## The hadronic contribution to $\Delta \alpha_{\rm QED}$

 $\begin{array}{cccc} {\sf Teseo \ San \ José} \ ^1 \ ^{a,b,c} & {\sf Marco \ Ce} \ ^{a,b} & {\sf Antoine \ Gérardin} \ ^d \\ {\sf Harvey \ B. \ Meyer} \ ^{a,b,c} & {\sf Kohtaroh \ Miura} \ ^{a,b,e} & {\sf Konstantin \ Ottnad} \ ^{b,c} \\ {\sf Andreas \ Risch} \ ^{b,c} & {\sf Jonas \ Wilhelm} \ ^{b,c} & {\sf Hartmut \ Wittig} \ ^{a,b,c} \end{array}$ 

<sup>a</sup>Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz, Germany

<sup>b</sup>PRISMA<sup>+</sup> Cluster of Excellence, Johannes Gutenberg-Universität Mainz, Germany

<sup>c</sup>Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany

<sup>d</sup> John von Neumann-Institut für Computing (NIC), DESY Zeuthen, Germany

<sup>e</sup>Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Japan

Boppard, 24/10/2019

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



Relevant for many areas:

• Future experiments around  $M_Z$  pole energy (future  $e^+e^-$ - collider).

Image: A mathematical states and a mathem

• 
$$(g-2)_{\mu}$$
 puzzle

Global fits of SM

 $\alpha(M_Z)$  enters into global fits of SM. Excluding kinematic constraints from LHC, the SM predicts  $M_{\rm H} = 90^{+17}_{-16}~{\rm GeV}$ If  $\pm 10^{-4}$  in  $\Delta \alpha^{(3)}_{\rm had}(2~{\rm GeV}) \Rightarrow \mp 4.5~{\rm GeV}$  in  $M_{\rm H}$  [Tanabashi et al. 2018] Long standing discrepancy,  $\Delta a_{\mu}(\textit{Exp}-\textit{SM}) \sim (28\pm8) imes 10^{-10}$ 

The hadronic leading contribution to  $(g-2)_{\mu}$  is [Lautrup, Peterman, and Rafael 1972]

$$a_{\mu}^{
m HLO} = rac{lpha}{\pi} \int_{0}^{1} dx (1-x) \Delta lpha_{
m had}(Q^2), \quad Q^2 = rac{x^2 m_{\mu}^2}{x-1} < 0$$

The integrand peaks at  $x_{\rm peak}\approx 0.914~({\it Q}^2\approx -0.108~{\rm GeV}^2)$ 

From here, if  $(g - 2)_{\mu}$  is solved by increasing  $a_{\mu,SM}$ , we increase  $\Delta \alpha_{had}$  as well. This also lowers the estimated  $M_{\rm H}$  from the global fit

MUonE experiment (CERN) measures  $\Delta lpha_{
m had}({\it Q}^2)$  [Abbiendi et al. 2017]

• It covers 0 < x < 0.93 (-0.143 GeV<sup>2</sup> <  $Q^2 < 0$ )

• The region 0.93 < x < 1 amounts to 13% of the integrand

LQCD can compute the range  ${\it Q}^2=-(0.14-4)~{\rm GeV}^2$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

#### Introduction

We parametrize the running of the QED coupling as

$$lpha({\it Q}^2)=rac{lpha}{1-\Deltalpha({\it Q}^2)}$$

• In the Thomson limit we recover the fine structure constant,  $\alpha^{-1}(Q^2 = 0) = \alpha^{-1} = 137.035999139(31)$  [Tanabashi et al. 2018]

