yim(®)Yem(K), /dQ;YZm(k)Y[/m/(k) =800/ S ot
m=—1¢

The coupled channel partial-wave unitarity relation:

Im tf(s) = Za(s)té‘"(s)tf"(s)* o(s) = z\fg ~Phase space
n

oi(s) 0 -
with £(s) = | ° =

And in the elastic case f = i and no other n open:

in matrix form: ‘ Im T(s) = T(s)XT(s)*

Im t,(s) = o(s)|t(s)[? Elastic unitarity condition
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Unitarity and unitarization of EFTs

UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t, = |t;|e/
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UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t; = |t;|€"°* = Im t, = |t,| sin(6y)
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Unitarity and unitarization of EFTs

UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t; = |t;|€"°* = Im t, = |t,| sin(6y)

But from the elastic unitarity condition: Im t, = o|t,|2
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Unitarity and unitarization of EFTs

UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t; = |t;|€"°* = Im t, = |t,| sin(6y)

But from the elastic unitarity condition: Im t, = o|t;|> — sin(d;) = ot
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Unitarity and unitarization of EFTs

UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t; = |t;|€"°* = Im t, = |t,| sin(6y)

But from the elastic unitarity condition: Im t, = o|t;|> — sin(d;) = ot

Thus: || =

sin(dp) O €/t sin(dy)
o

2
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Unitarity and unitarization of EFTs

UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t; = |t;|€"°* = Im t, = |t,| sin(6y)

But from the elastic unitarity condition: Im t, = o|t;|> — sin(d;) = ot

€/t sin(dy)
o

in(4,
sin(dy) N =
o

Thus: || =

which implies the following bounds:
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Unitarity and unitarization of EFTs

UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t; = |t;|€"°* = Im t, = |t,| sin(6y)

But from the elastic unitarity condition: Im t, = o|t;|> — sin(d;) = ot

€/t sin(dy)

sin(§
1-hLJS: ’t[| - ! ( f) = tz =
g g
which implies the following bounds:
1| s>>m? 1 s>>m? 1
)| <—=| —"1 Ret) < — —' =
o 20 2
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Unitarity and unitarization of EFTs

UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t; = |t;|€"°* = Im t, = |t,| sin(6y)

But from the elastic unitarity condition: Im t, = o|t;|> — sin(d;) = ot

e’ sin(dy)
o

sin(dy) N
o

Thus: ’tg| = =

which implies the following bounds:

s>>m? 1 s>>m? 1
— 1 Ret) < — — =

b <
] < 20 2

Sy

It can be shown that these bounds also hold in the inelastic case
A theory is said to be Strongly Interacting when these bounds are
saturated. Typical resonant behavior. Unitarity essential for resonances
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Unitarity and unitarization of EFTs

UNITARITY AND ELASTIC BW

We saw the Breit-Wigner formula for one channel: #(s) ~
Elastic unitarity implies:
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Unitarity and unitarization of EFTs

UNITARITY AND ELASTIC BW

AL —g
W he Breit-W f la f h I: ~ =
eslalwt.e .re!t |.gner ormula for one channel: #(s) Ay
Elastic unitarity implies:
1 mMr
W)= s —imr

Within this approximation/model the pole residue g ~ —MT /o (M?).
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Unitarity and unitarization of EFTs

UNITARITY AND ELASTIC BW

We saw the Breit-Wigner formula for one channel: #(s) ~ 9
Elastic unitarity implies:

4(s) 1 M
A= MR Z s —iMT

Within this approximation/model the pole residue g ~ —MT /o (M?).
But:
@ No cuts
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Unitarity and unitarization of EFTs

UNITARITY AND ELASTIC BW

We saw the Breit-Wigner formula for one channel: t(s) >~ ——————
Elastic unitarity implies:

4(s) 1 M
A= MR Z s —iMT

Within this approximation/model the pole residue g ~ —MT /o (M?).
But:
@ No cuts

@ Many functions approximated by their value at M. To partially
alleviate these approximations, usually ' = I'(s). Too often that
spoiling the t(s) analytic properties.
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Unitarity and unitarization of EFTs

UNITARITY AND ELASTIC BW

We saw the Breit-Wigner formula for one channel: t(s) >~ ——————
Elastic unitarity implies:

4(s) 1 M
A= MR Z s —iMT

Within this approximation/model the pole residue g ~ —MT /o (M?).
But:
@ No cuts

@ Many functions approximated by their value at M. To partially
alleviate these approximations, usually ' = I'(s). Too often that
spoiling the t(s) analytic properties.

