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EFFECTIVE FIELD THEORIES (EFT)

Effective Field Theory

Only relevant degrees of freedom below a scale Λ.

Separation (mass/energy gap) from other states leading to
well-defined 1/Λn power counting.

At each order most general Lagrangian compatible with the
symmetries of the underlying theory (if known) or system.

Finite set of effective parameters fixed at every order.

Loops increase order. Infinities absorbed in higher order parameters.
(if renormalization scheme consistent with symmetries).

Finite calculations order by order.

Systematic and model independent approach.

Unfortunately, name not always used with this rigour...
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FERMI ELECTROWEAK THEORY (1934) (& FEYNMAN GELL-MANN 1958)

Electroweak processes with E ,mi << MW ≡ Λ.

1. The Notion of Effective Lagrangian

In this chapter we try to give a motivation for the study of effective La-
grangians, as well as a brief introduction to their main features. We also
discuss the important notion of decoupling and analyze the cases in which
this property holds.

1.1 Introduction

The aim of an effective Lagrangian is to describe the low-energy dynamics
of the light modes of some physical system. Although heavier modes will not
appear explicitly, their contribution is somehow included through some pa-
rameters in the effective theory. At present, this general approach is followed
in many contexts of the standard model (8M) and even in more speculative
theories like grand unification, supergravity, Kaluza-Klein or superstrings [1]'
although in this book we will only consider applications within the 8M.

a) b)

e

e
Fig. lola,b. Feynman diagram describing the J1. decay: (a) in the 8M at tree level
and (b) in the FFG effective theory

In order to illustrate the use of effective Lagrangians we will start with
a simple example which is also interesting for historical reasons. Let us con-
sider the muon decay J.L- -+ e-vevw In the 8M (see Chap. 5) this process is
described at lowest order by the Feynman diagram in Fig. 1.1a. In the unitary
gauge the corresponding amplitude is given by

A. Dobado et al., Effective Lagrangians for the Standard Model
© Springer-Verlag Berlin Heidelberg 1997

g2

2
gρσ − kρkσ/M2

W

M2
W − k2

→ g2

2M2
W
≡ 2
√

2GF

The W field propagator and vertices are reduced to an effective “contact
term” and constant. It has been “integrated out”.
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EFT BY INTEGRATING OUT A HEAVY STATE

This can be done rigorously and the heavy field is actually “integrated out”
of the action. Schematically, if

Stot [φ,Φ] =

∫
dxL(φ,Φ) = S[φ] + S[φ,Φ],

with mφ << MΦ ≡ Λ, then we define an “Effective action” through

eiSeff [φ] =

∫
[dΦ]eiS[φ,Φ] = eiS[φ]

∫
[dΦ]eiS[φ,Φ]

︸ ︷︷ ︸
only depends on φ

,

rewritten again formally as

Seff [φ] =

∫
dxLeff (φ) = S[φ] + Sdec[φ] + Snon−dec[φ],

where Sdec[φ] ≡ “decoupling terms” suppressed by 1/M powers.
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INTEGRATING OUT A HEAVY STATE

Decoupling Theorem Appelquist-Carrazone (1975)

If S[φ,Φ] is renormalizable, has no spontaneous symmetry breaking, no
chiral fermions and heavy fermions form a complete multiplet, then the
non-decoupling terms can be absorbed through renormalization in the
Lagrangian of the light fields, up to decoupling terms suppressed by 1/M.

Particularly interesting for vector gauge theories, where complete
multiplets of non-chiral heavy fermions can be decoupled.

In QED. Low energy theory of photons decoupling→
Euler-Heisenberg Lagrangian

In QCD we can decouple each heavy quark, one by one.
We can safely consider QCD only with u, d , s or just u, d .

20 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

INTEGRATING OUT A HEAVY STATE

Decoupling Theorem Appelquist-Carrazone (1975)

If S[φ,Φ] is renormalizable, has no spontaneous symmetry breaking, no
chiral fermions and heavy fermions form a complete multiplet, then the
non-decoupling terms can be absorbed through renormalization in the
Lagrangian of the light fields, up to decoupling terms suppressed by 1/M.

Particularly interesting for vector gauge theories, where complete
multiplets of non-chiral heavy fermions can be decoupled.

In QED. Low energy theory of photons decoupling→
Euler-Heisenberg Lagrangian

In QCD we can decouple each heavy quark, one by one.
We can safely consider QCD only with u, d , s or just u, d .

21 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

INTEGRATING OUT A HEAVY STATE

Decoupling Theorem Appelquist-Carrazone (1975)

If S[φ,Φ] is renormalizable, has no spontaneous symmetry breaking, no
chiral fermions and heavy fermions form a complete multiplet, then the
non-decoupling terms can be absorbed through renormalization in the
Lagrangian of the light fields, up to decoupling terms suppressed by 1/M.

Particularly interesting for vector gauge theories, where complete
multiplets of non-chiral heavy fermions can be decoupled.

In QED. Low energy theory of photons decoupling→
Euler-Heisenberg Lagrangian

In QCD we can decouple each heavy quark, one by one.
We can safely consider QCD only with u, d , s or just u, d .

22 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

INTEGRATING OUT A HEAVY STATE

Decoupling Theorem Appelquist-Carrazone (1975)

If S[φ,Φ] is renormalizable, has no spontaneous symmetry breaking, no
chiral fermions and heavy fermions form a complete multiplet, then the
non-decoupling terms can be absorbed through renormalization in the
Lagrangian of the light fields, up to decoupling terms suppressed by 1/M.

Particularly interesting for vector gauge theories, where complete
multiplets of non-chiral heavy fermions can be decoupled.

In QED. Low energy theory of photons decoupling→
Euler-Heisenberg Lagrangian

In QCD we can decouple each heavy quark, one by one.
We can safely consider QCD only with u, d , s or just u, d .

23 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

EXAMPLE: EULER-HEISENBERG LAGRANGIAN (1936)

Start from the usual QED action

SQED[Aµ, ψ, ψ] = −1
4

∫
dxFµνFµν +

∫
dxψ(i 6D −Me)ψ

12 1. The Notion of Effective Lagrangian

Fig. 1.5. One-loop diagrams with internal fermion lines contributing to the two
and four points photon Green functions

The photon effective action can be defined as follows

eireff[A"l = j[d'l/J][d1jj]ei JdX.cQEO(A",,p,1/J) = e-i{ JdxF""F"" detO, (1.41)

where

Oxy = (i l/Jx - M)8xy , (1.42)

and we have taken into account that the integration variables are fermionic,
in contrast with the example studied in Sect. 1.2. Therefore

r[AJL] = -~ j dxFJLvFJLV +if (_;)k Tr[(i " - M)-l .¢I]k
k=l

=-~ j dxFJLvFJLV + f r(k) [A] .
k=l

(1.43)

(1.44)

It can be shown that those terms with an odd number of photon fields
vanish (Furry's theorem [7]), as it could be expected from invariance under
charge conjugation. Let us now define

G = (0 JIl_ M)-l = jd- -iq(x-y) if + M
xy 2 '" xy q e 2 M2 + 0 ,q - 2€

which is nothing but the Feynman propagator. Therefore, we can write the
first contribution to the effective action (first diagram in Fig. 1.5) as follows

r(2) [A] = ~e2tr j dydxGxy .¢IyGyx .¢Ix (1.45)

i 2 j _ - e-iq(x-y) eik(x-y)
= 2"e tr dydxdqdk q2 _ M2 k2 _ M2 (if + M) .¢Iy(j( + M).¢Ix °

With the change of variable k = p + q, we can rewrite

r(2)[A] = ~e2tr j dydxdp eip(x-y) A~A~IJLv(p; M) ,

where

(1.46)

(1.47)

Integrate out the electron for photons with E << Me ≡ Λ.

Seff [A]=
−1
4

∫
dxFµνFµν − e2

3(4π)2 ∆

∫
dxFµνFµν ←− non-decoupling and divergent

− e2

15(4π)2M2
e

∫
dxFµν∂

ρ∂ρFµν + O
(

p2

M2
e

)2

←− new decoupling terms .
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OTHER EFFECTIVE THEORIES

Heavy quark Effective Theory (HQET). For one heavy quark. Λ = MQ .

Non relativistic QCD (NRQCD), Λ =relative velocity of two heavy
quarks.

Soft collinear effective Theory (SCET). Only the hard parts of a field
integrated out.

For Electroweak Symmetry breaking sectors. Λ =scale of new
particles. Lagrangian consistent with SM Lagrangian, widely
considered an EFT.

For Gravity. Other operators consistent with general covariance,
expansion on 1/MPlank . Also non-relativistic effective theory.

Effective Theories for Solid State Physics

But this lecture is focused on hadron resonances, we will concentrate on
the low energy effective theory of QCD.
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expansion on 1/MPlank . Also non-relativistic effective theory.