• At the Z pole, 
$$\hat{\alpha}^{(5)}(M_Z)^{-1} = 127.955(10)$$

The uncertainty is dominated by hadronic loops at low energies The hadronic contribution to  $\Delta\alpha$  is

$$\Delta \alpha_{QED}^{had}(Q^2) = 4\pi \alpha \bar{\Pi}^{\gamma\gamma}(Q^2), \quad \bar{\Pi}^{\gamma\gamma}(Q^2) = \Pi^{\gamma\gamma}(Q^2) - \Pi^{\gamma\gamma}(0)$$

where the vacuum polarization function is defined as

$$\left( Q_{\mu}Q_{
u} - \delta_{\mu
u}Q^2 
ight) \Pi^{\gamma\gamma}(Q^2) = \Pi^{\gamma\gamma}_{\mu
u}(Q^2) = \int d^4x e^{iQx} \langle j^{\gamma}_{\mu}(x) j^{\gamma}_{
u}(0) 
angle$$

with the electromagnetic current

$$j^{\gamma}_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

[Bernecker and Meyer 2011; Francis et al. 2013]

$$\bar{\Pi}(Q^2) = \int_0^\infty dx_0 G(x_0) \left[ x_0^2 - \frac{4}{Q^2} \sin^2\left(\frac{Qx_0}{2}\right) \right], \quad G(x_0) = -\frac{1}{3} \int d^3x \sum_{k=1}^3 \langle j_k(x) j_k(0) \rangle$$

Any Q can be input to the kernel, but

- $Q \sim \pi/a$  suffer strong cut-off effects
- $Q << 1 \ {
  m GeV}$  weights more the noise in the correlator

The bare correlators are, in the isospin basis,

1

$$G_{\mu
u}(x) = G^{33}_{\mu
u}(x) + rac{1}{3}G^{88}_{\mu
u}(x) + rac{4}{9}C^{c,c}_{\mu
u}(x)$$

where

$$G_{\mu\nu}^{33}(x) = \frac{1}{2} C_{\mu\nu}^{\ell,\ell}(x)$$
$$G_{\mu\nu}^{88}(x) = \frac{1}{6} \left[ C_{\mu\nu}^{\ell,\ell}(x) + 2C_{\mu\nu}^{s,s}(x) + 2D_{\mu\nu}^{\ell-s,\ell-s}(x) \right]$$

The connected and disconnected Wick's contractions are

$$C_{\mu\nu}^{f_1,f_2}(x) = - \langle \operatorname{Tr} \left\{ D_{f_1}^{-1}(x,0)\gamma_{\mu} D_{f_2}^{-1}(0,x)\gamma_{\nu} \right\} \rangle$$
$$D_{\mu\nu}^{f_1,f_2}(x) = \langle \operatorname{Tr} \left\{ D_{f_1}^{-1}(x,x)\gamma_{\mu} \right\} \operatorname{Tr} \left\{ D_{f_2}^{-1}(0,0)\gamma_{\nu} \right\} \rangle$$

Teseo San José (HIM-JGU)

|                    | T/a | L/a | $t_0^{ m sym}/a^2$ | <i>a</i> [fm] | <i>L</i> [fm] | $M_{\pi}$ , N | $M_{K}$ [MeV] | $M_{\pi}L$ | $	au_{\mathit{int}}(\#  conf.)$ |
|--------------------|-----|-----|--------------------|---------------|---------------|---------------|---------------|------------|---------------------------------|
| H101               | 96  | 32  | 2.860              | 0.086         | 2.8           | 415           |               | 5.8        | 1                               |
| H102               | 96  | 32  |                    |               | 2.8           | 355           | 440           | 5.0        | 2                               |
| H105*              | 96  | 32  |                    |               | 2.8           | 280           | 460           | 3.9        | 1                               |
| N101               | 128 | 48  |                    |               | 4.1           | 280           | 460           | 5.8        | 0.5                             |
| C101*              | 96  | 48  |                    |               | 4.1           | 220           | 470           | 4.6        | 0.5                             |
| B450 <sup>§</sup>  | 64  | 32  | 3.659              | 0.076         | 2.4           | 415           |               | 5.1        | 2                               |
| S400               | 128 | 32  |                    |               | 2.4           | 350           | 440           | 4.3        | 3                               |
| N401*              | 128 | 48  |                    |               | 3.7           | 285           | 460           | 5.3        | 1                               |
| H200               | 96  | 32  | 5.164              | 0.064         | 2.1           | 420           |               | 4.4        | 1                               |
| N202               | 128 | 48  |                    |               | 3.1           | 410           |               | 6.4        | 2                               |
| N203*              | 128 | 48  |                    |               | 3.1           | 345           | 440           | 5.4        | 1                               |
| N200*              | 128 | 48  |                    |               | 3.1           | 285           | 465           | 4.4        | 1                               |
| D200*              | 128 | 64  |                    |               | 4.1           | 200           | 480           | 4.2        | 0.5                             |
| E250* <sup>§</sup> | 192 | 96  |                    |               | 6.2           | 130           | 490           | 4.1        | 0.5                             |
| N300               | 128 | 48  | 8.595              | 0.050         | 2.4           | 420           |               | 5.1        | 2                               |
| N302*              | 128 | 48  |                    |               | 2.4           | 345           | 460           | 4.2        | 2                               |
| J303               | 192 | 64  |                    |               | 3.2           | 260           | 475           | 4.2        | 0.5                             |

