The DarkMESA Detector System

Manuel Mauch

Institute for Nuclear Physics, Johannes Gutenberg-University Mainz

Boppard 22-25 October

- Introduction to DarkMESA
- Material Studies at MAMI
- Prototype Calorimeter
- Prototype Veto Detector
- Summary and Outlook

Motivation and basics of the experiment

Possible model: SM matter interacts with DM through a massive Dark Photon

Parameters: coupling constants ϵ , a_D and DM masses $m_{\gamma} > 2m_{\chi}$

Motivation and basics of the experiment

Calorimeter for Beam Dump Experiment (DarkMESA) → Detector needs to be able to detect low-energy recoil electrons

DarkMESA – Staged Approach Motivation and basics of the experiment

~1000 crystals from former A4 experiment

Expansion of the active volume

DarkMESA

Motivation and basics of the experiment

Experiment sensitivity

DarkMESA

Overview of experiment

What to measure?

 \rightarrow Signals produced by DM in calorimeter crystals

What about background radiation?

→ Development of Veto Detector System with scintillator

OV = Outer Veto IV = Inner Veto

MAMI beam time (Jul & Dec 2018)

Material comparison:

Cherenkov

- lower sensitivity to background neutrons
- lower light yield
- fast
- directionalty

Scintillator

- higher light yield
- higher costs

→ The neutron efficiency 10⁻³ compared to plastic

Experimental setup:

- 6 14 MeV electron beam at MAMI
- Fiber detector as trigger system
- calorimeter prototypes tested
- Energy spectra using CAEN QDC

Different detector types

- PbF₂ has the highest light yield
- Out of the lead glasses SF5 performs best

Different beam energies

Varying absorber thicknesses

- signal well separated from noise
- signals can be resolved even for electrons below 10 MeV

→ PbF₂ and SF5 offer the highest light yield and best energy resolution for electrons with 14MeV and below

Prototype Calorimeter with Veto Detector

Construction & background studies

Calorimeter Prototype Construction

- 3d-printed construction for holding
- 25 lead fluoride crystals and the PMTs

Calorimeter Prototype Gain measurements

DarkMESA Detector system prototype

Calorimeter has to distinguish events from background events → Scintillator as Veto Detector

Veto Detector Prototype Construction

Veto Prototype Plastic scintillator and SiPMs

EJ-200 properties Scintillation Efficiency: 10000 photons/MeV Wavelength of Maximum Emission: 425 nm

Properties of SiPM (SensL)Size: $6mm \times 6mm$ Operating voltage:25V - 30VPeak Wavelength:420 nmGain: $1 \times 10^6 - 1.9 \times 10^6$

Veto Prototype Readout system with SiPM

Light collection:

- ~ 40000 emitted photons in 2 cm scintillator
- → about 10 photons/SiPM
- → increase light yield with wavelength-shifting fibers

Veto Prototype Readout system with SiPM

Light collection:

- ~ 40000 emitted photons in 2 cm scintillator
- → about 10 photons/SiPM
- → increase light efficiency with wavelength-shifting fibers

Veto Prototype Characterisation Light response

→ Measuring QDC spectra
→ Compare gains of SiPM

Veto Prototype Characterisation Light response

→ Measuring QDC spectra
→ Compare gains of SiPM

Veto Prototype Characterisation Light response

	ightarrow analog sign	als		
SiPM				
4 /	\otimes	\otimes	Scintillator 🛛 🛇)
	\otimes	\otimes	8)
	\otimes	\otimes	8	
	_		_	
SPI	R	PI	- 	

→ Measuring QDC spectra with different sources (Alpha, Sr90, muons)
 → Determine light yield depending on entry point of particle

Veto Prototype Characterisation Readout electronics

→ Measure single rates and coincidence rates with an FPGA

Veto Prototype Characterisation Readout electronics

→ Measure single rates and coincidence rates with an FPGA

Summary and Outlook

- DarkMESA Detector system prototypes studied
- DarkMESA readout electronics developed
- Publications in preparation
- Heraeus-Seminar 2020
 - Light Dark Matter Searches

https://www.we-heraeus-stiftung.de/veranstaltungen/ seminare/2020/light-dark-matter-searches/

Thank you for your attention!