Effective Theories for Solid State Physics

But this lecture is focused on hadron resonances, we will concentrate on
the low energy effective theory of QCD.
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QCD

Quantum Chromodynamics: non-Abelian SU(3)c gauge theory minimally
coupled to quarks

LQCD =

Nf∑

j=1

q̄j(x) (iD6 −mj) qj(x)− 1
4

N2
c−1∑

a=1

Ga
µν(x)Gµν

a (x)

Ga
µν(x) = ∂µAa

ν − ∂νAa
µ + gf a

bcAb
µAc

ν , D6 µ = (∂µ − igTaAa
µ/2)γµ,

with
mu = 2.3+0.7

−0.5 MeV ,md = 4.8+0.7
−0.3 MeV ,ms = 95± 5 MeV

mc = 1.275± 0.025 GeV ,mb = 4.18± 0.03 GeV ,mt = 173.5± 1.4 GeV

Decoupling theorem:
Below 1-1.5 GeV we can keep the lightest quarks: Nf = 2 or 3.

35 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

QCD

Quantum Chromodynamics: non-Abelian SU(3)c gauge theory minimally
coupled to quarks

LQCD =

Nf∑

j=1

q̄j(x) (iD6 −mj) qj(x)− 1
4

N2
c−1∑

a=1

Ga
µν(x)Gµν

a (x)

Ga
µν(x) = ∂µAa

ν − ∂νAa
µ + gf a

bcAb
µAc

ν , D6 µ = (∂µ − igTaAa
µ/2)γµ,

with
mu = 2.3+0.7

−0.5 MeV ,md = 4.8+0.7
−0.3 MeV ,ms = 95± 5 MeV

mc = 1.275± 0.025 GeV ,mb = 4.18± 0.03 GeV ,mt = 173.5± 1.4 GeV

Decoupling theorem:
Below 1-1.5 GeV we can keep the lightest quarks: Nf = 2 or 3.

36 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

QCD: PERTURVATIVE VS. NON-PERTURBATIVE

After renormaliztion αs ≡ g2/4π “runs”:

αs(Q2) =
12π

(33− 2Nf ) log(Q2/Λ2
QCD)

, ΛQCD ' 300− 400MeV (1)

9. Quantum chromodynamics 39

They are well within the uncertainty of the overall world average quoted above. Note,
however, that the average excluding the lattice result is no longer as close to the value
obtained from lattice alone as was the case in the 2013 Review, but is now smaller by
almost one standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each of the sub-fields
summarised in this Review, the wealth of available results provides a rather precise and
reasonably stable world average value of αs(M

2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q

2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt(NNLO)

)(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).

♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [381],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

January 6, 2017 18:42

Q >> ΛQCD, perturbative. Asymptotically free quarks and gluons

for Q ≤ ΛQCD non-perturbative, confinement, hadrons!!
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QCD AND CHIRAL SYMMETRY

Chiral limit mq → 0 interesting since mu,md ,ms << Mhadrons.
Then LQCD invariant under SU(Nf )L × SU(Nf )R Chiral Symmetry:

qL,R −→ exp

(
−iθL,R

a
Ta

2

)

︸ ︷︷ ︸
L,R transformations: L†=L−1 ,R†=R−1

qL,R, with qL,R =

(
1∓ γ5

2

)
q.

with Ta = λa for Nf = 3 and Ta = τa (Pauli matrices) for Nf = 2.
Noether’s Theorem⇒ Conserved currents:

Vµ
a = q̄γµTaq, “Vector” θL

a = θR
a SU(Nf )V Symmetry

Aµa = q̄γµγ5Taq. “Axial” θL
a = −θR

a

Thus, SU(Nf )L × SU(Nf )R multiplets expected, up to small mq differences.
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QCD AND CHIRAL SYMMETRY

But only SU(3)V multiplets seen. Example: vector JP = 1− nonet

while the closest axial-vector JP = 1+ is the a1(1260)...

...500 MeV too heavy!!
Cannot be explained by the small explicit breaking due to mq .
SU(Nf )L × SU(Nf )R for Nf = 2, 3 is broken “spontaneously”.
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SPONTANEOUS SYMMETRY BREAKING (SSB)

Noether’s Theorem:
Continuous symmetry U ⇒ Conserved current ∂µJµa = 0, a = 1,N.
Symmetry charges Qa =

∫
dx J0

a (x) are group generators U = eiθaQa

If H is the Hamiltonian: UHU−1 = H ⇒ [Qa,H] = 0.

Then: [Qa,H] |0〉 = Qa H |0〉︸ ︷︷ ︸
=0

−H Qa |0〉 = 0. Two possibilities:

Weyl-Wigner mode: Qa |0〉 = 0 symmetric vacuum and spectrum.

Nambu-Goldstone mode: |πa〉 ≡ Qa |0〉 6= 0, H |πa〉 = 0
N “Nambu-Goldstone states” degenerate with the vacuum with
quantum numbers of the symmetry generators.
Necessary choice of vacuum for quantization and particle definition
“Spontaneously” breaks symmetry→ non-symmetric spectrum.
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SPONTANEOUS CHIRAL SYMMETRY BREAKING IN QCD

In QCD there are N2
f − 1 broken Qa =

∫
dx A0

a, with Aµa q̄γµγ5Taq.
Since Qa has no spin but negative parity...

QCD in the chiral limit
N2

f − 1 pseudoscalar massless Nambu-Goldstone Bosons (NGB)

In practice, mq 6= 0, thus just expect NGB to be much lighter than other
hadrons with similar quantum numbers.

Nf = 2⇒ N2
f − 1 = 3 NGB. The pions !!: π±, π0

mπ ' 140MeV << mσ ' 500MeV ,mρ = 770MeV

Nf = 3⇒ N2
f − 1 = 8 NGB. π±, π0,K±,K 0,K

0
, η

mK ,mη ' 500MeV << mκ ' 800MeV ,mK∗(892) = 900MeV
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SPONTANEOUS CHIRAL SYMMETRY BREAKING IN QCD

Thus, axial charges do not annihilate the vacuum:

〈0|Aµa (0)|πb(pµ)〉 = i fπpµδab 6= 0, fπ = pion decay constant

〈Ψ1|Aa
µ(0) |Ψ2〉 =

Derivative coupling

Symmetry implies a derivative coupling for GBs, i.e.,

GBs do not interact at vanishing momenta

• Consider GB πa: 〈πa|QaA|0〉 =
∫
d3x 〈πa|Aa0(x)|0〉 6= 0

Lorentz invariance ⇒
〈
πa(q)|Aaµ(0)|0

〉
= −iqµFπ

• Consider the matrix element

〈ψ1|Aaµ(0)|ψ2〉 =

Aaµ

ψ1 ψ2
+

ψ1 ψ2

Aaµ

πa

T

= Raµ + Fπq
µ 1

q2
T a

Current conservation ⇒ qµAaµ = 0, thus

qµRaµ + FπT
a = 0 ⇒ lim

qµ→0
T a = 0

• ⇒ GBs couple in a derivative form !!
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Current conservation: 0 = pµAa
µ = pµRa

µ + fπTa = 0⇒ lim
p→0

Ta = 0

NGB interactions vanish at low energies. Derivative couplings!
But since there is an explicit violation mq 6= 0:

〈0|∂µAµa |πb(pµ)〉 = fπm2
πδab, partially Conserved Axial Current

Thus interactions get small O(m2
π) corrections. ( In SU(3), different fπ, fK , fη).
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THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!

Let ΦA = (σ, φa), a = 1, 2, 3 and Φ = |~Φ|

LLσM =
1
2
∂µΦA∂µΦA +

µ2

2
Φ2 − λ

4
Φ4 ← Invariant under rotations

=
1
2
∂µσ∂

µσ +
1
2
∂µφ

a∂µφa +
µ2

2
(σ2 + φaφa)− λ

4
(σ2 + φaφa)2

︸ ︷︷ ︸
potential V (x)

,

4-d rotations are linear transformations forming the O(4) group.

µ2 < 0→ λΦ4-theory. Unique minimum σ = φa = 0.

µ2 > 0→ O(3) degenerate minima σ2 + φaφa = µ2/λ

55 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!

Let ΦA = (σ, φa), a = 1, 2, 3 and Φ = |~Φ|

LLσM =
1
2
∂µΦA∂µΦA +

µ2

2
Φ2 − λ

4
Φ4 ← Invariant under rotations

=
1
2
∂µσ∂

µσ +
1
2
∂µφ

a∂µφa +
µ2

2
(σ2 + φaφa)− λ

4
(σ2 + φaφa)2

︸ ︷︷ ︸
potential V (x)

,

4-d rotations are linear transformations forming the O(4) group.

