The anomalous magnetic moment of the muon: a bit of <u>past</u>, a bit of <u>present</u>, and a lot of <u>future</u>

Pere Masjuan Universitat Autònoma de Barcelona

"gee minus two"

<u>The theory of $(g_{\mu}-2)$ is particle physics in a nutshell</u>. It is an interesting, exciting and difficult subject [...] at the cutting edge of current research in particle physics, and any deviation [...] might be interpreted as a signal of an as-yet-unknown new physics.

- A.Vainshtein

Outline

- Why?
- Dirac (g=2) + Experiment confirm \rightarrow Relativistic theory

Why?

- Dirac (g=2) + Experiment confirm \rightarrow Relativistic theory
 - Experiment ($g \neq 2$, ~0.1%) + theory
 - Lamb Shift experiment + theory

Why?

- Dirac (g=2) + Experiment confirm \rightarrow Relativistic theory
 - Experiment ($g \neq 2$, ~0.1%) + theory
 - Lamb Shift experiment + theory

Now:

- 3σ in muon g factor
- proton radius puzzle
- Imagine: 3σ precession perihelion Mercury $\rightarrow RG$?

Pere Masjuan

Gauge theories

New paradigm:

QED ?

The anomalous magnetic moment of the muon: the experiment

The anomalous magnetic moment of the muon: the experiment

The anomalous magnetic moment of the muon: the experiment

Magnetic field B?

$$a_{\mu} = \frac{\omega_a/\omega_p}{\lambda_+ - \omega_a/\omega_p} = \frac{R}{\lambda_+ - R}$$

(free-proton precession frequency)

R = 0.0037072047(26)

 $\lambda_+=\mu_{\mu^+}/\mu_p=3.183345137(85)$ (muonium μ^+e^- hyperfine level structure measurements)

• The E821 experiment at BNL

Bennet et al, PRD73,072003 (2006)

$$a_{\mu+}^{\exp} = 11\,659\,204(6)(5) \times 10^{-10}$$
 [2000]
$$a_{\mu-}^{\exp} = 11\,659\,215(8)(3) \times 10^{-10}$$
 [2001]

• Assuming CPT invariance $a_{\mu}^{\exp} = 11\,659\,209.1\,\underbrace{(5.4)(3.3)}_{(6.3)} \times 10^{-10}$ (~1500 citations)

Experiment	Years	Polarity	$a_{\mu} imes 10^{10}$	Bennet et al, PRD73,072003 (2006) Precision [ppm]
CERN I	1961	μ^+	11450000(220000)	4300
CERN II	1962–1968	μ^+	11661600(3100)	270
CERN III	1974–1976	μ^+	11659100(110)	10
CERN III	1975–1976	μ^-	11659360(120)	10
BNL	1997	μ^+	11659251(150)	13
BNL	1998	μ^+	11659191(59)	5
BNL	1999	μ^+	11659202(15)	1.3
BNL	2000	μ^+	11659204(9)	0.73
BNL	2001	μ^-	11659214(9)	0.72
Average			11659208.0(6.3)	0.54

Forthcoming exp: FNAL & J-PARC $\sim 1.6 \times 10^{-10}$

Pere Masjuan

http://muon-g-2.fnal.gov/bigmove/gallery.shtml

Muon g-2 Project already calibrated and measuring right now!

The anomalous magnetic moment of the muon: the Standard Model

Anomalous magnetic moment a_{μ} (anomaly):

$$g_{\mu} = 2\left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots\right) \qquad \qquad a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$$

ContributionResult in power of $\frac{\alpha}{\pi}$ $a_{\mu}^{(2)}$ $0.5\left(\frac{\alpha}{\pi}\right)$

Schwinger 1948

Anomalous magnetic moment a_{μ} (anomaly):

$$g_{\mu} = 2\left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \cdots\right) \qquad \qquad a_{\mu}^{th} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$$

Contribution	Result in power of $\frac{\alpha}{\pi}$
$a^{(2)}_{\mu}$	$0.5\left(\frac{\alpha}{\pi}\right)$
$a_{\mu}^{(4)}$	$0.765857425(17)\left(\frac{lpha}{\pi}\right)^2$
$a^{(6)}_{\mu}$	$24.05050996(32)\left(\frac{\alpha}{\pi}\right)^3$
$a^{(8)}_{\mu}$	$130.8796(63)\left(\frac{\alpha}{\pi}\right)^4$
$a_{\mu}^{(10)}$	$753.29(1.04) \left(\frac{\alpha}{\pi}\right)^5$
a^{QED}_{μ}	$11658471.885(4) \times 10^{-10}$