\* disconnected available. §PBC in time

<ロト < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 四 > < 四 > < 四 > < つ < つ < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > <

Teseo San José (HIM-JGU)

## Signal/noise problem



ensemble D200, local-local discretization

-

< (T) >

Exploit the spectral representation of the correlator in finite volume,  $G(x_0, L)$ ,

$$G(x_0,L) = \sum_n |A_n|^2 e^{-m_n x_0} \xrightarrow{x_0 \to \infty} |A_0| e^{-m_0 x_0}$$

• Simplest option, fit long time behaviour with one state, [Della Morte et al. 2017]

$$G(x_0, L) = \begin{cases} \text{data}, & x_0 < x_0^{\text{cut}} \\ A_{\text{fit}} e^{-m_{\text{fit}}t}, & x_0 \ge x_0^{\text{cut}} \end{cases}$$

where  $x_0^{\text{cut}}$  lies between 1.5 fm and 2.5 fm, depending on the noise • Or better, apply the bounding method, [Gérardin et al. 2019]

$$0 \leq G(x_0^{\text{cut}}, L) e^{-E_{\text{eff}}(x_0^{\text{cut}})(x_0 - x_0^{\text{cut}})} \leq G(x_0, L) \leq G(x_0^{\text{cut}}, L) e^{-E_0(x_0 - x_0^{\text{cut}})},$$

where both bounds converge at  $x_0^{\text{cut}}$ , and  $E_{\text{eff}}(x_0) = -\partial \log G(x_0) / \partial x_0$ ,  $E_0$  is the ground state

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

#### Finite-volume correction

Add to the lattice data the difference between the modelling of the infinite-volume and finite-volume I = 1 correlator.  $x_{0i} = (M_{\pi}L/4)^2/M_{\pi}$ 

 $x_0 \leq x_{0i}$ , use scalar QED (NLO  $\chi$ PT) [Della Morte et al. 2017; Francis et al. 2013]

$$G(x_0,\infty) - G(x_0,L) = \frac{1}{3} \left( \int \frac{d^3\vec{k}}{(2\pi)^3} - \frac{1}{L^3} \sum_{\vec{k}} \right) \frac{\vec{k}^2}{\vec{k}^2 + m_\pi^2} e^{-2t\sqrt{\vec{k}^2 + m_\pi^2}}$$

 $x_0 > x_{0i}$ , use Gounaris-Sakurai parameterization of  $F_{\pi}(\omega)$  [Gounaris and Sakurai 1968]

$$G(x_0,\infty) = \int_{2m_{\pi}}^{\infty} dQ Q^2 \rho(Q) e^{-Q|x_0|}, \qquad \rho(Q) = \frac{1}{48\pi^2} \left(1 - 4\frac{m_{\pi}^2}{Q^2}\right)^{3/2} |F_{\pi}(Q)|^2$$