µ2 < 0→ λΦ4-theory. Unique minimum σ = φa = 0.

µ2 > 0→ O(3) degenerate minima σ2 + φaφa = µ2/λ

56 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!

Let ΦA = (σ, φa), a = 1, 2, 3 and Φ = |~Φ|

LLσM =
1
2
∂µΦA∂µΦA +

µ2

2
Φ2 − λ

4
Φ4 ← Invariant under rotations

=
1
2
∂µσ∂

µσ +
1
2
∂µφ

a∂µφa +
µ2

2
(σ2 + φaφa)− λ

4
(σ2 + φaφa)2

︸ ︷︷ ︸
potential V (x)

,

4-d rotations are linear transformations forming the O(4) group.

µ2 < 0→ λΦ4-theory. Unique minimum σ = φa = 0.

µ2 > 0→ O(3) degenerate minima σ2 + φaφa = µ2/λ

57 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!

Let ΦA = (σ, φa), a = 1, 2, 3 and Φ = |~Φ|

LLσM =
1
2
∂µΦA∂µΦA +

µ2

2
Φ2 − λ

4
Φ4 ← Invariant under rotations

=
1
2
∂µσ∂

µσ +
1
2
∂µφ

a∂µφa +
µ2

2
(σ2 + φaφa)− λ

4
(σ2 + φaφa)2

︸ ︷︷ ︸
potential V (x)

,

4-d rotations are linear transformations forming the O(4) group.

µ2 < 0→ λΦ4-theory. Unique minimum σ = φa = 0.

µ2 > 0→ O(3) degenerate minima σ2 + φaφa = µ2/λ

58 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!

Let ΦA = (σ, φa), a = 1, 2, 3 and Φ = |~Φ|

LLσM =
1
2
∂µΦA∂µΦA +

µ2

2
Φ2 − λ

4
Φ4 ← Invariant under rotations

=
1
2
∂µσ∂

µσ +
1
2
∂µφ

a∂µφa +
µ2

2
(σ2 + φaφa)− λ

4
(σ2 + φaφa)2

︸ ︷︷ ︸
potential V (x)

,

4-d rotations are linear transformations forming the O(4) group.

µ2 < 0→ λΦ4-theory. Unique minimum σ = φa = 0.

µ2 > 0→ O(3) degenerate minima σ2 + φaφa = µ2/λ

59 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

It is a TOY MODEL, not QCD !!

Let ΦA = (σ, φa), a = 1, 2, 3 and Φ = |~Φ|

LLσM =
1
2
∂µΦA∂µΦA +

µ2

2
Φ2 − λ

4
Φ4 ← Invariant under rotations

=
1
2
∂µσ∂

µσ +
1
2
∂µφ

a∂µφa +
µ2

2
(σ2 + φaφa)− λ

4
(σ2 + φaφa)2

︸ ︷︷ ︸
potential V (x)

,

4-d rotations are linear transformations forming the O(4) group.

µ2 < 0→ λΦ4-theory. Unique minimum σ = φa = 0.

µ2 > 0→ O(3) degenerate minima σ2 + φaφa = µ2/λ

60 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

µ2 > 0 case:

O(3) degenerate minima
σ2 + φaφa = µ2/λ

Choose perturbative vacuum
at σ = f ≡

√
µ2/λ

O(4)→ O(3) Spontaneous Symmetry Breaking
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THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

Redefine fields around choice of vacuum σ̃ = σ − f :

L =
1
2
∂µσ̃∂

µσ̃ − 1
2

(2µ2)σ̃2

︸ ︷︷ ︸
massive σ with M2

σ=2λf 2

+
1
2
∂µφ

a∂µφa

︸ ︷︷ ︸
3 Massless NGB

−λv σ̃(σ̃2 + φaφa)− λ

4
(σ̃2 + φaφa)2

Only O(3) invariant.

But... how does this relate to SU(2)L × SU(2)R → SU(2)V in QCD?

Reparameterization Theorem:
The same observables result from Lagrangians obtained by field
transformations: σ = σ̂ + ...φa = πa + ...
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THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

Recast (σ, φa) into Σ = σ + iτaφa. Then

LLσM =
1
4

Tr(∂µΣ†∂µΣ) +
µ2

4
Tr(Σ†Σ)− λ

16
[Tr(Σ†Σ)]2, (2)

invariant under linear Σ→ LΣR†, with L ∈ SU(2)L and R ∈ SU(2)R .
Degenerate vacua Tr(ΣΣ†) = 2v2. Redefining fields...

Σ̃ ≡ Σ− vI = σ̃I + iτaπa

the vacuum condition reads Tr(Σ̃Σ̃†) = 0 which is invariant under L = R
transformations since Σ̃→ LΣ̃L†

O(4)→ O(3) is isomorphic to SU(2)L × SU(2)R → SU(2)V
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THE LINEAR σ MODEL (LσM) GELL MANN-LEVY (1960)

But where are the pions and the derivative interactions?

Recall that: ΣΣ† = (σ2 + φaφa)︸ ︷︷ ︸
a positive real function S(x)2=v2in vacuum

I =⇒ Σ(x) = S(x)U(x),

with U(x) = exp(iτaπa/v) ∈ SU(2). Shifting S(x) ≡ v + σ̃(x):

LLσM =
1
2
∂µσ̂∂

µσ̂−1
2

(2µ2)σ̂2−λv σ̂3−λ
4
σ̂4+

(σ̂ + v)2

4
Tr(∂µU†∂µU)︸ ︷︷ ︸

NGB with derivative interactions!!

Setting v = fπ we can identify πa with the pions.
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ADDING MASSES

mq are small: linear perturbation at LO in the isospin limit m̂ ≡ mu = md

In the LσM Without masses all vacua are equivalent and σ is just a choice.
With an explicit breaking due to small mq , σ is the preferred direction to
have a mass. Thus:

in SU(2)

Lmass = cσ =
c
4

Tr(Σ† + Σ) =
c(v + σ̃)

4
Tr(U† + U)⇒ M2

π =
c
f 2

in SU(3) Lmass = f 2

4 Tr(M2
0 (Σ† + Σ)), M2

0 = 2c diag(m̂, m̂,ms).

This yields the Gell Mann-Okubo relation: 4M2
0 K −M2

0π − 3M2
0η = 0.

Fairly well satisfied experimentally.
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THE LσM IS JUST A TOY MODEL

The LσM is just a toy model where the auxiliary σ is used to facilitate a
linear representation of chiral symmetry and to build an invariant L.

In hadron physics, there are more hadrons, not just the σ, which in
addition is not quite the f0(500) meson.

Can we get a model independent effective Lagrangian only for pions?

YES, but we FIRST have to get rid of the sigma.
(There are other steps later)
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FROM THE LσM TO THE NON-LINEAR-σ MODEL(NLσM)

Integrating out the σ and expanding in powers of 1/Mσ:

LLσM '
f 2
0

4
Tr(∂µU†∂µU) +

f 2
0

8M2
σ

[Tr(∂µU†∂µU)]2 + ...,

- a non-linear chiral Lagrangian for pions only
- but still with specific Linear-σ-MODEL interactions at higher orders

Set Mσ →∞ with f =constant, leads to

LNLσM = f 2

4 Tr(∂µU†∂µU)

Universal Leading order non-linear effective Lagrangian for pions
only. With SU(2)L × SU(2)R → SU(2)V SSB.
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THE NLσM AT LEADING ORDER

Including masses as perturbation:

LNLσM = f 2

4 Tr(∂µU†∂µU) + f 2

4 Tr(M2
0 (U† + U))

Invariant under U → LUR†. Non-linear symmetry realization.

In the charge basis: U(x) = ei Φ(x)
f , Φ(x) ≡

(
π0

√
2π+

√
2π− −π0

)
Easy to generalize to SU(3)L × SU(3)R → SU(3)L+R

U(x) = ei
√

2Φ(x)
f , Φ(x) ≡




1√
2
π0 + 1√

6
η π+ K +

π− − 1√
2
π0 + 1√

6
η K 0

K− K̄ 0 − 2√
6
η




Expanding U ' I + iτaπa/f + (iτaπa/f ), provides kinetic terms and
interactions for 4, 6,... 2n pions (G-parity). Fixed from f and M2

0 .

78 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

THE NLσM AT LEADING ORDER

Including masses as perturbation:

LNLσM = f 2

4 Tr(∂µU†∂µU) + f 2

4 Tr(M2
0 (U† + U))

Invariant under U → LUR†. Non-linear symmetry realization.