Schwinger 1948 Petermann and Sommerfield 1958 Laporta and Remiddi 1996

Kinoshita et al 2012

Anomalous magnetic moment a_{μ} (anomaly):

$g_{\mu} = 2$	$\left(1+e^{i\theta}\right)$	$a_{\mu} =$	$\frac{\alpha}{2\pi}$ +)		a^t_μ	$a^{h}_{\mu} = a^{QE}_{\mu}$	$ED + a_{\mu}^{wea}$	$a^{k} + a^{had}_{\mu}$
	Cor	ntribut	tion	Result i	$n \ 10^{-10} \ u$	nits		×	weak
	QEI	D(lepto	ons)	1165847	71.885 ± 0.00	.004	Kinoshita et al	2	$\gamma \gtrsim$
	HVP(le	eading	order)	69	0.8 ± 4.7		Davier et al 20	\leq	\mathbf{x}
	HV	P(NL	O)	-9.	93 ± 0.07		Hagiwara et al		
	HV	P(NNI	LO)	1.2	22 ± 0.01		Kurz et al 2014		
	HLB	L (+N)	ILO) [*]	11	7 ± 4.0		Jegerlehner, Ny		μ
		EW	(2 loop)	15	6.4 ± 0.1		Czarnecki 2002,	Unendinger 201	20
		Total		11659	0.00000000000000000000000000000000000	.2	* NLO: Cola	ngelo et al 2014	
$a_{\mu}^{(2)\rm EW}(V)$ $a_{\mu}^{(2)\rm EW}(Z)$	$V) \sim +$ $Z) \sim -2$	39 imes 1 19 imes 10	10^{-10} 0^{-10}	$a_{\mu}^{(4)\rm EW}$	$\sim -4 \times 1$	10^{-1}	⁰ (Higgs \in	error)	

Pere Masjuan

Anomalous magnetic moment a_{μ} (anomaly):

$g_{\mu} = 2$	$\left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \right.$	$\cdots) \qquad a_{\mu}^{t}$	$a_{\mu}^{QED} + a_{\mu}^{weak}$	$a^{*} + a^{had}_{\mu}$
	Contribution	Result in 10^{-10} units		hadronic
	QED(leptons)	11658471.885 ± 0.004	Kinoshita et al 2012, Remiddi	<
	HVP(leading order)	690.8 ± 4.7	Davier et al 2011	$\gamma \leq$
	HVP(NLO)	-9.93 ± 0.07	Hagiwara et al 2009	
	HVP(NNLO)	1.22 ± 0.01	Kurz et al 2014	
	HLBL $(+NLO)^*$	11.7 ± 4.0	Jegerlehner, Nyffeler 2009	μ^+
	${ m EW}$	15.4 ± 0.1	Czarnecki 2003, Gnendinger 2013	
	Total	11659179.1 ± 6.2	* NLO: Colangelo et al 2014	σ, k

IF-UNAM, 29th March 2019

 μ, q_1

 ν, q_2

Anomalous magnetic moment a_{μ} (anomaly):

$g_{\mu} = 2$	$\left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \right)$ Contribution	$\cdots \end{pmatrix} \qquad a_{\mu}^{t}$ Result in 10 ⁻¹⁰ units	$a^{h}_{\mu} = a^{QED}_{\mu} + a^{weak}_{\mu} + a^{had}_{\mu}$
	QED(leptons)	11658471.885 ± 0.004	Kinoshita et al 2012. Remiddi
	HVP(leading order)	690.8 ± 4.7	Davier et al 2011
	HVP(NLO)	-9.93 ± 0.07	Hagiwara et al 2009
	HVP(NNLO)	1.22 ± 0.01	Kurz et al 2014
	$\mathrm{HLBL} \ \mathrm{(+NLO)}^{*}$	11.7 ± 4.0	Jegerlehner, Nyffeler 2009
	EW	15.4 ± 0.1	Czarnecki 2003, Gnendinger 2013
-	Total	11659179.1 ± 6.2	* NLO: Colangelo et al 2014
			-

Anomalous magnetic moment a_{μ} (anomaly):

Anomalous magnetic moment a_{μ} (anomaly):