@ The simple sum of any other BW or backgroud violates unitarity
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UNITARITY AND ELASTIC BW

We saw the Breit-Wigner formula for one channel: t(s) >~ ——————
Elastic unitarity implies:
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Unitarity and unitarization of EFTs

UNITARITY AND ELASTIC BW

We saw the Breit-Wigner formula for one channel: t(s) >~ ——————
Elastic unitarity implies:

4(s) 1 M
A= MR Z s —iMT

Within this approximation/model the pole residue g ~ —MT /o (M?).
But:
@ No cuts

@ Many functions approximated by their value at M. To partially
alleviate these approximations, usually ' = I'(s). Too often that
spoiling the t(s) analytic properties.

@ The simple sum of any other BW or backgroud violates unitarity

BW are only good for narrow-isolated resonances.
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Unitarity and unitarization of EFTs

UNITARITY AND ELASTIC BW

We saw the Breit-Wigner formula for one channel: t(s) >~ ——————
Elastic unitarity implies:

4(s) 1 M
A= MR Z s —iMT

Within this approximation/model the pole residue g ~ —MT /o (M?).
But:
@ No cuts

@ Many functions approximated by their value at M. To partially
alleviate these approximations, usually ' = I'(s). Too often that
spoiling the t(s) analytic properties.

@ The simple sum of any other BW or backgroud violates unitarity

BW are only good for narrow-isolated resonances.
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.

Assume the calculation is done to O(A"). Then
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
Assume the calculation is done to O(\"). Then Im t; = o |t;|?

~~
Oo(A\") O(A2n)
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
Assume the calculation is done to O(\"). Then Im t; = o |t;|?
~~~ ~~

o(A") O(A2n)
Unitarity is only satisfied perturbatively within perturbation theory. ‘
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
Assume the calculation is done to O(\"). Then Im t; = o |t;|?
~~~ ~~

o(A") O(A2n)
Unitarity is only satisfied perturbatively within perturbation theory. ‘

@ For QED. Not an issue, since A = o =~ 1=.
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
Assume the calculation is done to O(\"). Then Im t; = o |t;|?
~~~ ~~
o(A") O(A2n)
Unitarity is only satisfied perturbatively within perturbation theory. ‘

@ For QED. Not an issue, since A = o =~ 1=.

@ For perturbative QCD. Not always a big deal, asymptotic freedom
makes A\ = as small and not much interest on scattering. Bigger
problems to worry about.
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
Assume the calculation is done to O(\"). Then Im t; = o |t;|?
~~~ ~~
o(A") O(A2n)
Unitarity is only satisfied perturbatively within perturbation theory. ‘

@ For QED. Not an issue, since A = o =~ 1=.

@ For perturbative QCD. Not always a big deal, asymptotic freedom
makes A\ = as small and not much interest on scattering. Bigger
problems to worry about.
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
Assume the calculation is done to O(\"). Then Im t; = o |t;|?
~~~ ~~
o(A") O(A2n)
Unitarity is only satisfied perturbatively within perturbation theory. ‘

@ For QED. Not an issue, since A = o =~ 1=.

@ For perturbative QCD. Not always a big deal, asymptotic freedom
makes A\ = as small and not much interest on scattering. Bigger
problems to worry about.

@ ChPT. A real problem since A = p. Amplitudes are polynomials in
energy, and at some energy will always violate the unitarity conditions
and the bounds, and it cannot describe resonances. However...
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
Assume the calculation is done to O(\"). Then Im t; = o |t;|?
~~~ ~~
o(A") O(A2n)
Unitarity is only satisfied perturbatively within perturbation theory. ‘

@ For QED. Not an issue, since A = o =~ 1=.