In the charge basis: U(x) = ei Φ(x)
f , Φ(x) ≡

(
π0

√
2π+

√
2π− −π0

)
Easy to generalize to SU(3)L × SU(3)R → SU(3)L+R

U(x) = ei
√

2Φ(x)
f , Φ(x) ≡




1√
2
π0 + 1√

6
η π+ K +

π− − 1√
2
π0 + 1√

6
η K 0

K− K̄ 0 − 2√
6
η




Expanding U ' I + iτaπa/f + (iτaπa/f ), provides kinetic terms and
interactions for 4, 6,... 2n pions (G-parity). Fixed from f and M2

0 .

79 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

THE NLσM AT LEADING ORDER

Including masses as perturbation:

LNLσM = f 2

4 Tr(∂µU†∂µU) + f 2

4 Tr(M2
0 (U† + U))

Invariant under U → LUR†. Non-linear symmetry realization.

In the charge basis: U(x) = ei Φ(x)
f , Φ(x) ≡

(
π0

√
2π+

√
2π− −π0

)
Easy to generalize to SU(3)L × SU(3)R → SU(3)L+R

U(x) = ei
√

2Φ(x)
f , Φ(x) ≡




1√
2
π0 + 1√
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MESON MASSES VS. QUARK MASSES

Due to explicit chiral symmetry breaking NGB→”pseudo-NGB”
Note that meson masses are M2

NGB ∼ mq .
This ensures the Gell Mann-Okubo relation (GMOR):

4M2
0 K −M2

0π − 3M2
0η = 0

Other possibilities explored
like M0 ∼ mq .

But GMOR on the lattice
confirms

M2
NGB ∼ mq.

at least at leading order.

ETM Col., JHEP08(2010)097
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SCATTERING: DEFINITIONS AND NOTATION

p1

p2

p3

p4

1 3

2 4

Mandelstamm variables:
s = (p1 + p2)2

t = (p1 − p3)2

u = (p1−p4)2, (redundant due to momentum conservation)

k ≡center of mass momentum.

Partial waves: T (s, t) = 16Kπ
∑

`(2`+ 1)P`(cos θ)t`(s)
(K = 1 or K = 2 if particles identical)

Then t`(s) =
√

s
2k

η`(s)e2iδ`(s)−1
2i , δ`(s) ≡phase shift. η`(s) ≡elasticity

If elastic η = 1 and t`(s) =
√

s
2k eiδ`(s) sin δ`(s),

Threshold parameters: 1
Mπk2`Re t`(s) ' a` + b`k2...

a` ≡scattering length
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THE NLσM AT LEADING ORDER

For instance, the NLσM provides a universal leading order prediction for
the π+π− → π0π0 amplitude T (s, t , u) = (s −M2

π)/f 2
π

Weinberg Low Energy Theorems (LET):

For t(I)
` (s) of definite isospin I

t(0)
0 = 2s−M2

π

32πf 2
π
, t(1)

1 = s−4M2
π

96πf 2
π
, t(2)

0 = 2M2
π−s

32πf 2
π
.

If Mπ → 0, NO interaction at threshold.

Since Mπ 6= 0, ”Adler zeros” for s = O(M2
π). Ex: s = M2

π/2 for t(0)
0 .

LET Exp.
a(0)

0 0.16 0.220± 0.005
a(1)

1 0.030 0.038± 0.002
a(2)

0 -0.045 -0.044± 0.001

Fair for leading approximation
but higher orders needed
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THE NLσM AT LEADING ORDER

Actually, the NLσM at O(p2) describes rather well the quark mass
dependence of some observables calculated on the lattice:

NPLQCD Phys.Rev.D77:014505,2008, and Phys.Rev.D77:094507,2008
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THE QCD LOW-ENERGY EFFECTIVE THEORY

So far we only have an effective Lagrangian with the relevant d.o.f.

Weinberg’s power counting (1979):

A Feynman diagram is O
(

p
4πf0

)D
, with D = 2 +

∑
n Nn(n − 2) + 2NL

Nn ≡number of vertices with n derivatives (or masses).
NL ≡number of loops. p ≡CM NGB momenta (or masses).

QCD Low energy Effective Theory≡Chiral Perturbation Theory

LNLσM ≡ L2 ≡ leading order. Two derivatives or masses. No loops so far.

Each loop
(

p
4πf0

)2
suppression

Next order: Lagrangian with four derivatives or masses
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CHIRAL PERTURBATION THEORY (CHPT) GASSER & LEUTWYLER

At next-to-leading order (NLO), within SU(3):

L4 =L1Tr
(
∂µU†∂µU

)2
+L2Tr

(
∂µU†∂νU

)
Tr
(
∂µU†∂νU

)
+L3Tr

(
∂µU†∂µU∂νU†∂νU

)
+L4Tr

(
∂µU†∂µU

)
Tr
(

M2
0 U + M2

0 U†
)

+L5Tr
(
∂µU†∂µU(M2

0 U + U†M2
0 )
)

+L6

[
Tr
(

M2
0 U + M2

0 U†
)]2

+L7

[
Tr
(

M2
0 U −M2

0 U†
)]2

+L8Tr
(

M2
0 UM2

0 U + M2
0 U†M2

0 U†
)

Any other term is a combination of these (maybe using LO-EOM).

Li ≡Low Energy Constants (LECs). Encode all other QCD dynamics

L1,2,3 survive in the chiral limit.

L4−8 is NLO explicit symmetry breaking

All one-loop divergences renormalized in Li . Finite results to NLO.

Higher orders with even number of derivatives (Lorentz invariance)
NNLO (two-loop) calculations exist. Many more parameters
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NNLO (two-loop) calculations exist. Many more parameters
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MESON-MESON SCATTERING AT NLO CHPT

T4(s,t,u)=O(p4) T2(s,t,u) 
O(p2) 

a                b                  c                     d                        e                       f                  g 

Li 

O(p2) from L2 tree level
O(p4) from

L4 tree level
One loop with L2 vertices

Divergences renormalized into Li

Lr
i (µ) = Lr

i (µ0) +
Γi

16π2 log
(µ0

µ

)
.

(2Γ1 = 2Γ2 = 3Γ4 = Γ5 = 3/8,

Γ6 = 11/144,Γ8 = 5/48, Γ3 = Γ7 = 0)

Better description of ππ threshold
parameters

Exp. LET NLO
a(0)

0 0.220(5) 0.16 0.20
a(1)

1 0.038(2) 0.030 0.036
a(2)

0 -0.044(1) -0.045 -0.041
b(0)

0 0.25(3) 0.18 0.26
b(1)

1 × 103 5.37(14) 0 4.4
b(2)

0 × 102 -0.082(8) -0.089 -0.082
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T4(s,t,u)=O(p4) T2(s,t,u) 
O(p2) 

a                b                  c                     d                        e                       f                  g 

Li 

O(p2) from L2 tree level
O(p4) from

L4 tree level
One loop with L2 vertices

Divergences renormalized into Li

Lr
i (µ) = Lr

i (µ0) +
Γi

16π2 log
(µ0

µ

)
.

(2Γ1 = 2Γ2 = 3Γ4 = Γ5 = 3/8,

Γ6 = 11/144,Γ8 = 5/48, Γ3 = Γ7 = 0)

Better description of ππ threshold
parameters

Exp. LET NLO
a(0)

0 0.220(5) 0.16 0.20
a(1)

1 0.038(2) 0.030 0.036
a(2)

0 -0.044(1) -0.045 -0.041
b(0)

0 0.25(3) 0.18 0.26
b(1)

1 × 103 5.37(14) 0 4.4
b(2)

0 × 102 -0.082(8) -0.089 -0.082

107 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

MESON-MESON SCATTERING AT NLO CHPT

T4(s,t,u)=O(p4) T2(s,t,u) 
O(p2) 

a                b                  c                     d                        e                       f                  g 

Li 

O(p2) from L2 tree level
O(p4) from

L4 tree level
One loop with L2 vertices

Divergences renormalized into Li

Lr
i (µ) = Lr

i (µ0) +
Γi

16π2 log
(µ0

µ

)
.

(2Γ1 = 2Γ2 = 3Γ4 = Γ5 = 3/8,

Γ6 = 11/144,Γ8 = 5/48, Γ3 = Γ7 = 0)

Better description of ππ threshold
parameters

Exp. LET NLO
a(0)

0 0.220(5) 0.16 0.20
a(1)

1 0.038(2) 0.030 0.036
a(2)

0 -0.044(1) -0.045 -0.041
b(0)

0 0.25(3) 0.18 0.26
b(1)

1 × 103 5.37(14) 0 4.4
b(2)

0 × 102 -0.082(8) -0.089 -0.082

108 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs
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MESON-MESON SCATTERING AT NLO CHPT
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LOW ENERGY CONSTANTS OBSERVED VALUES

Low Energy Constants (LECs) have been determined phenomenologically
(a few also from lattice)

J.R. Peláez / Physics Reports 658 (2016) 1–111 51

Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]

LV1 =
G2
V

8M2
V
; LV2 = 2LV1 ; LV3 = −6LV1 ,

LS1 = −
c2d

6M2
S
, LS3 = −3LS1; LS4 = −

cdcm
3M2

S
, LS5 = −3LS4, LS6 = −

c2m
6M2

S
, LS8 = −3LS6,

LS11 =
c̃2d

2M2
S1

, LS14 =
c̃dc̃m
M2

S1

, LS16 =
c̃2m

2M2
S1

(70)

where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Typically O(10−3)
Uncertainties 10-20%
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RESONANCES AND LOW ENERGY CONSTANTS

The LECs receive contributions from the integration of heavier resonances.

