simulation 00000000000 results 00000000 outlook 000

Strange nucleon form factors from Lattice QCD

Dalibor Djukanovic, Konstantin Ottnad, Harvey Meyer, Georg von Hippel, **Jonas Wilhelm**, Hartmut Wittig

24 October, 2019

simulation 00000000000 results 00000000 outlook 000

table of contents

motivation

- simulation
- ensembles
- form factors
- excited-state contamination
- z-expansion

results

- strange vector form factors
- strange axial vector form factors

④ outlook

simulation 00000000000 results 00000000 outlook 000

Standard Model precision test

 ${\scriptstyle \bullet }$ weak mixing angle Θ_W 1

$$A_{PV} = \frac{G_{\mu}Q^2}{4\pi\alpha\sqrt{2}} \left\{ Q_W(p) - F(E_i, Q^2) \right\}$$
$$Q_W(p) = 1 - 4\sin^2 \Theta_w$$

$$ightarrow \ {\it F}({\it E}_i, {\it Q}^2)$$
 contains ${\it G}^{s}_{\it E}$, ${\it G}^{s}_{\it M}$ and ${\it G}^{s}_{\it A}$

• $Q_W(p)$ sensitive to Θ_W and possible beyond SM effects ¹

$$rac{\Delta \sin^2 \Theta_W}{\sin^2 \Theta_W} pprox 0.09 \; rac{\Delta Q_W(p)}{Q_W(p)}$$

¹Becker et al., Eur. Phys. J. A54 (2018) 208

results 00000000 outlook 000

Standard Model precision test

Figure: Running of $\sin^2 \Theta_W^{-1}$ (left) and influence of Dark Z ² (right)

¹Berger et al., JUSTC 46 (2016) 481

²Davoudiasl et al., Phys. Rev. D89 (2014) 095006

simulation •0000000000 results 00000000 outlook 000

expectation values

• importance-sampling Monte Carlo

$$\langle O
angle pprox rac{1}{N_{
m cfg}} \sum_{i=1}^{N_{
m cfg}} O[D[U_i]^{-1}, U_i]$$

generation of ensembles

$$dP(U) = rac{1}{Z}e^{-S^{Lat.}_{QCD}[U]} \mathcal{D}[U]$$

• Markov Chain \rightarrow HMC algorithm ¹

$$U_1 \rightarrow U_2 \rightarrow U_3 \rightarrow \cdots$$

¹Duane et al., Phys. Lett. B195 (1987) 216

motivation	
00	

simulation
00000000000

results 00000000 outlook 000

ensembles

- Coordinated Lattice Simulations (CLS)^{1,2}
 - $N_f = 2 + 1 \mathcal{O}(a)$ -improved Wilson fermions
 - tree-level improved Lüscher-Weisz gauge action
 - open boundary conditions in time
 - tr $M_q = \text{const}$

	β	<i>a</i> [fm]	$N_s^3 imes N_t$	$m_{\pi}[{ m MeV}]$	m_K [MeV]
H102	3.40	0.08636	$32^3 imes 96$	352	438
H105	3.40	0.08636	$32^3 imes 96$	278	460
C101	3.40	0.08636	$48^3 imes 96$	223	472
N401	3.46	0.07634	$48^3 imes 128$	289	462
N203	3.55	0.06426	$48^3 imes 128$	345	441
N200	3.55	0.06426	$48^3 imes 128$	283	463
D200	3.55	0.06426	$64^3 imes 128$	200	480
N302	3.70	0.04981	$48^3 imes 128$	354	458

¹Bruno et al., J. High Energ. Phys. (2015) 43 ²Bruno et al., Phys. Rev. D95 (2017) 074504

simulation

results 00000000 outlook 000

primary observables

nucleon two-point function

$$C_2^N(\vec{p}', y_0; \Gamma) = \sum_{\vec{y}} e^{-i\vec{p}'\vec{y}} \Gamma_{\beta\alpha} \langle N_{\alpha}(\vec{y}, y_0) \bar{N}_{\beta}(0) \rangle$$

 \Rightarrow energies (masses at $\vec{p}' = 0$) and overlap factors

nucleon three-point function

$$C_{3,J_{\mu}}^{N}(\vec{q},z_{0};\vec{p}',y_{0};\Gamma_{\nu})=\sum_{\vec{y},\vec{z}}e^{\mathrm{i}\vec{q}\vec{z}}e^{-\mathrm{i}\vec{p}'\vec{y}}\left(\Gamma_{\nu}\right)_{\beta\alpha}\left\langle N_{\alpha}(\vec{y},y_{0})J_{\mu}(\vec{z},z_{0})\bar{N}_{\beta}(0)\right\rangle$$

