Search for (e, e' $\pi^+\pi^+$) and (e, e' $p\pi^+$) @MAMI-C

Philipp Eckert, Institut für Kernphysik, JGU Mainz

Content

- 1. Introduction to production of neutron rich nuclei
- 2. The (e, e' $\pi^{+}\pi^{+}$) reaction @MAMI-C
- 3. Search for (e, $e'\pi^+\pi^+$)
- 4. Observation of (e, e'p π^+)
- 5. Planned study of ⁶H

1. Motivation

Goals: 1. High precision spectroscopy of neutron rich nuclei2. Search for very exotic nuclei

Already done at heavy ion accelerators:

- Measured ⁷H, hints for ⁴n
- Problem: limited resolution O(MeV)

K. Kisamori *et al.*, RIKEN, PhysRevLett.116.052501 (2016)

1. Motivation

Goals: 1. High precision spectroscopy of neutron rich nuclei2. Search for very exotic nuclei

Already done at heavy ion accelerators:

- Measured ⁷H, hints for ⁴n
- Problem: limited resolution O(MeV)
- → Produce nuclei via electron scattering:
- Reaction: ${}^{4}\text{He}(e, e'\pi^{+}\pi^{+}){}^{4}n$
- Requires the detection of triple events

 \implies Possible at A1 setup with $\sigma_{mm} \sim 100 \text{ keV}$

K. Kisamori *et al.*, RIKEN, PhysRevLett.116.052501 (2016)

1. Nuclear spectroscopy with e⁻ beams

Principle:

- scatter electron off target nucleus
- detect electron and two positive particles
- determine produced nucleus via missing mass
- already observed: pp break up

Further possibilities:

detect produced pions

Missing Mass of ¹²C(e, e'pp)¹⁰Be @MAMI

M. Makek *et al.*, A1 Collaboration, "Differential cross section measurement of the ${}^{12}C(e, e'pp){}^{10}Be$ g.s. reaction" EPJ A (2016) 52: 298

1. Different reaction types

(e, e'pp):

already successfully studied in 2010 @MAMI

(e, e'π⁺π⁺):

- not explored so far
- allows most exotic proton-neutron ratio
- cross section expected to be small

(e, e'pπ⁺):

• not explored, "medium" between the other both types?

1. Observable Nuclei

target nuclei

Search for (e, e' $\pi^+\pi^+$) and (e, e' $p\pi^+$) @MAMI-C

23.10.19

2. How is the (e, $e'\pi^+\pi^+$) reaction possible?

Assumed to be two step process:

1. Two Pion Production:

$$p + \gamma^* \to n + \pi^+ + \pi^0$$

Cross section for Two Pion Production:

Two Pion MAID https://maid.kph.uni-mainz.de/twopion/

2. How is the (e, $e'\pi^+\pi^+$) reaction possible?

Assumed to be two step process:

1. Two Pion Production:

 $p + \gamma^* \to n + \pi^+ + \pi^0$

2. Charge exchange:

$$\pi^0 + p \to \Delta^+ \to \pi^+ + n$$

Cross section for Two Pion Production:

2. Production and decay of Δ^+

Search for (e, e' $\pi^+\pi^+$) and (e, e' $p\pi^+$) @MAMI-C

2. Pilot experiment: ${}^{12}C(e, e'\pi^{+}\pi^{+}){}^{12}Be @MAMI-C$

Used A1 3 spectrometer facility:

- high resolution
- limited momentum and angular acceptance

→ reaction specific setup needed

- Momentum transfer: $Q^2 = 0.072 \text{ GeV}^2/\text{c}^2$
- Integrated luminosity:

$$\mathcal{I} = 65.5 \,\mathrm{fb}^{-1} = 6.55 \cdot 10^{14} \,\mathrm{fm}^{-2}$$

• Total time:

 $t_{\rm mess} = 86.3 \,\mathrm{h}$

3. Search for (e, $e'\pi^+\pi^+$) events

- ${}^{12}C(e, \pi^{+}\pi^{+})X$ events appeared to be rare
 - 👄 ~ 2000 events
- ¹²C(e, e' $\pi^+\pi^+$)X even rarer
 - almost no events detected
 - **Determined cross section limit:**