Resonances are not explicit in the EFT, but we still see their
low-energy tail in the LECs.

Intuitively... larger contributions from lowest heavy resonance with
given quantum numbers.
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THE LσM IS not THE LOW-ENERGY EFT OF QCD

J.R. Peláez / Physics Reports 658 (2016) 1–111 51

Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]

LV1 =
G2
V

8M2
V
; LV2 = 2LV1 ; LV3 = −6LV1 ,

LS1 = −
c2d

6M2
S
, LS3 = −3LS1; LS4 = −

cdcm
3M2

S
, LS5 = −3LS4, LS6 = −

c2m
6M2

S
, LS8 = −3LS6,

LS11 =
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2M2
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(70)

where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Integrating out the σ in the LσM

2L1 + L3 = f 2
π

4M2
σ

. Wrong sign

L2 = L7 = 0

V and S1 missing

But only scalars contribute to 2L4 + L5 + 8L6 + 4L8 = f 2
π

4M2
σ

.
Identifying σ = f0(500) wrong by factor 2-3

LσM yields only correct LO. NLO wrong.

No scalar dominance despite f0(500)being the lightest meson ???
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THE LσM IS not THE LOW-ENERGY EFT OF QCD
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]
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where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Integrating out the σ in the LσM

2L1 + L3 = f 2
π

4M2
σ

. Wrong sign

L2 = L7 = 0

V and S1 missing

But only scalars contribute to 2L4 + L5 + 8L6 + 4L8 = f 2
π

4M2
σ

.
Identifying σ = f0(500) wrong by factor 2-3

LσM yields only correct LO. NLO wrong.

No scalar dominance despite f0(500)being the lightest meson ???
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]
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where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Integrating out the σ in the LσM

2L1 + L3 = f 2
π

4M2
σ

. Wrong sign

L2 = L7 = 0

V and S1 missing

But only scalars contribute to 2L4 + L5 + 8L6 + 4L8 = f 2
π

4M2
σ

.
Identifying σ = f0(500) wrong by factor 2-3

LσM yields only correct LO. NLO wrong.

No scalar dominance despite f0(500)being the lightest meson ???
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]
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where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Integrating out the σ in the LσM

2L1 + L3 = f 2
π

4M2
σ

. Wrong sign

L2 = L7 = 0

V and S1 missing

But only scalars contribute to 2L4 + L5 + 8L6 + 4L8 = f 2
π

4M2
σ

.
Identifying σ = f0(500) wrong by factor 2-3

LσM yields only correct LO. NLO wrong.

No scalar dominance despite f0(500)being the lightest meson ???
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]
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where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Integrating out the σ in the LσM

2L1 + L3 = f 2
π

4M2
σ

. Wrong sign

L2 = L7 = 0

V and S1 missing

But only scalars contribute to 2L4 + L5 + 8L6 + 4L8 = f 2
π

4M2
σ

.
Identifying σ = f0(500) wrong by factor 2-3

LσM yields only correct LO. NLO wrong.

No scalar dominance despite f0(500)being the lightest meson ???
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]
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where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Integrating out the σ in the LσM

2L1 + L3 = f 2
π

4M2
σ

. Wrong sign

L2 = L7 = 0

V and S1 missing

But only scalars contribute to 2L4 + L5 + 8L6 + 4L8 = f 2
π

4M2
σ

.
Identifying σ = f0(500) wrong by factor 2-3

LσM yields only correct LO. NLO wrong.

No scalar dominance despite f0(500)being the lightest meson ???
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]

LV1 =
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(70)

where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Integrating out the σ in the LσM

2L1 + L3 = f 2
π

4M2
σ

. Wrong sign

L2 = L7 = 0

V and S1 missing

But only scalars contribute to 2L4 + L5 + 8L6 + 4L8 = f 2
π

4M2
σ

.
Identifying σ = f0(500) wrong by factor 2-3

LσM yields only correct LO. NLO wrong.

No scalar dominance despite f0(500)being the lightest meson ???
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]
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where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Integrating out the σ in the LσM

2L1 + L3 = f 2
π

4M2
σ

. Wrong sign

L2 = L7 = 0

V and S1 missing

But only scalars contribute to 2L4 + L5 + 8L6 + 4L8 = f 2
π

4M2
σ

.
Identifying σ = f0(500) wrong by factor 2-3

LσM yields only correct LO. NLO wrong.

No scalar dominance despite f0(500)being the lightest meson ???
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]
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where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the
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Table 6
Values of the NLO LECs multiplied by 103 . Columns two to seven provide renormalized values in theMS − 1 renormalization scheme at the scale µ = Mρ .
The second column corresponds to [55], which became the reference values for many years. Columns three and four come from the recent review [255],
one using NNLO formulas and the other just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel
IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on mass dependences [256]. The ‘‘RS’’
column corresponds to the Resonance Saturation estimates obtained in [56]. In the next columnswe havemade explicit the vector ‘‘V ’’, scalar octet ‘‘S’’ and
scalar singlet ‘‘S1 ’’ contributions to the total RS estimate. The values (a) are input and (b) is saturated fromaheavier pseudoscalar singlet resonance, basically
the η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55,257]. Note that in some of the phenomenological
determinations Lr4 is set to 0, or to 0.0± 0.3, since it is very small from resonance saturation, is suppressed at large Nc and it is hard to determine precisely
from data.

103 GL NNLO NLO IAMIII FitI FitII RS V S S1
[55] [255] [255] [102] [256] [256] [56]

Lr1 0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 −0.2 0.2 O(Nc)

Lr2 1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 −4.4(2.5) −3.07(20) −3.8(3) −3.02(6) −4.03 −3.12 −3.0 −3.6 0.6 0 O(Nc)

Lr4 −0.3(5) ≡0.3 0.0(3) ≡0 −0.06 0.00 0.0 0 −0.5 0.5 O(1)
Lr5 1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr6 −0.2(0.15) 0.14(05) 0.0(4) −0.07(20) 0.15 −0.01 0.0 0 −0.3 0.3 O(1)
L7 −0.4(2) −0.34(09) −0.3(2) −0.25(18) −0.43 −0.49 −0.3(b) 0 0 0 O(1)
Lr8 0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

lowest multiplets of each kind. This is sometimes called the Single Resonance Approximation (SRA). In particular, in [56] it
was found that apart from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here, all
other Li NLO LECs were fairly well understood as Li = LVi + LSi + LS1i , where LVi is the contribution from the lightest octet of
vector resonances, LSi is the contribution from the lightest octet of scalar resonances and LS1i is that from the lightest scalar
singlet. These contributions read [56]

LV1 =
G2
V

8M2
V
; LV2 = 2LV1 ; LV3 = −6LV1 ,

LS1 = −
c2d

6M2
S
, LS3 = −3LS1; LS4 = −

cdcm
3M2

S
, LS5 = −3LS4, LS6 = −

c2m
6M2

S
, LS8 = −3LS6,

LS11 =
c̃2d

2M2
S1

, LS14 =
c̃dc̃m
M2

S1

, LS16 =
c̃2m

2M2
S1

(70)

where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to NGB fields allowed by the
QCD symmetries (see [56] for definitions), which can be determined phenomenologically. By setting MV = 770 MeV and
MS = MS1 = 983MeV the size of the different contributions can be read in Table 6 under the ‘‘V ’’, ‘‘S’’ and ‘‘S1’’ columns. The
sum of these contributions can be read under the ‘‘RS’’ column and it can be seen that it provides a fairly good approximation
to the phenomenological parameterizations. Of course, one has to keep in mind that these contributions are obtained from
a tree level interpretation of a resonance model and carry no renormalization scale dependence, but intuitively they are
expected to provide a good approximation to the phenomenological evaluated at a scale in the range 0.5–1 GeV [56], as it
happens indeed. This observation will be very relevant in Section 4.3, when dealing with the Nc behavior of amplitudes. In
Table 6 we can also observe that, in general, the largest contributions come from the vector exchange and that the scalar
singlet barely contributes or its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of
the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of QCD. Concerning the scalars,
the ‘‘S’’ and ‘‘S1’’ contributions were obtained with MS ≃ 1 GeV . Note that trying to identify MS1 = Mσ = 450MeV would
lead to very different values from those observed since, apart from yielding contributions 4 times larger than those provided
in the table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the σ in the LσM. This is a
textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2 and c2d = 3f 2π /14 above. We already provided
the expansion of the massless LσM up to four derivatives in Eq. (58). This gives the LσM prediction for the three LECs that
survive in the chiral limit, L1, L2, L3. By looking at Eq. (58), we see that L2 = 0 whereas 2L1 + L3 = f 2π /4M