 $\rightarrow\,$ energies, overlap factors and matrix elements

simulation

results 00000000 outlook 000

form factors

• construct a ratio

$$R_{J_{\mu}}(\vec{q};\vec{p}';\Gamma_{\nu}) = \frac{C_{3,J_{\mu}}^{N}(\vec{q},z_{0};\vec{p}',y_{0};\Gamma_{\nu})}{C_{2}^{N}(\vec{p}',y_{0})} \sqrt{\frac{C_{2}^{N}(\vec{p}',y_{0})C_{2}^{N}(\vec{p}',z_{0})C_{2}^{N}(\vec{p}'-\vec{q},y_{0}-z_{0})}{C_{2}^{N}(\vec{p}'-\vec{q},y_{0})C_{2}^{N}(\vec{p}'-\vec{q},z_{0})C_{2}^{N}(\vec{p}',y_{0}-z_{0})}}$$

$$\stackrel{
m s.d.}{=} M^1_{
u\mu}(ec{q},ec{p}')G_1(Q^2) + M^2_{
u\mu}(ec{q},ec{p}')G_2(Q^2) + ext{exc. states}$$

• (overdetermined) system of equations at each Q^2

$$M \ \vec{G} = \vec{R} \ ; \ M = \left(\begin{array}{cc} M_1^1 & M_1^2 \\ \vdots & \vdots \\ M_N^1 & M_N^2 \end{array} \right) \ , \ \vec{G} = \left(\begin{array}{c} G_1 \\ G_2 \end{array} \right), \ \vec{R} = \left(\begin{array}{c} R_1 \\ \vdots \\ R_N \end{array} \right)$$

• minimizing the least-squares function

$$\chi^2 = (\vec{R} - M\vec{G})^T \ C^{-1} \ (\vec{R} - M\vec{G})$$

simulation

results 00000000 outlook 000

form factor parametrization

$$\langle N, \vec{p}, s | J_{\mu}(x) | N, \vec{p}', s' \rangle = \bar{u}^{s}(\vec{p}) \widetilde{J}_{\mu} u^{s'}(\vec{p}') e^{iq \cdot x}$$

axial vector current

$$\widetilde{A}_{\mu}=\gamma_{\mu}\gamma_{5}G_{\mathsf{A}}(Q^{2})+\gamma_{5}rac{q_{\mu}}{2m}G_{\mathsf{P}}(Q^{2})$$

vector current

$$\widetilde{V}_{\mu} = \gamma_{\mu}F_{1}(Q^{2}) + \mathrm{i}\sigma_{\mu\nu}rac{q^{
u}}{2m}F_{2}(Q^{2})$$
 $F_{1}, F_{2} \leftrightarrow G_{\mathrm{E}}, G_{\mathrm{M}}$

simulation

results 00000000 outlook 000

quark-flavor dependence

$$\left\langle N(ec{y}, y_0) J^f_\mu(ec{z}, z_0) ar{N}(ec{0}, 0)
ight
angle \ , \ f = u, d, s$$

• current operator

$$J^{f}_{\mu}(\vec{z}, z_{0}) = \begin{cases} V^{f}_{\mu}(\vec{z}, z_{0}) = \bar{f}(\vec{z}, z_{0})\gamma_{\mu}f(\vec{z}, z_{0}) \\ A^{f}_{\mu}(\vec{z}, z_{0}) = \bar{f}(\vec{z}, z_{0})\gamma_{5}\gamma_{\mu}f(\vec{z}, z_{0}) \end{cases}$$

simulation

results 00000000 outlook 000

quark loops

$$\begin{split} L^{s}_{\Gamma_{\mu}}(\vec{q},z_{0}) &= -\sum_{\vec{z}\in\Lambda} e^{i\vec{q}\cdot\vec{z}} \left\langle tr\left[S^{s}(z;z) \ \Gamma_{\mu}\right]\right\rangle_{G} \\ &= -\sum_{\vec{z}\in\Lambda} e^{i\vec{q}\cdot\vec{z}} \left\langle \eta^{\dagger}(z) \ \Gamma_{\mu} \ s^{s}(z)\right\rangle_{G,\eta} \end{split}$$

 gauge noise reached for axial current, but not for vector current!