$g_{\mu} = 2$	$\left(1 + a_{\mu} = \frac{\alpha}{2\pi} + \right)$	$\cdots \end{pmatrix} \qquad $	$u^{th}_{\mu} =$	$a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{ha}$	ıd
	QED(leptons) HVP(leading order)	11058471.885 ± 0.00 690.8 ± 4.7)4	Forthcoming exp:	
	HVP(NLO)	-9.93 ± 0.07		FNAL	
	HVP(NNLO)	1.22 ± 0.01		JPAC	
	$\mathrm{HLBL} \ \mathrm{(+NLO)}^{\!\!\!*}$	11.7 ± 4.0		10 10-10	
	EW	15.4 ± 0.1		$\sim 1.6 \times 10^{-10}$	
	Total	11659179.1 ± 6.2			

$$a_{\mu}^{\exp} - a_{\mu}^{\mathrm{SM}} = 28.0(8.8) \times 10^{-10} \Rightarrow 3.2\,\sigma$$

Hints to NP

M [GeV]

Anomalous magnetic moment a_{μ} (anomaly):

Hadronic Vacuum romanization

Hadronic Vacuum romanization

Hadronic Vacuum Polarization

ρ peak

 $1.0 \, \mathrm{GeV}$

 $0.0 \text{ GeV}, \infty$

 Δa_{μ}

Pere Masjuan

 ho, ω

• ρ - ω interference

 ho, ω

• Contribution to $a_{\mu}(VP)$: 75%

IF-UNAM. 29th March 2019

 $0.0 \text{ GeV}, \infty$

• Largerror from I-2GeV

Anomalous magnetic moment a_{μ} (anomaly):

	Contribution	Result in 10^{-10} units
	QED(leptons)	11658471.885 ± 0.004
	HVP(leading order)	690.8 ± 4.7
	HVP(NLO)	-9.93 ± 0.07
	HVP(NNLO)	1.22 ± 0.01
	HLBL (+NLO)	11.7 ± 4.0
	EW	15.4 ± 0.1
	Total	11659179.1 ± 6.2
a_{μ}^{e}	$x^{\rm xp} - a^{\rm SM}_{\mu} = 28.0$	$(8.8) \times 10^{-10} \Rightarrow 3.2\sigma$

• BNL E821: $11659209.1(6.3) \times 10^{-10}$

Bennet et al, PRD73,072003 (2006)

• Theory: Result in 10^{-10} units Contribution QED(leptons) 11658471.885 ± 0.004 NO HLBL 690.8 ± 4.7 HVP(leading order) HVP(NLO) -9.93 ± 0.07 HVP(NNLO) 1.22 ± 0.01 HLBL (+NLO) 11.7 ± 4.0 15.4 ± 0.1 EW 11659167.4 ± 4.7 Total 11659179.1 ± 6.2 $a_{\mu}^{\exp} - a_{\mu}^{SM} = 41.7(7.9) \times 10^{-10} \Rightarrow 5.3 \,\sigma$ $(2\sigma \text{ effect})$

• BNL E821: $11659209.1(6.3) \times 10^{-10}$

Bennet et al, PRD73,072003 (2006)

• Theory: Result in 10^{-10} units Contribution QED(leptons) 11658471.885 ± 0.004 NO HLBL HVP(leading order) 690.8 ± 4.7 HVP(NLO) -9.93 ± 0.07 HVP(NNLO) 1.22 ± 0.01 HLBL (+NLO) 11.7 ± 4.0 15.4 ± 0.1 EW Total 11659167.4 ± 4.7 11659179.1 ± 6.2

 $a_{\mu}^{\mathrm{exp}}-a_{\mu}^{\mathrm{SM}}=41.7(7.9) imes10^{-10}\Rightarrow5.3\,\sigma$ (20 effect)

For the coming FNAL $\sim 1.6 \times 10^{-10} \implies$ from 5 σ to 8 σ , w/o HLBL: 5 σ effect

We need to understand such numbers and errors

Pere Masjuan

Hadronic light-by-light scattering in the muon g-2

k

Multiscale problem

order $O((\alpha^3))$ hadronic contribution

Classification proposal by Eduardo de Rafael '94

Pesudoscalars: numerically dominant contribution (according to most models)

Ballpark prediction: Order of magnitude?

Quark models for a Ballpark prediction

Pere Masjuan

JN: Jegerlehner and Nyffeler, Phys. Rep. 477 (2009) 1-110 PdRV: Prades, de Rafael, and Vainshtein, arXiv:0901.0306 (Glasgow White Paper)

• use the same model from Knecht and Nyffeler '01 and inputs for the PS (issue of pion-pole vs pion-exchange, i.e., how to correctly implement QCD constraints)

• errors summed linearly in JN and in quadrature in PdRV

• lack of systematic error (large-Nc model, see P.M. and Vanderhaeghen '12)

• the model neither reproduce the new experimental data on PSTFF (see P.M in arXiv:1407.4021) nor the $\pi^0 \rightarrow e^+e^-$ (see P. Sanchez-Puertas in arXiv:1407.4021)

• On top, double counting (or correct overlap) + missing pieces (higher states...)