2
σ > 0. This is

already at odds with the non-vanishing value of L2 and the negative sign of 2L1 + L3 in Table 6. Actually, the prediction for
all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even qualitatively, due to the
different signs and different hierarchy pattern of the observed LECs. Therefore, the LσM is not the correct low energy effective
theory of QCD since it already differs from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the

Single Resonance Approximation (SRA)
LEC values are saturated by the lowest multiplet of each kind.
Vector-Meson Dominance by the vector multiplet of the ρ(770)
Scalar contributions with MS ≥ 1 GeV. No LσMṄo f0(500) contribution
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CHIRAL PERTURBATION THEORY RECAPITULATION

1 Most general L with spontaneous SU(Nf )L × SU(Nf )R → SU(Nf )

2 Only π, K, η in the Lagrangian, as NGB.
3 Explicit symmetry breaking M2

0 ∼ mq as perturbation
4 LO: massive NLσM
5 Systematic power counting. Loops ∼ 1/(4πfπ)2 supression
6 LECs absorb loop divergences. Finite results at each order.
7 LECs encode underlying QCD dynamics
8 LECs understood from Single Resonance Saturation.
9 NNLO results available

10 Successful in describing low-energy Physics (i.e., threshold parameters)

ChPT = THE systematic and model independent low-energy EFT of QCD

Question: What is the applicability region?
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CHPT IN THE RESONANCE REGION

ChPT: good results up to k = 100− 200 MeV, beyond if no resonances.
But fails to describe resonances
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OUTLINE

1 Effective Field Theories

2 Resonances, unitarity and dispersion relations

3 Unitarity and unitarization of EFTs

137 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

BIBLIOGRAPHY

Elementary particle theory. A. D. Martin and T. D. Spearman,
North-Holland Pub. Co., 1970.

Strong Interactions of Hadrons at High Energies. V. N. Gribov, Y. L.
Dokshitzer and J. Nyri Cambridge University Press, 2009

Scattering Theory of Waves and Particles. R. C. Newton. Texts and
Monographs in Physics Springer Science+Business Media New York, (1966,
1982).
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J. R. Peláez, Phys. Rept. 658, 1 (2016) [arXiv:1510.00653 [hep-ph]].

Advanced:

Scattering Theory: Unitarity, Analyticity and Crossing. A. Martin, Lecture Notes
in Physics Vol. 3, Springer- Verlag, Berlin, (1969).

Causality and Dispersion Relations H.M. Nussenzveig, , Academic Press, New
York and London, 1972.

The analytic S-matrix R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne,
Cambridge University Press, 1966.

139 / 358



Effective Field Theories Resonances, unitarity and dispersion relations Unitarity and unitarization of EFTs

ANALYTICITY, CUTS AND POLES

Let us review scattering in NR-Quantum Mechanics.
Recall the radial Schrödinger eq. projected in partial waves:

d2ul(k2, r)

dr2 +
[
k2 − 2V (r)− `(`+ 1)

r2

]
ul(k2, r) = 0,

m = ~ = 1, V (r) ≡real spherically symmetric. Only k2 ≡ 2E , but no k .
Scattering conditions for spherical waves:

u`(k2, r)
r→∞−→ [Φ−` (k2)eikr + Φ+

` (k2)e−ikr ] ∼ A`(k2)

2ik︸ ︷︷ ︸
Normalization

[S`(k2)eikr

︸ ︷︷ ︸
outgoing wave

− (−1`)e−ikr

︸ ︷︷ ︸
incoming wave

],

S-matrix partial wave≡ S`(k2) = (−1)`+1 Φ−` (k2)

Φ+
` (k2)

.

No interaction⇒ S`(k2) = 1
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RIEMANN SHEETS

u(k2, f ) is a function of k2, but we used the double valued k =
√

2E .
Two Riemann sheets to map k on E−plane.

Define κ > 0
k = κ1/2(cosα/2 + i sinα/2)

1 Sheet I or ”Physical”:
0 ≤ α ≤ 2π, Im k > 0.

2 Sheet II or ”unphysical”:
2π ≤ α ≤ 4π, Im k < 0.

Since Φ+
` (k) = Φ−` (−k)⇒ SI

`(k
2) = 1/SII

` (k2), info in both sheets redundant.
Observables: Sphysical (k) = lim

Im k→0+

S(Re k + i Im k)) (i.e. sheet I)
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CAUSALITY AND ANALYTICITY

Incoming packet: Φin(r , t) ≡ −
∫∞

0 dE A(E)e−ikr−iEt (similar outgoing)

Scattering wave ≡ outcoming “with interaction”-”without interaction”

Φsc(r , t) =

∫ ∞

0
dE A(E)[S(E)− 1]eikr−iEt = 2π

∫ ∞

0
dE A(E)e−ikr−iEtG(r ,E)

Fourier transform: g(r , τ) ≡
∫ −∞
∞ G(r ,E) exp(−iEτ)dE . Then:

Φsc(r , t)︸ ︷︷ ︸
Effect

=

∫ ∞

−∞
dt ′g(r , t − t ′) Φin(r , t ′)︸ ︷︷ ︸

Cause
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Φsc(r , t)︸ ︷︷ ︸
Effect

=

∫ ∞

−∞
dt ′g(r , t − t ′) Φin(r , t ′)︸ ︷︷ ︸

Cause

Causality:
Effect not influenced by Cause if t ′ > t =⇒ g(τ) = 0 for τ = t − t ′ < 0

Thus: G(r ,E) =
1

2π

∫ ∞

0
dτ
←zero!!

g(r , τ)eiEτ .

Converges for E = ER + iEI , with EI > 0, due to e−EIτ suppression
(if g(r, τ) well-behaved) Thus G(r ,E) is analytic in the upper half complex E-plane.

On the first sheet S(E) is analytic in the upper half complex E-plane
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CAUSALITY AND ANALITICITY

Since the coefficients of the Schrödinguer eq. are real:

Φ+
` (k2∗) = [Φ+

` (k2)]∗, Φ−` (k2∗) = [Φ−` (k2)]∗

there is a Schwartz Reflection Symmetry: S(E∗) = S(E)∗

This defines the S-matrix in the lower half of the E-complex plane. Hence:

Due to causality
On the first Riemann sheet S(E) is analytic in the complex E-plane, except
possibly on the real axis
The same occurs for the scattering amplitude T (E) ∼ S(E)− 1
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CUTS AND POLES

We can have singularities on the real axis of the FIRST SHEET:

‘Physical cut” . Already seen. From threshold to∞, that gives
access to sheet II (also has Schwartz Symmetry)

Poles: Φ+
` (k2

0 ) = 0⇒ not scattering but bound states. Thus,

k2
0 < 0, and u`(k2

0 , r)→ Φ−` (k2
0 )eir Rek0e−r Imk0

with Im k0 > 0 (sheet I) is normalizable.

Bound states: poles below threshold on sheet I

what about the second sheet?
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CUTS AND POLES

Singularities on the SECOND SHEET. Recall SII
` (k2) = 1

SI
`(k2)

‘Physical cut” . Already seen. From threshold to∞, that gives
access to sheet I

Poles≡Zeroes on sheet I.

On the real axis below threshold=”Virtual bound states”, since they are
not normalizable.
Outside the real axis. “Quasi-bound states” or “Resonances”
Not normalizable solution.
Schwartz Reflection⇒ always in conjugated pairs

Resonances: conjugated pairs of poles on sheet II
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SHEETS, CUTS AND POLES
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SHEETS, CUTS AND POLES

The physical cut connects continuously sheet-I with sheet-II.