The finite-volume correlator from the Lüscher energies,  $\omega_n$  and Lellouch-Lüscher amplitudes,  $A_n$  [Lellouch and Luscher 2001; Luscher 1991a; Meyer 2011]

$$G(x_0,L) = \sum_n |A_n|^2 e^{-\omega_n x_0}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Finite-volume correction. Compare H105 vs N101



#### Finite-volume correction. Compare H105 vs N101



Correction is  $\sim 2\%$  for H105 and  $\sim 2\%$  for N101. Bigger than the statistical uncertainty

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Minimize

$$\chi^{2} = \sum_{l \in \{\text{CLS}\}} \left( v_{\text{model}}^{T} - v_{l,\text{data}}^{T} \right) C_{l,\text{data}}^{-1} \left( v_{\text{model}} - v_{l,\text{data}} \right)$$

with

$$\mathbf{v}_{\text{model}} - \mathbf{v}_{l,\text{data}} = \begin{pmatrix} \phi_{2,l} \\ \phi_{4,l} \\ \bar{\Pi}_{ll}^{33} (\mathbf{a}^2/t_0, \phi_{2,l}, \phi_{4,l}) \\ \bar{\Pi}_{lc}^{33} (\mathbf{a}^2/t_0, \phi_{2,l}, \phi_{4,l}) \end{pmatrix} - \begin{pmatrix} 8t_0^{\text{sym}} M_{\pi}^2 \\ 8t_0^{\text{sym}} (M_K^2 + M_{\pi}^2/2) \\ \bar{\Pi}_{ll}^{33} \\ \bar{\Pi}_{lc}^{33} \end{pmatrix}_{\text{data}}$$

The model is

$$\bar{\Pi} \left( a^2 / t_0^{\text{sym}}, \phi_2, \phi_4 \right) = \bar{\Pi}^{\text{phy}} + \alpha_1 a^2 / t_0^{\text{sym}} + \alpha_2 \left( a^2 / t_0^{\text{sym}} \right)^{3/2} + \beta_1 \left( \phi_2 - \phi_2^{\text{phy}} \right) + \beta_2 \log \left( \phi_2 / \phi_2^{\text{phy}} \right) + \gamma_1 \left( \phi_4 - \phi_4^{\text{phy}} \right)$$

三日 のへの

メロト メロト メヨト メヨ

#### Preliminary results. I = 1 physical point



三日 のへの

< □ > < □ > < □ > < □ > < □ >



At  $Q^2 = 1 \text{ GeV}^2$ ,  $\Delta \alpha_{\text{had}}^{33} = 0.003036(58)$ 

- We have computed the isovector component of  $\Delta \alpha_{\rm QED}^{\rm had}$  in the energy range (0.01 4.5) GeV<sup>2</sup>.
- The statistical error at  $Q^2 = 1~{
  m GeV}^2$  is  $\sim 2\%$ .
- The inclusion of finite-volume effects is fundamental
- Treatment of the tail with single exponential

The next steps that we will take are:

- Investigate the systematics of the chiral and continuum extrapolation and the scale
- Analyze the isoscalar (including disconnected) and charm contributions
- Apply Bounding Method to long-time tail of light ensembles
- Perform a comparison with Phenomenology of  $\Delta\alpha_{\rm QED}$  including the four lightest flavors [Jegerlehner 2011]
- Add a new ensemble at approx 0.050  ${
  m fm}$  and  $M_\pipprox$  175  ${
  m MeV}$
- Add isospin breaking [Risch and Wittig 2018, 2019]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