• All in all, need for more calculations, closer to data (if possible)

Pere Masjuan

- Main current strategies
 - Lattice QCD
 - Data driven approaches

- Main current strategies
 - Lattice QCD
 - Data driven approaches

Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass

Thomas Blum,^{1,2} Norman Christ,³ Masashi Hayakawa,^{4,5} Taku Izubuchi,^{6,2} Luchang Jin,^{3,*} Chulwoo Jung,⁶ and Christoph Lehner⁶

We find $a_{\mu}^{\text{HLbL}} = 5.35(1.35) \times 10^{-10}$, where the error is statistical only. The finite-

volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.

- Main current strategies
 - Lattice QCD
 - Data driven approaches:
 - Dispersion relations for the low-energy region
 - Hadronic models for the different contributions

Dispersion relations for the low-energy region

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = i^3 \int d^4x \int d^4y \int d^4z \, e^{-i(x \cdot q_1 + y \cdot q_2 + z \cdot q_3)} \langle 0|T\{j^{\mu}(x)j^{\nu}(y)j^{\lambda}(z)j^{\sigma}(0)\}|0\rangle$$

 $\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots,$ (helicity amplitude decomposition)

- no intermediate states
- all FF are on-shell, off-shell effects are included in subtraction constants
- need for input: π -TFF and $\gamma\gamma
 ightarrow \pi^+\pi^-$

Colangelo et al, 1402.7081 Vanderhaeghen et al, 1403.7503

[Mark, Cello, BELLE]

[Only subdominant diagrams]

data+systematic error

should add the charm-quark contr. $~\sim 2 imes 10^{-11}$

Pere Masjuan

should add the charm-quark contr. $~\sim 2 imes 10^{-11}$

From Knecht and Nyffeler, '01:

 $\begin{aligned} a_{\mu}^{HLBL;\pi^{0}} &= -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}[(p+q_{1})^{2}-m^{2}][(p-q_{2})^{2}-m^{2}]} \\ & \times \left(\underbrace{F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},(q_{1}+q_{2})^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{2}^{2},0)}{q_{2}^{2}-M_{\pi}^{2}}T_{1}(q_{1},q_{2};p) \right) \\ & \text{Use data from} \\ \text{the pion Transition Form Factor} \\ & + \underbrace{F_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2})F_{\pi^{0}\gamma^{*}\gamma^{*}}((q_{1}+q_{2})^{2},0)}{(q_{1}+q_{2})^{2}-M_{\pi}^{2}}T_{2}(q_{1},q_{2};p) \\ & \left(q_{1}+q_{2})^{2}-M_{\pi}^{2} \right) \end{aligned}$

Pere Masjuan

The role of experimental data

The role of experimental data

The role of experimental data

[P.M., Sanchez-Puertas '17]

$$a_{\mu}^{HLBL;\pi^{0}} = e^{6} \int \frac{d^{4}Q_{1}}{(2\pi)^{4}} \int \frac{d^{4}Q_{2}}{(2\pi)^{4}} K(Q_{1}^{2}, Q_{2}^{2}) \qquad \text{Using } F_{\pi^{0}\gamma^{*}\gamma^{*}}(Q_{1}^{2}, Q_{2}^{2})$$

 $C_2^1(Q_1^2, Q_2^2) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_1(Q_1^2 + Q_2^2) + \alpha_{1,1}Q_1^2Q_2^2)}{1 + \beta_1(Q_1^2 + Q_2^2) + \beta_2(Q_1^4 + Q_2^4) + \beta_{1,1}Q_1^2Q_2^2 + \beta_{2,1}Q_1^2Q_2^2(Q_1^2 + Q_2^2)}.$

Pere Masjuan

The role of experimental data

Using largest set ever:
- Space-like region

$$e^+e^- \rightarrow e^+e^-P$$

[L3,CLEO,CELLO,BABAR,BELLE]
- Time-like region
 $P \rightarrow \ell^+\ell^-$
 $P \rightarrow \ell^+\ell^-\gamma$
[NA48,A2,NA62+PDG]

$$P = \pi^0, \eta, \eta'$$
$$\ell = e, \mu$$

[13 different coll.]