@ For perturbative QCD. Not always a big deal, asymptotic freedom
makes A\ = as small and not much interest on scattering. Bigger
problems to worry about.

@ ChPT. A real problem since A = p. Amplitudes are polynomials in
energy, and at some energy will always violate the unitarity conditions
and the bounds, and it cannot describe resonances. However...
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

No perturbation theory (series expansion in \) satisfies unitarity exactly.
Assume the calculation is done to O(\"). Then Im t; = o |t;|?
~~~ ~~
o(A") O(A2n)
Unitarity is only satisfied perturbatively within perturbation theory. ‘

@ For QED. Not an issue, since A = o =~ 1=.

@ For perturbative QCD. Not always a big deal, asymptotic freedom
makes A\ = as small and not much interest on scattering. Bigger
problems to worry about.

@ ChPT. A real problem since A = p. Amplitudes are polynomials in
energy, and at some energy will always violate the unitarity conditions
and the bounds, and it cannot describe resonances. However...

ChPT can provide the subtraction constants in DR
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

Nevetheless, ChPT satisfies unitarity perturbatively. Namely, if
t(s) = t(s) + ta(s) + t5(8)... with t, = O(p"):
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UNITARITY AND CHPT

Nevetheless, ChPT satisfies unitarity perturbatively. Namely, if
t(s) = t(s) + ta(s) + t5(8)... with t, = O(p"):

Im t(s) =0, — b is reall
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

Nevetheless, ChPT satisfies unitarity perturbatively. Namely, if
t(s) = t(s) + ta(s) + t5(8)... with t, = O(p"):

— b is real!

Im t(s) =0,
= o(s)t(s)?,

Im t4(s)
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

Nevetheless, ChPT satisfies unitarity perturbatively. Namely, if
t(s) = t(s) + ta(s) + t5(8)... with t, = O(p"):

Im t5(s) = 20(s)t(s)Re t4(s), ...
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

Nevetheless, ChPT satisfies unitarity perturbatively. Namely, if
t(s) = t(s) + ta(s) + t5(8)... with t, = O(p"):

Im £(s) =0, — bis real!
Im t(s) = o(s)ta(s)?,
Im t5(s) = 20(s)t(s)Re t4(s), ...

Similarly, in matrix form, when various coupled channels are open:
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

Nevetheless, ChPT satisfies unitarity perturbatively. Namely, if
t(s) = t(s) + ta(s) + t5(8)... with t, = O(p"):

Im t(s) =0, — b is reall

Im t(s) = o(s)ta(s)?,

Im t5(s) = 20(s)t(s)Re t4(s), ...

Similarly, in matrix form, when various coupled channels are open:

Im T»(s) =0, — Ty is real!
Im T4(s) = Ta(s)X(s) To(S)....
The imaginary parts
for unitarity come from

"bubbles” in diagrams
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Unitarity and unitarization of EFTs

UNITARITY AND CHPT

Nevetheless, ChPT satisfies unitarity perturbatively. Namely, if
t(s) = ta(s) + ta(s) + ts(s)... with t, = O(p"):
Im £(s) =0, — b is real!
Im t4(s) = o(s)ta(8)?,
Im t5(s) = 20(s)t2(S)Re t4(S), ...
Similarly, in matrix form, when various coupled channels are open:
Im Ty(s) =0, — Ty is real!
Im T4(s) = Ta(s)X(s) To(S)....

The imaginary parts
for unitarity come from A 1+ N @ U~ 7)° 77

"bubbles” in diagrams

s-channel t-channel u-channel
unitarity cut unitarity cut unitarity cut
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

. 1
Recall now that the inverse of a complex number z is i
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

z

. 1
Recall now that the inverse of a complex number z is 2= 73
zz
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

: 1
Recall now that the inverse of a complex number z is i =

323/358



Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

: 1
Recall now that the inverse of a complex number z is i =

1 ImZz
Therefore: Im — = —
z |z
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

: 1
Recall now that the inverse of a complex number z is i =

1 Im z I
Therefore: Im — = imz - _mz
z |22 2|2
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

: 1 z 4
Recall now that the inverse of a complex number zis — = — = —
z zz ||
1 Im z Im
Therefore: Im — = mez_ M2
z |z |22
Thus, we can recast the elastic unitarity condition:
Im t, 1
mty=o|tjP=> —— =0 =|Im — = —0(s
= T (s) ~ 7
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

: 1 z 4