We  $\mathcal{O}(a)$  improve and renormalize the electromagnetic current. To do that, we combine the u, d, s flavours in the isospin basis,

$$j^{a,l}_{\mu} = ar{\psi} \gamma_{\mu} rac{\lambda^a}{2} \psi,$$

with  $\lambda^a$  the Gell-Mann matrices, and the corresponding expression for the conserved current. The renormalization of the isovector (I = 1, with *a* = 3) local current is

$$j^{3,\mathrm{l}}_{\mu,R} = Z_V \left( 1 + 3 ar{b}_V \mathsf{am}^{\mathrm{av}}_q + b_V \mathsf{am}_{q,\ell} 
ight) j^{3,\mathrm{l}}_{\mu,\mathrm{i}}$$

The  $\mathcal{O}(a)$ -improved local current is

$$j^{\mathsf{a},\mathrm{l}}_{\mu,\mathrm{i}}=j^{\mathsf{a},\mathrm{l}}_{\mu}+\mathsf{ac}^{\mathrm{l}}_{V}\widetilde{\partial}_{
u}\,\mathcal{T}^{\mathsf{a},l}_{
u\mu}$$

For the conserved current no renormalization is needed,

$$j^{a,\mathrm{c}}_{\mu,R}=j^{a,\mathrm{c}}_{\mu}+ac^{\mathrm{c}}_{V}\widetilde{\partial}_{
u}\,T^{a,l}_{
u\mu}$$

The tensor current is

$$T^{s,l}_{\mu\nu} = -\bar{\psi} \left[ \gamma_{\mu}, \gamma_{\nu} \right] \frac{\lambda^{s}}{2} \psi$$

イロト イヨト イヨト

Compute [De Palma et al. 2019; Wolff 2004]

$$\Gamma_{x_0x_0'}(d) = \frac{1}{N-d} \sum_{i=1}^{N-d} \left( G(i, x_0) - \overline{G}(x_0) \right) \left( G(i + d, x_0') - \overline{G}(x_0') \right)$$

i runs over configurations. ( $\Gamma_{x_0x_0'}(0)$  is the covariance matrix). Add autocorrelations in window W,

$$C_{\Delta\alpha}(W) = \Gamma_{\Delta\alpha}(0) + 2\sum_{d=1}^{W} \Gamma_{\Delta\alpha}(d), \quad \Gamma_{\Delta\alpha}(d) = \sum_{x_0, x_0'} f_{x_0} f_{x_0'} \Gamma_{x_0 x_0'}(d), \qquad f_{x_0} = \frac{\partial \Delta \alpha}{\partial G(x_0)}$$

Obtain statistical uncertainty of  $\Delta \alpha$ 

$$\sigma_{\Delta\alpha}^{2} = \frac{2\tau_{int,\Delta\alpha}}{N} \Gamma_{\Delta\alpha}(0), \qquad \tau_{int,\Delta\alpha}(W) = \frac{C_{\Delta\alpha}(W)}{2\Gamma_{\Delta\alpha}(0)}$$

 $2 au_{int,\Deltalpha}$  is the bin size.

= nar

イロト イヨト イヨト



1 =

A B + 
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

How to choose W? Consider the two sources of uncertainty in the autocorrelations:

• Finite statistics,  $\propto \sqrt{\frac{W}{N}}$ 

• Truncation of 
$$\Gamma_F$$
,  $\propto exp(-W/\tau)$ 

au dictates the decay of autocorrelations. Suppose  $au = S au_{int}$ , with S set by the user (reasonable ansatz  $\sim 1 - 3$ ).

 $W_{optimal}$  minimizes the total error. After W is determined, we need to check that we have included just the right amount of autocorrelations

The correlator in finite volume,

$$G(x_0,L) = \sum_n |A_n|^2 e^{-\omega_n x_0}$$

can be computed using the Lüscher method<sup>2, 3</sup> at long distances. First, solve numerically the following equation to obtain  $\omega_n$ .

$$\delta_1(k) + \phi\left(\frac{kL}{2\pi}\right) = n\pi, \quad n = 1, 2, \dots$$

$$\omega_n = 2\sqrt{m_\pi^2 + k^2}$$

where  $\phi$  is a known function.