$$a_{\mu}^{\text{HLBL},\pi^{0}} = 81.8(1.7)[4.0] \cdot 10^{-11}$$
+ $a_{\mu}^{\text{HLBL},\eta} = 27.1(1.8)[2.2] \cdot 10^{-11}$
 $a_{\mu}^{\text{HLBL},\eta'} = 26.3(1.1)[4.6] \cdot 10^{-11}$
 $a_{\mu}^{\text{HLBL};P} = 135(11) \times 10^{-11}$
adding the rest from *Glasgow Consensus*

$$a_{\mu}^{\text{HLBL}} = 126(25) \times 10^{-11}$$
vs
 $a_{\mu}^{\text{HLBL,GC}} = 105(26) \cdot 10^{-11}$

Anomalous magnetic moment a_{μ} (anomaly):

Contribution	Result in 10^{-10} units
QED(leptons)	11658471.885 ± 0.004
HVP(leading order)	690.8 ± 4.7
HVP(NLO)	-9.93 ± 0.07
HVP(NNLO)	1.22 ± 0.01
HLBL $(+NLO)$	12.6 ± 2.9
EW	15.4 ± 0.1
Total	11659182.0 ± 5.5

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 27.1(8.4) \times 10^{-10} \Rightarrow 3.2 \,\sigma$$

[P.M., Sanchez-Puertas '17]

Pessimist view

New measurement of α_{em}

[Parker et al, Science 360 (2018) 191]

 $\alpha^{-1}(Cs) = 137.035\,999\,046\,(27)$

 2.0×10^{-10} accuracy

53

Experiment	Years	Polarity	$a_{\mu} imes 10^{10}$ Bo	ennet et al, PRD73,072003 (2006) Precision [ppm]
CERN I	1961	μ^+	11450000(220000)	4300
CERN II	1962–1968	μ^+	11661600(3100)	270
CERN III	1974–1976	μ^+	11659100(110)	10
CERN III	1975–1976	μ^-	11659360(120)	10
BNL	1997	μ^+	11659251(150)	13
BNL	1998	μ^+	11659191(59)	5
BNL	1999	μ^+	11659202(15)	1.3
BNL	2000	μ^+	11659204(9)	0.73
BNL	2001	μ^-	11659214(9)	0.72
Average			11659208.0(6.3)	0.54

Forthcoming exp @FNAL with μ^+ ! \longrightarrow 2σ !

Pere Masjuan

No consensus in theory number:

Optimist view

Second completely different experiment with cold muons @ JPARC!

Prog. Theor. Exp. Phys. 2015, 00000 (24 pages) DOI: 10.1093/ptep/0000000000

A New Approach for Measuring the Muon Anomalous Magnetic Moment and Electric Dipole Moment

M. Abe¹, S. Bae^{2,3}, G. Beer⁴, G. Bunce⁵, H. Choi^{2,3}, S. Choi^{2,3}, M. Chung⁶,
W. da Silva⁷, S. Eidelman^{8,9,10}, M. Finger¹¹, Y. Fukao¹, T. Fukuyama¹²,
S. Haciomeroglu¹³, K. Hasegawa¹⁴, K. Hayasaka¹⁵, N. Hayashizaki¹⁶, H. Hisamatsu¹,
T. Iijima¹⁷, H. Iinuma¹⁸, K. Inami¹⁷, H. Ikeda¹⁹, M. Ikeno¹, K. Ishida²⁰,
T. Itahashi¹², M. Iwasaki²⁰, Y. Iwashita²¹, Y. Iwata²², R. Kadono¹, S. Kamal²³,
T. Kamitani¹, S. Kanda²⁰, F. Kapusta⁷, K. Kawagoe²⁴, N. Kawamura¹,
R. Kitamura¹⁴, B. Kim^{2,3}, Y. Kim²⁵, T. Kishishita¹, H. Ko^{2,3}, T. Kohriki¹,
Y. Kondo¹⁴, T. Kume¹, M. J. Lee¹³, S. Lee¹³, W. Lee²⁶, G. M. Marshall²⁷,
Y. Matsuda²⁸, T. Mibe^{1,29}, Y. Miyake¹, T. Murakami¹, K. Nagamine¹,
H. Nakayama¹, S. Nishimura¹, D. Nomura¹, T. Ogitsu¹, S. Ohsawa¹, K. Oide¹,
Y. Oishi¹, S. Okada²⁰, A. Olin^{4,27}, Z. Omarov²⁵, M. Otani¹, G. Razuvaev^{8,9},
A. Rehman²⁹, N. Saito^{1,30}, N. F. Saito²⁰, K. Sasaki¹, O. Sasaki¹, N. Sato¹, Y. Sato¹,
Y. K. Semertzidis²⁵, H. Sendai¹, Y. Shatunov³¹, K. Shimomura¹, M. Shoji¹,
B. Shwartz^{9,31}, P. Strasser¹, Y. Sue¹⁷, T. Suehara²⁴, C. Sung⁶, K. Suzuki¹⁷,
T. Takatomi¹, M. Tanaka¹, J. Tojo²⁴, Y. Tsutsumi²⁴, T. Uchida¹, K. Ueno¹,
S. Wada²⁰, E. Won²⁶, H. Yamaguchi¹, T. Yamanaka²⁴, A. Yamamoto¹,
T. Yamazaki¹, H. Yasuda²⁸, M. Yoshida¹, and T. Yoshioka²⁴