Recall now that the inverse of a complex number zis — = — = —
z zz ||
1 Im z Imz
Therefore:Im - = — = ———
z |z |22
Thus, we can recast the elastic unitarity condition:
Im t, 1
mty=o|tjP=> —— =0 =|Im — = —0(s
= T (s) ~ 7

Thus elastic unitarity fixes the imaginary part of the inverse amplitude.
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

: 1 z 4
Recall now that the inverse of a complex number zis — = — = —
z zz ||
1 Im z Imz
Therefore:Im - = — = ———
z |z |22
Thus, we can recast the elastic unitarity condition:
Im t, 1
mty=o|tjP=> —— =0 =|Im — = —0(s
= T (s) ~ 7

Thus elastic unitarity fixes the imaginary part of the inverse amplitude.

For physical s, any elastic pw satisfies:

1
t(s) = Re t(s)~' — io(s)
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

We can repeat the argument in matrix form for the coupled channel case.

For an energy s at which we have n open two-body states and an n x n
T-matrix:

ImT, = T>XT" —|Im T(s)_1 = _Z(s)
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Unitarity and unitarization of EFTs
UNITARITY FOR THE INVERSE AMPLITUDE

We can repeat the argument in matrix form for the coupled channel case.

For an energy s at which we have n open two-body states and an n x n
T-matrix:

ImT, = T>XT" —|Im T(s)_1 = _Z(s)

Thus coupled channel two-body unitarity fixes the imaginary part of the
inverse T-matrix.
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Unitarity and unitarization of EFTs

UNITARITY FOR THE INVERSE AMPLITUDE

We can repeat the argument in matrix form for the coupled channel case.

For an energy s at which we have n open two-body states and an n x n
T-matrix:

ImT, = T>XT" —|Im T(s)_1 = _Z(s)

Thus coupled channel two-body unitarity fixes the imaginary part of the
inverse T-matrix.

For an s where the n two-body channels are open, any T-matrix of pw
satisfies:

—1

T(s) = |Re T(s) ' —ix(s)
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UNITARIZATION

Since for physical s, unitarity implies

Unitarity and unitarization of EFTs

T(s) = |Re T(s) ' —ix(s)

—1

we only need Re T(s) ' from dynamics.
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Unitarity and unitarization of EFTs

UNITARIZATION

Since for physical s, unitarity implies

T(s) = |Re T(s) ' — ix(s) -

we only need Re T(s) ' from dynamics.

Different unitarization methods are just
different approximations to Re T(s)~"
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed
@ Simple and flexible. Naive analytic continuation through o,(s).
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed
@ Simple and flexible. Naive analytic continuation through o,(s).
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed

@ Simple and flexible. Naive analytic continuation through o,(s).
@ But:
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed

@ Simple and flexible. Naive analytic continuation through o,(s).
@ But:
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed

@ Simple and flexible. Naive analytic continuation through o,(s).
o But:
e Strictly, only valid in the real axis above open thresholds
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed

@ Simple and flexible. Naive analytic continuation through o,(s).
@ But:

e Strictly, only valid in the real axis above open thresholds
e The "real part” is not an analytic function
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed
@ Simple and flexible. Naive analytic continuation through o,(s).

@ But:

e Strictly, only valid in the real axis above open thresholds
e The "real part” is not an analytic function
e Spurious structures, i.e, o(s) =2p/y/s -+ cats=0
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed

@ Simple and flexible. Naive analytic continuation through o,(s).
@ But:

Strictly, only valid in the real axis above open thresholds
e The "real part” is not an analytic function

e Spurious structures, i.e, o(s) =2p/y/s -+ cats=0

o No left cuts, circular cuts...
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed

@ Simple and flexible. Naive analytic continuation through o,(s).
@ But:

Strictly, only valid in the real axis above open thresholds

The "real part” is not an analytic function

Spurious structures, i.e, o(s) = 2p/y/s —+ ccat s =0

No left cuts, circular cuts...

