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1. Electroweak Boxes: Overview 



• (Hadronic) Electroweak box diagrams: Feynman diagrams involving 
the exchange of a pair of EW gauge bosons between a lepton and a 
QCD bound state. Appear in many important EW processes. 
 
 
 
 
 

• Some of their first appearances in history:  
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Electroweak Boxes: Overview 

 Sirlin, Rev. Mod. Phys. 50, 573 (1978) 

 Forward EW boxes 

 Sirlin, Nucl.Phys.B. 71,29 (1974) 



• General structure of (forward) EW box diagram amplitude: 
 
 
 
 
 
 

• “Generalized” forward Compton tensor: 
 
 
 

• Two cases: 
1. When both gauge bosons are heavy: Perturbative boxes 
2. When at least one of them is photon: Non-perturbative boxes 
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Electroweak Boxes: Overview 

Lepton piece Hadron piece 



 
• Both bosons are heavy: sensitive only to large Q2. OPE gives: 

 
 

 
• pQCD corrections can also be included. 

 
• When at least one boson is massless, then the result is sensitive to all 

Q2, so OPE does not tell the whole story.  
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Electroweak Boxes: Overview 



• Examples of Non-Perturbative EW Boxes: 
• (1) γW-box in neutron/nuclear beta decay: 

 
 
 
 
 
 

• (2) γZ-box in P-odd lepton-nucleon/nucleus scattering: 
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Electroweak Boxes: Overview 

They represent one of the main contributors of theoretical uncertainty in their respective processes! 

Super-allowed beta decay 

Proton weak charge 



• Further decomposition into “vector” and “axial” box according to 
parity: 
 
 

 
• Example in γZ box: 
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Electroweak Boxes: Overview 

v 

Gorchtein et al, Phys.Rev.C84, 015502 (2011) Blunden et al, Phys.Rev.Lett.,107,081801(2011) 



• The axial box is more relevant in: 
• ep-scattering at very low energy 
• Studies of “model-dependent” radiative corrections (RC) in beta 

decay 
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Electroweak Boxes: Overview 



2. Dispersive Approach 
 CYS, M.Gorchtein, H.H.Patel and M.J.Ramsey-Musolf, Phys.Rev.Lett. 121 (2018) no. 24, 241804 

 CYS, M.Gorchtein and M.J.Ramsey-Musolf, arXiv:1812.03352 



• T3 depends on virtual intermediate states: theoretical modeling is less 
transparent 

• Dispersive treatments to box diagrams are developed since the last 
ten years, relating the former to matrix elements of on-shell 
intermediate states 
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Dispersive Approach 

Hadronic tensor in inclusive scattering: 



• Dispersion relation: 
 
 
 
 
 
 
 
 

• Box diagrams are expressed in terms of the “First Nachtmann 
moment” of F3: 
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Dispersive Approach 

Central result!!! 
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Regge 

VDM 

Dispersive Approach 

El
as

tic
 

Multi-Hadron 
States 

A “phase space” diagram for F3 
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Elastic, DIS, Nπ, resonances: rather straightforward  

Dispersive Approach 

N N N N 

W/Z W/Z 

Isoscalar EM current Isovector EM current 

Multi-hadron states: Regge model + VDM 



Matching the 1st Nachtmann moment of the isovector piece to ν p/νbar p scattering data 
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Dispersive Approach 

Isoscalar piece is then deduced using Regge model+VDM 
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Dispersive Approach 

• Recent success of such treatment: 
• Reduced hadronic uncertainty in the determination of Vud: 

 
 
 

• Same method applied to the axial γZ-box in ep-scattering:  
 
 

 
 

• Possible issues: 
• Quality of the neutrino data?  
• Residual model-dependence? 

 
 
 
 

DR+data 

DR+data DR 

 CYS, M.Gorchtein, H.H.Patel and M.J.Ramsey-Musolf, Phys.Rev.Lett. 121 (2018) no. 24, 241804 

 J.Erler, M.Gorchtein, O.Koshchii, CYS, H.Spiesberger, in preparation 

1986 2006 2018 

2003 2011 2019 

which leads to the following discussions 



3. First-Principle Calculation 
 CYS and Ulf-G. Meissner, arXiv:1903.07969 



• Recall the that we are interested in                 as a function of Q2 . 
Neutrino data helps identifying dominant contributors at different Q2 :  
 
 
 
 
 
 

• Therefore, to remove the hadronic uncertainties in the box diagrams, we 
need to have a good handle of the first Nachtmann moment of F3 at 
moderate Q2. 

