Studies of the ${}^{16}O(\gamma^*, \alpha){}^{12}C$ reaction for astrophysical relevance at MAGIX/MESA

Stefan Lunkenheimer - MAGIX-Collaboration Institute for Nuclear Physics – Johannes Gutenberg University Mainz SFB School – Boppard – October 23, 2019

MAGIX@MESA

S-Factor of ${}^{12}C(\alpha,\gamma){}^{16}O$

Feasibility Studies

Summary/Outlook

MAGIX@MESA

Mainz Energy-Recovering Superconducting Accelerator

Dark MESA

Parasitic Experiment
Search for Dark Matter
Talk Manuel Mauch

Extracted Beam (EB) Mode

til and

beam dump

Polarized beam
Up to 150 μA@155 MeV
External Target Experiment – P2

Energy Recovery Linac (ERL) Mode

- (un)polarized beam
- Up to 1(10)mA@105 MeV
- Internal Target Experiment-MAGIX

Mainz Energy-Recovering Superconducting Accelerator

MAGXOW

MesA Gas Internal target eXperiment - MAGIX

• ...

Internal Gas-Target 0.6 -0.4 • Low energy high precision electron scattering • Different gas types possible 3.7 m Spectrometer • High momentum resolution $\frac{\Delta p}{n} < 10^{-4}$ • Angular resolution $\Delta \theta < 0.05^{\circ}$ Thin Target - High Beam Current • High luminosity $\mathcal{L} \sim 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ Physics • e.-m. form factor measurements • Search for messenger particles of the dark sector • Reaction studies of astrophysical relevance • Few Body reactions

MAGXDW

- Precooling (Booster)
- 1st main stage: down to 28 K
- 2nd main stage: down to 8 K

7

S-Factor of ${}^{12}C(\alpha,\gamma){}^{16}O$

Maxwell-Boltzmann distribution

• Energy distribution in hot gas $\propto \exp(-\frac{E}{kT})$

•
$$kT \sim 15 \text{ keV} @ T = 2 \cdot 10^8 \text{ K}$$

Coulomb penetration factor

• Tunnelling probability
•
$$\propto \exp(-\sqrt{E_0/E})$$

Gamow-Peak

•
$$E_0 = \left(\frac{1}{2}b \cdot k \cdot T\right)^{\frac{2}{3}} \approx 300 \text{ keV} @ T \approx 2 \cdot 10^8 \text{ K}$$

 $b = \pi \alpha Z_1 Z_2 \sqrt{2\mu c^2}$ with μ = reduced mass

Cp. Marialuisa Aliotta: Exotic beam studies in Nuclear Astrophyiscs

MAGX DAM

S-Factor of ${}^{12}C(\alpha,\gamma){}^{16}O$

$$\sigma(E) = \frac{1}{E} e^{-\frac{2\pi Z_1 Z_2 \alpha c}{v}} \cdot S(E)$$

• S-Factor S(E)

- Deviation factor from trivial model
- Represents any effect of nuclear structure
- Close to the Gamow-Peak the cross section is dominated by subthreshold resonances

 $\sigma_{l=1}$ and $\sigma_{l=2}$

Gamow-Peak

•
$$E_0 = \left(\frac{1}{2}b \cdot k \cdot T\right)^{\frac{2}{3}} \approx 300 \text{ keV}@T \approx 2 \cdot 10^8 \text{ K}$$

Cp. deBoer: The ${}^{12}C(\alpha;\gamma){}^{16}O$ reaction and its implications for stellar helium burning

Cross Section

Measurement

- Cross section drops rapidly for E < 1 MeV
- $\sigma(E_0) \sim 10^{-17}$ barn -> High luminosity necessary
- Precise low-energy measurements required

Motivation

• Direct measurements never done $@E_{CM} < 0.9 \text{ MeV}$

MAGXOW

Feasibility Studies

MAG X DVW

Feasibility Studies at MAGIX@MESA

Experimental Setup

• Inelastic e^- scattering on oxygen gas with low $|q|^2$ (quasi real photons)

Measurement of Coincidence (e^{-}, α)

- Suppress background
- Determine α -particle angular distribution

Feasibility Studies at MAGIX@MESA

with

with

Experimental Setup

• Inelastic e^- scattering on oxygen gas with low $|q|^2$ (quasi real photons)

Measurement of Coincidence (e^{-}, α)