イロト イヨト イヨト イ

<sup>&</sup>lt;sup>2</sup>Luscher 1991a.

<sup>&</sup>lt;sup>3</sup>Luscher 1991b.

Teseo San José (HIM-JGU)

Then, the amplitudes are computed<sup>4</sup> as

$$|A_n|^2 = \frac{2k^5|F_{\pi}(\omega_n)|^2}{3\pi\omega_n^2\mathbb{L}(k)}$$

where the Lellouch-Lüscher factor  $\mathbb{L}(k)$  is known<sup>5</sup>,

$$\mathbb{L}(k) = \frac{kL}{2\pi} \phi'\left(\frac{kL}{2\pi}\right) + k \frac{\partial \delta_1(k)}{\partial k}$$

Both,  $|F_{\pi}|$  and  $\delta_1$  are parametrized using the Gounaris-Sakurai model.

Teseo San José (HIM-JGU)

= 200

イロト イヨト イヨト イ

<sup>&</sup>lt;sup>4</sup>Meyer 2011.

<sup>&</sup>lt;sup>5</sup>Lellouch and Luscher 2001.

The pion form factor  $F_{\pi}$  with its phase shift,  $\delta_1$  can be parametrized by the Gounaris-Sakurai model<sup>6</sup>, which only depends on two parameters, the  $\rho$  meson mass,  $m_{\rho}$  and its decay width,  $\Gamma_{\rho}$ .

$$F_{\pi}(\omega) = \frac{f_0}{\frac{k^3}{\omega}(\cot\delta_1(k) - i)}$$
$$\frac{k^3}{\omega}\cot\delta_1(k) = k^2h(\omega) - k_{\rho}^2h(m_{\rho}) + b(k^2 - k_{\rho}^2)$$

where  $f_0$ , b depend on  $m_\rho$  and  $\Gamma_\rho$ . All of them,  $f_0$ , b and h have a closed form.

<sup>6</sup>Gounaris and Sakurai 1968.

イロト イヨト イヨト

### FSE. J303 long distance, finite volume

For the ensemble J303, at 
$$Q^2 = 0.5 \text{ GeV}^2$$
.  $K = \frac{1}{\omega^2} \left( \omega^2 t^2 - 4 \sin^2 \left( \frac{\omega t}{2} \right) \right)$ 



Teseo San José (HIM-JGU)

31= 9QQ

・ロト ・回ト ・ヨト

# At $\mathsf{Q}^2=1~\text{GeV}^2$

| id   | $\Delta lpha 	imes 10^{6}$ | $FV 	imes 10^6$ | id   | $\Delta lpha 	imes 10^6$ | ${\sf FV} 	imes 10^6$ |
|------|----------------------------|-----------------|------|--------------------------|-----------------------|
| H101 | 2528.6(6.9)                | 7.3(0.2)        | N202 | 2462.8(8.9)              | 3.1(0.1)              |
| H102 | 2662.9(8.6)                | 18.4(0.6)       | N203 | 2585.6(8.1)              | 10.1(0.3)             |
| H105 | 2835.7(10.8)               | 56.0(3.5)       | N200 | 2725.1(8.7)              | 28.6(0.9)             |
| N101 | 2844.0(10.1)               | 5.1(0.2)        | D200 | 2930.8(10.7)             | 31.7(1.0)             |
| C101 | 3011.0(9.8)                | 19.1(0.9)       | E250 | 3189.8(20.5)             | 31.2(1.2)             |
| B450 | 2465.2(7.8)                | 16.4(0.4)       | N300 | 2341.4(8.9)              | 17.7(2.6)             |
| S400 | 2612.9(9.6)                | 40.3(1.6)       | N302 | 2470.4(8.6)              | 47.7(1.1)             |
| N401 | 2789.8(9.7)                | 10.4(0.4)       | J303 | 2726.3(13.8)             | 36.9(0.8)             |