• Question: is there a way to calculate                from FIRST-PRINCIPLE? 
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First-Principle Calculation 



 
 

• Difficult because it involves a sum of all on-shell intermediate states. 
 

• Recently-developed techniques in lattice calculation of PDFs (quasi-
PDF, pseudo-PDF, lattice cross-section etc) do not apply because they 
rely on OPE that holds only at large Q2.  

 
• We wish to avoid direct calculations of four-point functions (noisy 

contractions, complicated finite-volume effect…) 
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First-Principle Calculation 

J. Liang, K-F. Liu and Y-B. Yang, EPJ Web Conf. 175 (2018) 14014 



• A more promising approach is through the Feynman-Hellmann 
theorem (FHT): 
 

 
• Shift in energy level matrix element. Extraction of energy levels on 

lattice are more straightforward, avoid complicated contraction 
diagrams. 

• Momentum transfer could be introduced through periodic external 
potential.  

• Shows great potential in studies of: 
• Nucleon axial charge and sigma term 
• EM form factors 
• Compton amplitude 
• P-even structure functions 
• Hadron resonances 
• …… 
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First-Principle Calculation 



 
 
• Consider a periodic potential: 

 
 
• The off-shell condition prohibits mixing of degenerate states through 

perturbation. Thus, non-degenerate perturbation theory at 1st-order 
gives: 
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First-Principle Calculation 

Some warm-up: 

Kinematics: 

“Off-shell condition”: 
Off-shell 

No first-order energy shift! 



• Introduce TWO periodic source terms, and study the SECOND 
ORDER ENRGY SHIFT: 
 
 
 
 
 

• Plugging it into the dispersion relation of T3: 
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First-Principle Calculation 

2nd order 
Energy shift 

Generalized Forward  
Compton tensor Structure Function 

FHT DR 

CYS and U.G-Meissner, hep-ph/1903.07969 v 

Central result!!! 

Our Strategy: 



• Lattice momenta are discrete: 
 

 
• Requiring Q2 at the hadronic scale and the off-shell condition imply: 

 
 
 
 
 

• A concrete example:                                                        impose the 
restriction: 
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First-Principle Calculation 

Q2≈1GeV2 

Allowed values for ω: 
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First-Principle Calculation 

A very good 
reconstruction! 

Reconstructing the first Nachtmann moment from energy shifts 
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First-Principle Calculation 

A very good 
reconstruction! 

Reconstructing the first Nachtmann moment from energy shifts 



4. Electroweak Boxes in a Nucleus 
 CYS, M.Gorchtein and M.J.Ramsey-Musolf, arXiv:1812.03352 
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• Dispersive treatment can also be applied to EW boxes in a 

nucleus 
• However, there is a change in the response structure in the 

nuclear environment: 

“Nucleon” response function 

“Nuclear” response function 

Electroweak Boxes in a Nucleus 
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• “Traditional” treatment: 

 
 
 
 
 

• Concerns: additional model-dependence in such separation?  
 

• Some of the nuclear effects studied in beta decay: 

Electroweak Boxes in a Nucleus 

“Nucleus-independent” RC, described before 

“Nuclear-structure corrections”: studied with NR nuclear models 
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 • In the Hardy and Towner (HT) treatment, (part of) the nuclear-
structure effect in nuclear beta decay is incorporated by simply 
inserting the “quenched” form factors of nucleon in a nucleus. This 
effectively describes the contribution from the lowest-lying nuclear 
excitations: 
 
 
 
 
 

• But that does not capture the broader, more important quasi-elastic 
peak in the nuclear response function, which corresponds to the 
knock-out of a quasi-free nucleon: 

Electroweak Boxes in a Nucleus 
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 • We estimate the quasi-elastic contribution in a Fermi-gas 
model. 
 
 
 
 
 
 

• Still in exploratory phase. More advanced calculations of the 
QE single-nucleon knock-out contribution using up-to-date 
nuclear theory are necessary. 
 

Electroweak Boxes in a Nucleus 

Quasi-free nucleon 

Spectator nucleus 

Fermi distribution 
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 1. I described some general features of forward EW box diagrams 
for a free nucleon. 

2. I explained the dispersion-relation formalism which is a useful 
starting point in treatments of these diagrams, and described 
some recent progress based on this method. 

3. I outlined a procedure to compute second-order energy shifts 
on lattice which, combining with dispersion relation, will lead 
to a first-principle calculation of EW boxes.   

4. Dispersion relation provides a universal basis to treat the 
nucleon and nuclear EW boxes on an equal footing. 

 
 
 

Summary 
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