K not always motivated by underlying QCD dynamics or symmetries
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed

@ Simple and flexible. Naive analytic continuation through o,(s).
@ But:

Strictly, only valid in the real axis above open thresholds

The "real part” is not an analytic function

Spurious structures, i.e, o(s) = 2p/y/s —+ ccat s =0

No left cuts, circular cuts...

K not always motivated by underlying QCD dynamics or symmetries
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Unitarity and unitarization of EFTs

K-MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K-matrix method

K(s) = Re T(s)~' =simple arbitrary analytic function on the real axis

@ Various thresholds/cuts and resonances allowed

@ Simple and flexible. Naive analytic continuation through o,(s).
@ But:

Strictly, only valid in the real axis above open thresholds

The "real part” is not an analytic function

Spurious structures, i.e, o(s) = 2p/y/s — cc ats =0

No left cuts, circular cuts...

K not always motivated by underlying QCD dynamics or symmetries

Fine just to parameterize data on the real axis. Fair approximation for
poles if they are narrow and far from left cuts (but often not the case)
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(f(s — sj)o;). Step function not analytic.
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CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(f(s — sj)o;). Step function not analytic.
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(6(s — sj)o;). Step function not analytic.

@ An analytic function with such imaginary part is built from a
Dispersion Relation: Ji(s) = 1 [, ds’ %i(s)

s—s'—ie
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(6(s — sj)o;). Step function not analytic.

@ An analytic function with such imaginary part is built from a
Dispersion Relation: Ji(s) = 1 [, ds’ %i(s)

s—s'—ie
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(6(s — sj)o;). Step function not analytic.

@ An analytic function with such imaginary part is built from a
Dispersion Relation: Ji(s) = 1 [, ds’ %i(s)

s—s'—ie

Chew-Mandelstam method

In the K-matrix approach we replace each X by J(s) = diag(Ji(s)), thus:
T(s) = [K(s) + J(s)] "
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(6(s — sj)o;). Step function not analytic.

@ An analytic function with such imaginary part is built from a
Dispersion Relation: Ji(s) = 1 [, ds’ %i(s)

s—s'—ie

Chew-Mandelstam method

In the K-matrix approach we replace each X by J(s) = diag(Ji(s)), thus:
T(s) = [K(s) + J(s)] "

@ Same advantages as K-matrix. Although still no left-cut
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(6(s — sj)o;). Step function not analytic.

@ An analytic function with such imaginary part is built from a
Dispersion Relation: Ji(s) = 1 [, ds’ %i(s)

s—s'—ie

Chew-Mandelstam method

In the K-matrix approach we replace each X by J(s) = diag(Ji(s)), thus:
T(s) = [K(s) + J(s)] "

@ Same advantages as K-matrix. Although still no left-cut
@ But everything analytic and no spurious poles
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(6(s — sj)o;). Step function not analytic.

@ An analytic function with such imaginary part is built from a
Dispersion Relation: Ji(s) = 1 [, ds’ %i(s)

s—s'—ie

Chew-Mandelstam method

In the K-matrix approach we replace each X by J(s) = diag(Ji(s)), thus:
T(s) = [K(s) + J(s)] "

@ Same advantages as K-matrix. Although still no left-cut
@ But everything analytic and no spurious poles
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Unitarity and unitarization of EFTs

CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

@ The K-matrix: t = 1/(Ret™" — io), has no relation between imaginary
and real parts. Might not be analytic

@ In coupled channels: T = [ReT ! — ix]~", with
Y = diag(6(s — sj)o;). Step function not analytic.

@ An analytic function with such imaginary part is built from a
Dispersion Relation: Ji(s) = 1 [, ds’ %i(s)

s—s'—ie

Chew-Mandelstam method

In the K-matrix approach we replace each X by J(s) = diag(Ji(s)), thus:
T(s) = [K(s) + J(s)] "

@ Same advantages as K-matrix. Although still no left-cut
@ But everything analytic and no spurious poles

Surprising it is not used more often.
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