Re s1/2

Im s1/2

Im t1(s)

sheet I

sheet II

Re s1/2

Im s1/2

Im t1(s)

sheet I

sheet I

Resonance poles in the lower half plane are connected continuously with
the physical amplitude and can yield “bumps” or other structure
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RESONANCES AS POLES

When those poles are well isolated, the bumps become clearly visible:
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RESONANCES AS POLES

Intuitively for a bound state at rest whose energy is just the mass E = M,
its time evolution is (~ = 1):

Ψ(t) = Ψ(0)e−iMt −→ |Ψ(t)|2 = |Ψ(0)|2,

i.e, the state does not disappear.
But if we allow an imaginary part E ≡ M − iΓ/2 , then

Ψ(t) = Ψ(0)e−iMt−tΓ/2 −→ |Ψ(t)|2 = |Ψ(0)|2e−Γt ,

i.e, the state disintegrates with lifetime 1/Γ
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ANALYTICITY IN RELATIVISTIC SCATTERING

Analytic properties now derived perturbatively from Feynman diagrams or
in few cases from axiomatic QFT. Most inherited from NRQM:

(E , θ) −→ (s, t) Mandelstam variables
Physical cut for real s, from threshold to∞.
Schwartz reflection: T (s∗, t) = T ∗(s, t)
two sheets at each threshold
poles for bound states and resonances

But also some differences:
Inelastic cuts due to particle creation. More Riemann sheets
Crossing Symmetry. New “left cuts”
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POLES AND RELATIVISTIC RESONANCES

Relativistic partial-wave amplitudes still have a physical cut giving access
to two sheets

Assume a pole at:
sP = M2 − iγ

Define;
g(s) ≡ (s − sP)t(s),
which is regular

sp

s1 s2

Sheet 1

Sheet 2

Continuous

Expand around sP : g(s) ' g(sP) + (s − sP)g′(s) + ...,
which converges in a circle up to the nearest singularity (a cut, another pole..)

including some part of the real axis, where we see

t`(s) ∼ −g(s)

M2 − s − iγ
←− a bump around M2!! if g(s) varies slowly around M2
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RELATIVISTIC BREIT WIGNER FORMULA

If the pole is near the real axis. i.e, if γ is small, we can approximate
g(s)'g(sP) ≡ g for s near M2. Defining Γ ≡ γ/M

t`(s) ' −g
M2 − s − iMΓ

Relativistic Breit-Wigner formula

in the real axis:

|t`(s)|2' g2

(M2−s)2+M2Γ2
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RESONANCES AS POLES

BW-formula is an approximation, only valid for:
narrow resonances, well-isolated from other singularities

Unfortunately, very often used well beyond this approximation

BW resonances ”easier” to identify. But complications arise if:

multiple channels (several thresholds)
thresholds nearby (difficulty for ”molecular” states)
overlapping resonances (several poles nearby)
very wide resonances (poles deep in complex plane)
there are backgrounds (g(s) is not slowly varying)

It is important then to implement correctly the amplitude analytic
properties and perform sensible analytic continuations to the complex
plane. For this, dispersion relations and/or models with good analytic
properties (cuts, sheets, etc...) are essential.
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ANALYTICITY IN RELATIVISTIC SCATTERING

Physical Regions in Mandelstam plane:

u = 0 t = 0

s = 0

Physical s region

Physical

u region

Physical

t region
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ANALYTICITY IN RELATIVISTIC SCATTERING

Analyticity properties follow from crossing symmetry and the

Mandelstamm Hypothesis
There is a unique analytic function that satisfies:

T (s, t , u) =





T12→34(s, t , u), s ≥ 4m2, t ≤ 0, u ≤ 0,
T13̄→2̄4(t , s, u), t ≥ 4m2, s ≤ 0, u ≤ 0,
T14̄→32̄(u, t , s), u ≥ 4m2, s ≤ 0, t ≤ 0.

+ “Minimal set of sigularities demanded by Physics” like cuts due to thresholds
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DISPERSION RELATIONS

Cauchy’s Integral Formula:

Let D be a domain of the complex plane where the function f (z) is analytic
(holomorphic) and let C be the closed curve∗ defined by its boundary. Then, for
any z ∈ D

f (z) =

∮

C

f (z ′)
z ′ − z

dz ′

∗rectifiable, taken counter clock-wise, and with winding number 1
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DISPERSION RELATIONS

Dispersion Relation≡ Cauchy’s Integral Formula applied to amplitudes.
But the Formula only applies to functions of one variable. Two options:

Fix one variable⇒ ”Fixed-t” Dispersion Relations for f (s) ≡ T (s, t0).
Particular case: Forward Dispersion Relations

Integrate the previous ones to obtain ”partial wave Dispersion
Relations” for t`(s).
Particular cases: Roy eqs., Roy-Steiner eqs, GKPY eqs., Inverse
Amplitude Method

Interest of Dispersion Relations:

To constrain data analyses

To calculate:
{ the amplitude where there is no data

Poles of resonances. Rigorous analytic continuation
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Relations” for t`(s).
Particular cases: Roy eqs., Roy-Steiner eqs, GKPY eqs., Inverse
Amplitude Method

Interest of Dispersion Relations:

To constrain data analyses

To calculate:
{ the amplitude where there is no data

Poles of resonances. Rigorous analytic continuation
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FIXED-t DISPERSION RELATIONS

−t 4m2

×
s

Res′

C

Now we have two cuts.

Assume the integral on the circu-
lar parts of C vanish if radius sent
to∞.

Above and below the real axis
the amplitude is conjugated
(Schwartz reflection)

T (s, t , u) =
1
π

∫ ∞

4m2
ds′

ImT (s′, t , u′)
s′ − s︸ ︷︷ ︸

Right cut

+
1
π

∫ −t

−∞
ds′

ImT (s′, t , u′)
s′ − s︸ ︷︷ ︸

Left cut

Provides T anywhere in the complex plane except the real axis
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FIXED-t DISPERSION RELATIONS

We have found

T (s, t , u) =
1
π

∫ ∞

4m2
ds′

ImT (s′, t , u′)
s′ − s

+
1
π

∫ −t

−∞
ds′

ImT (s′, t , u′)
s′ − s

,

When calculating T on the real axis, the (s − s′) denominator diverges

But recall that: 1
s′−s−iε = PV 1

s′−s + iπδ(s′ − s), ( PV ≡principal value )

Thus, on the real axis:

ReT (s, t , u) =
1
π

PV
∫ ∞

4m2
ds′

ImT (s′, t , u′)
s′ − s

+
1
π

∫ −t

−∞
ds′

ImT (s′, t , u′)
s′ − s

.

For physical values of s dispersion relations provide Re T from Im T .
(sometimes you may see a −iε instead of the PV and the real part)

DATA SHOULD SATISFY THIS.
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FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

If T →/ 0 or does it very slowly at∞, the C circular part→/ 0.

By subtracting T at other point s0:

T (s, t)− T (s0, t) =
1

2πi
(s − s0)

∮
ds′

T (s′, t)
(s′ − s)(s′ − s0)

,

converges if T (s, t , u)/s → 0 at∞ faster than 1/s.

If the circular contribution now cancels, the “once subtracted” dispersion
relation reads:

T (s, t) =

Subtraction constant︷ ︸︸ ︷
T (s0, t) +

+
s − s0

π

∫ ∞
4m2

ds′
T (s′, t)

(s′ − s)(s′ − s0)
+

s − s0

π

∫ −t

−∞
ds′

T (s′, t)
(s′ − s)(s′ − s0)
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FIXED-t DISPERSION RELATIONS: SUBTRACTIONS

The price to pay is that one should know the amplitude at the subtraction
point s0.

If that is not enough... make more subtractions, typically at the same point.

T (s, t) = T (s0, t) + (s − s0)
∂T (s0, t)
∂s0︸ ︷︷ ︸

Two subtraction constants

+
(s − s0)2

2πi

∮
ds′

T (s′, t)
(s′ − s)(s′ − s0)2 ,

In principle, two-subtractions should be enough (Froissart bound) although
more could be used to suppress the high energy region.

Subtraction constants will be fundamental to combine analyticity with EFT
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FORWARD DISPERSION RELATIONS

The problem now is to describe the input to the DR≡the data.
Most often ImT (s, t) is not known in the whole energy region, nor on the
left cut.

This why the most popular fixed-t DR are ”Forward”, t = 0. There are two
reasons:

1 At high energy ImT (s, 0) ∼ σtot , which is much easier to measure.
2 The most relevant reactions ππ,Kπ, pπ... have crossing symmetries

that allow to re-write the left cut into in terms of the physical cut.

But they also have a drawback. It is not possible to continue analytically to
the second sheet. the relation SII = 1/SI was only valid for partial waves.
Still, they are very powerful to constrain the data parameterizations
→Examples: ππ, Kπ
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PARTIAL WAVE DISPERSION RELATIONS

Recall the definition of scattering Partial wave:

t`(s) = 1
32Kπ

∫ 1
−1 T (s, t(cos θ))P`(cos θ)d cos θ (K = 1 or K = 2 if particles identical)

Their analytic structure is:

Right cut

Left cut from −∞ to 0

Circular cut if m 6= M

other cuts if bound
states
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PARTIAL WAVE DISPERSION RELATIONS

Dispersion relations can be written as before but with contributions from all
these singularities.

t`(s) = C0 + C1s +
s2

π

∫ ∞

(M1+M2)2

Imt`(s′)ds′

s′2(s′ − s − iε)
+ LC(s)︸ ︷︷ ︸

Left cut

+CC(s)︸ ︷︷ ︸
Circular cut

+ P(s)︸︷︷︸
bound-state poles

Only right and left cuts if particles identical i.e, ππ scattering.