[arXiv:1901.03047]

- Theory White Paper! (Finally!)
- New measurement of pion FF from BESIII
- New measurement of the neutral pion life time using

Primakoff effect @ PrimeEx

• ...

Outlook

• New data required:

FNL (already started running muons)!

- (my opinion) Theory errors underestimated
 - Lattice QCD will demonstrate (promising, long way)
- New data required (decay constants, masses, form factors, rescattering effects)
 - together with systematics (chiral and large-Nc)
- Missing contributions:

more on $\gamma\gamma \rightarrow$ hadrons (t-channel), and @mid-large energies

Muchas gracias!

The role of experimental data

Central value:

Model from Knecht and Nyffeler '01 used in reference numbers

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}^{LMD+V}(q_{1}^{2},q_{2}^{2}) = \frac{f_{\pi}}{3} \frac{q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2}) + h_{1}(q_{1}^{2}+q_{2}^{2})^{2} + h_{2}q_{1}^{2}q_{2}^{2} + h_{5}(q_{1}^{2}+q_{2}^{2}) + h_{7}}{(q_{1}^{2}-M_{V_{1}}^{2})(q_{1}^{2}-M_{V_{2}}^{2})(q_{2}^{2}-M_{V_{1}}^{2})(q_{2}^{2}-M_{V_{2}}^{2})}$$

Publication:

$$F_{\pi} = 92.4 \text{ MeV}$$

 $m_{\rho} = 769 \text{ MeV}$
 $m_{\rho'} = 1465 \text{ MeV}$
 $h_1 = 0 \text{ (BL limit)}$
 $h_5 = 6.93 \text{ GeV}^4$
 $h_2 = -10 \text{ GeV}^2$

 $a_{\mu}^{\mathrm{HLBL},\pi} = 6.3 \times 10^{-10}$

The role of experimental data

Central value:

Model from Knecht and Nyffeler '01 used in reference numbers

Preliminary, using new exp data:

$$F^{LMD+V}_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2) = \frac{f_{\pi}}{3} \frac{q_1^2 q_2^2 (q_1^2 + q_2^2) + h_1 (q_1^2 + q_2^2)^2 + h_2 q_1^2 q_2^2 + h_5 (q_1^2 + q_2^2) + h_7}{(q_1^2 - M_{V_1}^2)(q_1^2 - M_{V_2}^2)(q_2^2 - M_{V_1}^2)(q_2^2 - M_{V_2}^2)}$$

Publication:

 $F_{\pi} = 92.4 \text{ MeV} \qquad \cdots \qquad \rightarrow \\ m_{\rho} = 769 \text{ MeV} \\ m_{\rho'} = 1465 \text{ MeV} \qquad \cdots \qquad \rightarrow \\ h_1 = 0 \text{ (BL limit)} \\ h_5 = 6.93 \text{ GeV}^4 \qquad \cdots \qquad \rightarrow \\ h_2 = -10 \text{ GeV}^2 \qquad \cdots \qquad \rightarrow \\ a_{\mu}^{\text{HLBL},\pi} = 6.3 \times 10^{-10} \qquad \cdots \qquad \rightarrow$

 $\Gamma_{\pi^{0} \to \gamma \gamma}$ $m_{\rho} = 775 \text{ MeV}$ **curvature TFF** $h_{1} = 0 \text{ (BL limit)}$ **slope TFF** $h_{2} = -10 \text{ GeV}^{2}$

$$a_{\mu}^{\mathrm{HLBL},\pi} = 7.5 \times 10^{-10}$$

Pere Masjuan