simulation

results 00000000 outlook 000

effectiveness of hierarchical probing

hierarchical probing ¹

 $\eta_n \rightarrow h_n \odot \eta$

¹Stathopoulos et al., 1302.4018

simulation

results 00000000 outlook 000

excited-state contamination

$$egin{aligned} G^{ ext{eff}}(Q^2,z_0,y_0) &= G(Q^2) + A_1(Q^2) \; e^{-\Delta z_0} + B_1(Q^2) \; e^{-\Delta'(y_0-z_0)} \ &+ C_1(Q^2) \; e^{-\Delta z_0 - \Delta'(y_0-z_0)} \end{aligned}$$

simulation ○○○○○○○○○ results 00000000 outlook 000

excited-state contamination

- plateau method $y_0 \sim 1\,{
 m fm}$
- summation method $y_0 \in [0.5, 1.3]$ fm

$$egin{aligned} S(Q^2,y_0) &= \sum_{z_0=1}^{y_0-1} G^{ ext{eff}}(Q^2,z_0,y_0) \ &= \mathcal{K}(Q^2) + (y_0-1)G(Q^2) + \mathcal{O}\left(e^{-\Delta y_0},e^{-\Delta' y_0}
ight) \end{aligned}$$

simulation

results 00000000 outlook 000

z-expansion

• fit the
$$Q^2$$
-dependence ^{1,2}

$$G(Q^2) = \sum_{k=0}^{\infty} a_k z(Q^2)^k$$
$$z(Q^2) = \frac{\sqrt{t_{cut} + Q^2} - \sqrt{t_{cut}}}{\sqrt{t_{cut} + Q^2} + \sqrt{t_{cut}}} \quad , \quad t_{cut} = (2m_K)^2$$

Gaussian priors

$$ilde{a}_k = 0 \pm 5 \max\{|a_0|, |a_1|\} \ \forall \ k > 1$$

• at $Q^2 = 0$: $a_0^E = 0$, $a_0^M = \mu^s$, $a_0^A = g_A^s$

charge radius

$$r^2 \equiv -6 \left. \frac{dG}{dQ^2} \right|_{Q^2 = 0} = -\frac{3}{2t_{cut}} a_1$$

¹R. Hill et al., Phys. Rev. D82 (2010) 113005

²Z. Epstein et al., Phys. Rev. D90 (2014) 074027

simulation 00000000000 results ●00000000 outlook 000

strange vector form factors

simulation 00000000000 results 0●0000000 outlook 000

extrapolation

¹T. R. Hemmert et al., Phys. Rev. C60 (1999) 045501

simulation 00000000000 results 00●00000 outlook 000

error budget

	$(r_{E}^{2})^{s}$ [fm ²]	μ^s	$(r_{M}^{2})^{s}$ [fm ²]	χ^2/DOF
Main result	-0.0048(11)	-0.020(4)	-0.011(5)	2.09, 2.42, 1.23
Variations:				
Doubling prior width	-0.0059(13)	-0.023(5)	-0.017(9)	1.98, 1.57, 0.75
Plateau method	-0.0038(11)	-0.011(5)	-0.0033(48)	1.91, 1.57, 1.27
Including $\mathcal{O}(a^2)$	-0.0030(13)	-0.016(6)	-0.006(7)	1.34, 2.71, 1.07
No cut in Q^2	-0.0047(8)	-0.017(4)	-0.008(5)	3.71, 2.37, 1.73
Including finite vol.	-0.0051(11)	-0.019(4)	-0.012(5)	1.34, 1.28, 0.42

$$(r_E^2)^s = -0.0048(11)(24) \,\mathrm{fm}^2$$

 $\mu^s = -0.020(4)(11)$
 $(r_M^2)^s = -0.011(5)(12) \,\mathrm{fm}^2$

comparison

simulation 00000000000 results 000€0000 outlook 000

$$(r_E^2)^s = -0.0048(11)(24) \text{ fm}^2$$

 $\mu^s = -0.020(4)(11)$
 $(r_M^2)^s = -0.011(5)(12) \text{ fm}^2$

simulation 00000000000 results 0000€000 outlook 000

comparison

- with experimental determination ¹
- Iattice results:

$$G_E^s(Q^2) = -\frac{1}{6}(r_E^2)^s Q^2$$
$$G_M^s(Q^2) = \mu^s - \frac{1}{6}(r_E^2)^s Q^2$$

¹F.E. Maas and K.D. Paschke, Prog. Part. Nucl. Phys. 95 (2017) 209

simulation 00000000000 results ○○○○●○○ outlook 000

strange axial vector form factors

extrapolation

simulation 00000000000 results ○○○○○○●○ outlook 000

• linear in m_{π}^2

simulation 00000000000 results ○○○○○○○● outlook 000

comparison

$$g_A^s = -0.038(3)(5)$$

 $(r^2)_A^s = -0.007(5)(9) \,\mathrm{fm}^2$

simulation 00000000000 results 00000000 outlook ●00

outlook and related work

- more configurations and ensembles
- new generation of disconnected loop in progress
- electric and magnetic charge radius and magnetic moment of proton and neutron

$$(r^2)^{p/n} = \frac{1}{2} \left[\frac{1}{3} (r^2)^{u+d-2s} \pm (r^2)^{u-d} \right]$$

 $\mu^{p/n} = \frac{1}{2} \left[\frac{1}{3} \mu^{u+d-2s} \pm \mu^{u-d} \right]$

simulation 00000000000 results 00000000 outlook 0●0

outlook and related work

• quark-contributions to g_A and g_T

simulation 00000000000 results 00000000 outlook 00●

Thank you!