So far all DR were formulated on the first sheet, just providing constraints.

The additional interest of partial-wave DR is that they allow for a
continuation to the second sheet. For an elastic partial wave, the S-matrix
is just a number and we saw that SII = 1/SI . We can look for poles on
sheet-II (resonances) as zeros on sheet-I.
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ROY AND ROY-STEINER DISPERSION RELATIONS

For ππ scattering the problem is the left cut.

Rigorous Solution: rewrite the left cut in t-channel partial basis using
crossing symmetry. Infinite t-channel waves needed. All crossed
amplitudes ππ again. Roy Eqs.≡ system of∞ coupled pw-Dispersion
relations. Truncation possible at low energies. Solve numerically the
equations.
You can use ChPT for subtraction constants. No closed-form solution.
Weak connection with QCD parameters.

The most rigorous way to extract resonance poles

But limited to low energies ≤ 1 GeV:
f0(500), K ∗0 (800), ρ(770), K ∗(892), f0(980)

Roy-Steiner eqs. Similar but for Kπ, Nπ or γγ → ππ. Even more
amplitudes coupled.
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UNITARITY

For physical values of s, the S-matrix is unitary: SS† = S†S = I, which for
the T -matrix or amplitude Sfi ≡ δfi + i(2π)4δ4(pf − pi)Tfi , means:

Tfi − T †fi = i(2π)4
∑

n︸︷︷︸
sum over intermediate states n

δ4(pn − pi)T
†
fnTni

Where we have used I =
∑

n |n〉 〈n|, with |n〉 physically accessible=”open states”

For f = i : 2Im Tii = (2π)4
∑

n

δ4(pn − pi)|Tni |2

For two-body states, the angles of the 3-momenta can be integrated out by
projecting into partial waves.
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UNITARITY FOR PARTIAL WAVES

Let us assume all states are two-body states. Then we find

Using the usual relations for Legendre polynomials and Spherical Harmonics:∫ 1
−1 P`(x)P`′ (x)dx =

2δ
``′

2`+1 , P`(p̂ · k̂) = 4π
2`+1

∑̀
m=−`

Y∗`m(p̂)Y`m(k̂),

∫
dΩ~k Y∗`m(k̂)Y`′m′ (k̂) = δ``′δmm′

The coupled channel partial-wave unitarity relation:

Im tfi
` (s) =

∑

n

σ(s)t fn
` (s)tni

` (s)∗ σ(s) =
2pn√

s
∼Phase space

in matrix form: Im T (s) = T (s)ΣT (s)∗ with Σ(s) =

(
σ1(s) 0 · · ·

0 σ2(s) · · ·
.
.
.

.

.

.
. . .

)

And in the elastic case f = i and no other n open:

Im t`(s) = σ(s)|t`(s)|2 Elastic unitarity condition
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UNITARITY BOUNDS

Let us write the elastic partial wave with in terms of its modulus and
phase: t` = |t`|eiδ` ⇒ Im t` = |t`| sin(δ`)

But from the elastic unitarity condition: Im t` = σ|t`|2 −→ sin(δ`) = σ|t`|

Thus: |t`| =
sin(δ`)

σ
⇒ t` =

eiδ` sin(δ`)

σ

which implies the following bounds:

|t`| ≤
1
σ

s>>m2
i−→ 1 Re t` ≤

1
2σ

s>>m2
i−→ 1

2

It can be shown that these bounds also hold in the inelastic case
A theory is said to be Strongly Interacting when these bounds are
saturated. Typical resonant behavior. Unitarity essential for resonances
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UNITARITY AND ELASTIC BW

We saw the Breit-Wigner formula for one channel: t`(s) ' −g
M2 − s − iMΓ

Elastic unitarity implies:

t`(s) ' 1
σ

MΓ

M2 − s − iMΓ

Within this approximation/model the pole residue g ' −MΓ/σ(M2).

But:

No cuts

Many functions approximated by their value at M2. To partially
alleviate these approximations, usually Γ = Γ(s). Too often that
spoiling the t(s) analytic properties.

The simple sum of any other BW or backgroud violates unitarity

BW are only good for narrow-isolated resonances.
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alleviate these approximations, usually Γ = Γ(s). Too often that
spoiling the t(s) analytic properties.

The simple sum of any other BW or backgroud violates unitarity

BW are only good for narrow-isolated resonances.
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UNITARITY AND CHPT

No perturbation theory (series expansion in λ) satisfies unitarity exactly.

Assume the calculation is done to O(λn). Then Im t`︸︷︷︸
O(λn)

= σ |t`|2︸︷︷︸
O(λ2n)

Unitarity is only satisfied perturbatively within perturbation theory.

For QED. Not an issue, since λ = α ' 1
137 .

For perturbative QCD. Not always a big deal, asymptotic freedom
makes λ = αs small and not much interest on scattering. Bigger
problems to worry about.

ChPT. A real problem since λ ≡ p. Amplitudes are polynomials in
energy, and at some energy will always violate the unitarity conditions
and the bounds, and it cannot describe resonances. However...

ChPT can provide the subtraction constants in DR
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UNITARITY AND CHPT

Nevetheless, ChPT satisfies unitarity perturbatively. Namely, if
t(s) = t2(s) + t4(s) + t6(s)... with tn = O(pn):

Im t2(s) = 0, −→ t2 is real!

Im t4(s) = σ(s)t2(s)2,

Im t6(s) = 2σ(s)t2(s)Re t4(s), ...

Similarly, in matrix form, when various coupled channels are open:

Im T2(s) = 0, −→ T2 is real!

Im T4(s) = T2(s)Σ(s)T2(s)....

The imaginary parts
for unitarity come from
”bubbles” in diagrams
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UNITARITY FOR THE INVERSE AMPLITUDE

Recall now that the inverse of a complex number z is
1
z

=
z̄

zz̄
=

z̄
|z|2

Therefore: Im
1
z

=
Im z̄
|z|2 = − Im z

|z|2
Thus, we can recast the elastic unitarity condition:

Im t` = σ|t`|2 ⇒
Im t`
|t`|2

= σ =⇒ Im
1

t(s)
= −σ(s)

Thus elastic unitarity fixes the imaginary part of the inverse amplitude.

For physical s, any elastic pw satisfies:

t(s) =
1

Re t(s)−1 − iσ(s)
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UNITARITY FOR THE INVERSE AMPLITUDE

We can repeat the argument in matrix form for the coupled channel case.
For an energy s at which we have n open two-body states and an n × n
T -matrix:

Im T` = T ΣT ∗ =⇒ Im T (s)−1 = −Σ(s)

Thus coupled channel two-body unitarity fixes the imaginary part of the
inverse T -matrix.

For an s where the n two-body channels are open, any T -matrix of pw
satisfies:

T (s) =
[
Re T (s)−1 − iΣ(s)

]−1
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UNITARIZATION

Since for physical s, unitarity implies

T (s) =
[
Re T (s)−1 − iΣ(s)

]−1

we only need Re T (s)−1 from dynamics.

Different unitarization methods are just
different approximations to Re T (s)−1
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K -MATRIX UNITARIZATION

One of the simplest methods. Frequently used in experimental analysis.

K -matrix method
K (s) = Re T (s)−1 =simple arbitrary analytic function on the real axis

Various thresholds/cuts and resonances allowed

Simple and flexible. Naive analytic continuation through σn(s).
But:

Strictly, only valid in the real axis above open thresholds
The ”real part” is not an analytic function
Spurious structures, i.e, σ(s) = 2p/

√
s →∞ at s = 0

No left cuts, circular cuts...
K not always motivated by underlying QCD dynamics or symmetries

Fine just to parameterize data on the real axis. Fair approximation for
poles if they are narrow and far from left cuts (but often not the case)
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CHEW-MANDELSTAM UNITARIZATION

Relatively simple improve on K-matrix approach.

The K-matrix: t = 1/(Ret−1 − iσ), has no relation between imaginary
and real parts. Might not be analytic
In coupled channels: T = [ReT−1 − iΣ]−1, with
Σ = diag(θ(s − si)σi). Step function not analytic.
An analytic function with such imaginary part is built from a
Dispersion Relation: Ji(s) = 1

π

∫∞
si

ds′ σi (s)
s−s′−iε

Chew-Mandelstam method
In the K-matrix approach we replace each Σ by J(s) = diag(Ji(s)), thus:
T (s) = [K̂ (s) + Ĵ(s)]−1

Same advantages as K-matrix. Although still no left-cut
But everything analytic and no spurious poles

Surprising it is not used more often.
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