- Suppress background
- Determine α -particle angular distribution

Inelastic scattering cross section

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2}{q^4} \left[W_2(q^2,\nu) \cdot \cos^2\left(\frac{\theta}{2}\right) + 2W_1(q^2,\nu) \cdot \sin^2\left(\frac{\theta}{2}\right) \right]$$

Relation beween structural functions and the transversal / longitudinal part of the virtual photon cross section σ_T , σ_L

$$W_{1} = \frac{\kappa}{4\pi^{2}\alpha}\sigma_{T} \qquad W_{2} = \frac{\kappa}{4\pi^{2}\alpha}\left(1 - \frac{\nu^{2}}{q^{2}}\right)^{-1}\left(\sigma_{L} + \sigma_{T}\right)$$

$$\kappa = \frac{W^{2} - M^{2}}{2M}$$
For $|q^{2}| \rightarrow 0$: σ_{L} vanishes and $\sigma_{T} \rightarrow \sigma^{\text{tot}}(\gamma + {}^{16}0 \rightarrow X)$

$$\frac{d^{5}\sigma}{d\Omega_{e}dE'd\Omega^{*}} = \Gamma \frac{d\sigma_{\nu}}{d\Omega^{*}}$$

$$\Gamma = \frac{\alpha\kappa}{2\pi^{2}|q^{2}|} \cdot \frac{E'}{E} \cdot \frac{1}{1-\epsilon} \qquad \epsilon = \left(1 - 2\frac{\nu^{2} - q^{2}}{q^{2}}\tan^{2}\left(\frac{\theta}{2}\right)\right)^{-1}$$

16

MAGXOW

Time Reversal Factor

MAGX DAM

Phase 1 - MAGIX@MAMI

MAGIX@MAMI

- MAMI (Mainzer Microtron) is a running accelerator in Mainz
- $E = 195 MeV@100 \mu A$
- First experiment expected in 2020
- Talks: Philipp Eckert and Edoardo Mornacchi

The goal

- Test Silicon-Strip Detectors for the α particles detection
- Measurement of the cross section in the well known area of $E_{cm} > 1.8 MeV$
- Compare results with existing data
- Determine the unknown longitudinal parameter

Cp. R. deBoer et al. "The ${}^{12}C(\alpha;\gamma){}^{16}O$ reaction and its implications for stellar helium burning"

Phase 2 – MAGIX@MESA Simulation

How to improve this result

MAGXOW

Phase 3 – Zero Degree Tagger

ERL Mode Integrated Tagger

- Use first deflection magnet to seperate scattered electrons from beam
- Minimum Energy loss
- Theta-Acceptance $\theta_e = 0 0.5^\circ$

Tagger Design

- Under progress
- Special design for deflection magnet
- Deflection angle 45°
- Distance ~ 1m
- Width ~ 80cm

MAGX DAM

3

3.5

2.5

2

[MeV]

1.5

E_{c.m.}

1

0.5

Summary/Outlook

Summary / Outlook

S-Factor of ${}^{12}C(\alpha,\gamma){}^{16}O$

- Inelastic electron scattering on oxygen gas
- Detection of the scattered electron and the α particle in coincidence

MAGIX²

- Spectrometer at minimum angular $\theta \sim 13^{\circ}$
- We can measure the S-Factor for $E_{\rm c.m.} > 0.9 \, {\rm MeV}$
- Compatible precision to existing measurements

MAGIX³

- Zero Degree Tagger will improve the results
- Simulation predicts: We can measure the S-Factor for $E_{\rm c.m.} > 0.5 \text{ MeV}$

THANK YOU FOR YOUR ATTENTION!

http://magix.kph.uni-mainz.de

Massachusetts Institute of Technology

University of Ljubljana

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Westfälische Wilhelms-Universität Münster

BACKUP

Time Projection Chamber

Working principle

- Particle transits active volume
- Ionisation
- Electrons drift along the E-field to readout
- GEMs amplify the electrons

3D track reconstruction

- X and Y component in readout plane
- Z component with drift time

Timeline for MESA

MAG & DAM WAG & DAM

Construction

• Construction of the extended MESA hall will delay the construction start of the accelerator and experiments to at least **2021**.

Commissioning

• Commissioning of the accelerator is planned to start in **2022**

First beam

• First beam to experiments can be expected in 2023

F. Hug - GRK 2128 Workshop 2019 – Talk: STATUS of the MESA project

Helium Burning in Red Giants

MAG X DAM

Rolfs and Rodney, 1988

Cp. I. Friščić et al. A New Approach to Determine Radiative Capture Reaction Rates at Astrophzsical Energies 39