•00000

Backup Slides

finite-volume corrections

• vector case ^{1,2}

$$(r_E^2)^s(m_K, a, L) = c_1 + c_2 \log(m_K) + c_3 a^2 + c_4 \sqrt{L} e^{-m_K L}$$
$$\mu^s(m_K, a, L) = c_5 + c_6 m_K + c_7 a^2 + c_8 m_K \left(1 - \frac{2}{m_K L}\right) e^{-m_K L}$$
$$(r_M^2)^s(m_K, a, L) = c_9 + \frac{c_{10}}{m_K} + c_{11} a^2 + c_{12} \sqrt{L} e^{-m_K L}$$

axial vector case ³

$$g_{A}^{s}(m_{\pi}, a, L) = c_{1} + c_{2}m_{\pi}^{2} + c_{3}a + c_{4}\frac{m_{\pi}^{2}}{\sqrt{m_{\pi}L}} e^{-m_{\pi}L}$$
$$(r_{A}^{2})^{s}(m_{\pi}, a, L) = c_{5} + c_{6}m_{\pi}^{2} + c_{7}a + c_{8}\sqrt{L} e^{-m_{\pi}L}$$

¹T. R. Hemmert et al., Phys. Rev. C60 (1999) 045501
 ²Phys. Rev. D 96, 114504 (2017)
 ³K. Ottnad et al., Phys. Rev. D100 (2019) 034513

Hadamard Vectors

$$h_j = H_n(:,j)$$
, $j = 0, ..., n-1$.

$$H_2 = \left(egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight) \ , \ H_{2n} = \left(egin{array}{cc} H_n & H_n \ H_n & -H_n \end{array}
ight) = H_2 \otimes H_n \ .$$

renormalization

- N_f = 3 periodic boundary condition ensembles
 β ∈ {3.40, 3.46, 3.55}
- RI'-MOM scheme in Landau gauge

$$Z_O \left. \left\langle p \left| O_{\Gamma} \right| p \right\rangle \right|_{p^2 = \mu^2} = \left. \left\langle p \left| O_{\Gamma} \right| p \right\rangle_{\text{tree}} \right|_{p^2 = \mu^2}$$

- extrapolation to the chiral limit
- perturbative subtraction of leading-order lattice artifacts ¹
- conversion to RGI scheme
 - $\overline{\text{MS}}$ as intermediate scheme
 - $\overline{\rm MS}$ $\beta\text{-}$ and $\gamma\text{-}{\rm functions}$
 - fit residual $\mu\text{-dependence}$
- convert to $\overline{\rm MS}$ at $\mu=2.0\,{\rm GeV}$

¹G. von Hippel et al., PoS (LATTICE2016) 194

renormalization

• start with flavor-diagonal basis

$$\begin{aligned} O_{\Gamma}^{a}(x) &= \bar{\psi}(x) \Gamma \lambda^{a} \psi(x) \quad , \quad \psi = (u, d, s)^{T} \quad , \quad a \in \{3, 8, 0\} \; , \\ Z_{\Gamma} &= \begin{pmatrix} Z_{\Gamma}^{33} & 0 & 0 \\ 0 & Z_{\Gamma}^{88} & 0 \\ 0 & 0 & Z_{\Gamma}^{00} \end{pmatrix} \quad , \quad Z_{\Gamma}^{33} = Z_{\Gamma}^{88} \; , \quad Z_{q}^{i} = Z_{q} \; . \end{aligned}$$

• basis transformation

$$\begin{pmatrix} O_{\Gamma}^{u-d}(x)_{R} \\ O_{\Gamma}^{u+d}(x)_{R} \\ O_{\Gamma}^{s}(x)_{R} \end{pmatrix} = \begin{pmatrix} Z_{\Gamma}^{u-d,u-d} & 0 & 0 \\ 0 & Z_{\Gamma}^{u+d,u+d} & Z_{\Gamma}^{u+d,s} \\ 0 & Z_{\Gamma}^{s,u+d} & Z_{\Gamma}^{s,s} \end{pmatrix} \begin{pmatrix} O_{\Gamma}^{u-d}(x) \\ O_{\Gamma}^{u+d}(x) \\ O_{\Gamma}^{s}(x) \end{pmatrix}$$

renormalization

- linear extrapolation to $\beta = 3.7$
 - error multiplied with factor 10
 - checks performed for g_A^{u-d} in Mainz isovector charges paper ¹
 - \Rightarrow consistent results compared to using Z_A^{SF}

¹K. Ottnad et al., Phys. Rev. D100 (2019) 034513