 $\frac{\mathrm{d}^8\sigma}{\mathrm{d}\Omega_{e'}\,\mathrm{d}E'\,\mathrm{d}\Omega_{\pi_1}\,\mathrm{d}T_{\pi_1}\,\mathrm{d}\Omega_{\pi_2}} < 3 \,\mathrm{fb}\,\mathrm{MeV}^{-2}\,\mathrm{sr}^{-3}$

at least 1000 times smaller than for

4. Observation of (e, e'p π^+) events

Why look for (e, e'p π^+) events?

- lower beam energy sufficient
- kinematics allow lower momentum transfers
- cross section higher?
 - measured 300 times more p π⁺- coincidences than π⁺π⁺
- Study of ⁶H or ³n would be possible

23.10.19

4. Observation of (e, e' $p\pi^+$) events

- estimated 83 real events via sideband subtraction
- (e, e'p π^+) bound state region not in momentum acceptance for (e, e' $\pi^+\pi^+$)

4. Résumé

(e, e'π⁺π⁺):

- No real triple event above background
- Estimated cross section limit:

 $< 3 \text{ fb MeV}^{-2} \text{ sr}^{-3}$

- → 3 magnitudes smaller than ${}^{12}C(e, e'pp){}^{10}Be$
- Too low to produce significant results in further experiments

(e, e'pπ⁺):

- 83 +/- 10 unbound triple events
- Estimated cross section:

 $10^{2} \text{ fb MeV}^{-2} \text{ sr}^{-3}$

- → one magnitude smaller than ${}^{12}C(e, e'pp){}^{10}Be$
- New experiment with corresponding momentum setting promising

5. Possible Experiment on ⁶H

Todays knowledge about ⁶H is rather unclear:

- Only few experiments were able to measure ⁶H
- unanswered theoretical questions
 - Measurement via missing mass at MAMI? Reaction: ⁷Li(e, e'pπ⁺)⁶H
- Lithium target necessary:

Melting Point:180°Chigh reactivity: $6 \text{ Li } + N_2 \xrightarrow{20 \, ^\circ \text{C}} 2 \text{ Li}_3 \text{N}$, etc.

Gurov *et al.*, Moscow Engineering Physics Institute, EPJ A 32, 261– 266 (2007)

23.10.19

5. Target Prototype

Search for (e, e' $\pi^{+}\pi^{+}$) and (e, e' $p\pi^{+}$) @MAMI-C

5. First Lithium Target Test

Observed temperature distribution of Lithium during exposition with electron beam by using a thermal cam and infra red optics

- Beam Energy: 855 MeV
- Beam Current: 10 μA
- Maximal Temperature: ~ 70°C
- → allows target alignment
- 🔿 successful cooling

Conclusion

Pilot experiment on observing neutron rich nuclei performed:

• (e, e' $\pi^{+}\pi^{+}$) with current setup @A1 not possible

→ Cross section too low? Momentum transfer too high?

- (e, e'p π^+) events observed
 - → Lithium target developed and successfully tested
 - \rightarrow ⁷Li(e, e'p π ⁺)⁶H planned in near future

Conclusion

Pilot experiment on observing neutron rich nuclei performed:

• (e, e' $\pi^{+}\pi^{+}$) with current setup @A1 not possible

→ Cross section too low? Momentum transfer too high?

- (e, e'p π^+) events observed
 - → Lithium target developed and successfully tested
 - \rightarrow ⁷Li(e, e'p π ⁺)⁶H planned in near future

Thank you for your attention!

6. Possible Tagret for ⁶H measurement

Cut out areas to reconstruct the vertex position:

improve resolution by reducing and correcting energy straggling

Search for (e, e' $\pi^+\pi^+$) and (e, e' $p\pi^+$) @MAMI-C

Lithium

e-

6. Further optimizations for ⁶H measurement @MAMI

Increase event rate:

• Construct another detector with large angular acceptance

→ replace one of the A1 spectrometer

- Optimize luminosity
 - → increase target thickness

Keep resolution acceptable:

→ target simulation needed