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OUTLINE

= PV asymmetry and implications of respective measurements
= Coulomb distortion and related uncertainties

= Beam-normal single-spin asymmetry (SSA) and its interplay with PV

measurements

= Perturbative and Coulomb distortion calculations of the beam-normal

single-spin asymmetry (SSA)

= Conclusions




INTRODUCTION T0 PV ASYMMETRY
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WEAK CHARGE AS A PRECISION TEST OF SM
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[Becker et al., EPJA, 2018]

Tree-level: Qi" =Z(1-4sin’4, )-N




P2 @ MESA
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- P2 experiment
- Electron beam energy E=155 MeV (150 pA)
- Polarization > 85%
- High runtime (more than 4000 h/year)
- Scattering angle 20 £ 10 deg
« 60 cm liquid hydrogen target
- Theory + Exp. uncertainty ~1.8%

- C-12 measurement
- C-12 target

- Interesting physics case if uncertainty ~0.3%

- German-Mexican collaboration research
grant: theory predictions within the SM,
including QED and hadronic uncertainties

@



WEAK CHARGES

= Nucleus:

Q" ~Z(1-4sin’ 4, )-N

= Proton: The weak charge is highly sensitive to the weak mixing angle.

QP ~1-4sin*4, ~0.08 = Asin®§, /sin*4, ~0.09AQ" /Q!

= C-12: Theoretically easy to handle, significantly reduced beam time.

12

Q,° ~—24sin?4, = Asin®4, /sin?g, =AQ,°/Q,°

= Neutron: Weak interactions probe neutrons inside the nucleus.

Q) =1




NEUTRON SKIN

PV asymmetry: A, = AW, W,

2
Response functions: We, (Q%) = j d°r pgy (M) =Z | 1- % R® +...

Wey (@)= [dra (P =Q, | 1- LR} ..
A N V2 A . v
RMS radii: R, =(7 [dr rpa, (r)] R :[@ [ar r Mr)j

Weak skin: AR=R, —-R, Neutron skin: AR =R -R/

The neutron weak charge is much larger than that of the proton, so we get
access (free from strong interaction uncertainties) to neutron density

distribution by studying the PV asymmetry. [Donnelly, Dubach, Sick, NPA, 1989] @



PERTURBATIVE CALCULATION OF PV ASYMMETRY
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Perturbative approach based on plane waves fails to describe well
scattering off heavy nuclei! @



ELECTRON-NUCLEUS SCATTERING

[www.tcm.phy.cam.ac.uk]

 Solve the Dirac equation:

d-p+pm+V(F) v, =Ey,

* Identify interaction potential energy:

V(r)

* Deduce scattering amplitude from

asymptotic form of solution for ¥,

* Determine cross section




PLANE WAVE APPROACH

Expansion of the potential energy:

V =V, +V. +0(Z%a?)
V, =0

Solution for V,, is applied at each order:

[www.tcm.phy.cam.ac.uk]

ik-F
W, ~ €

Does not work for heavy nuclei that considerably distort the plane wave!

©



COULOMB DISTORTION

Solution contains outgoing spherical waves:
o eikr
v, ~ae"" +u, —
r

Electromagnetic interaction only:
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Effectively, the potential energy is:

V(r) =Vg () +V.(r)

[www.tcm.phy.cam.ac.uk]

Numerical calculations are performed using the ELSEPA code by Salvat et al.

[Salvat, Jablonski, Powell, Comp. Phys. Com., 2004] @



COULOMB DISTORTION AND PV ASYMMETRY

Massless electron scattering:

[07’ 5+VR(L)(r):|WR(L) = EWR(L)

VR(L) (r) =Veu () FV,, (1)
[Horowitz, PRC, 1998]

EM potential: Vg, (r) =—€° {%jdr’r’zpw (r) +_[dr’r’,oEM (r)
0 r

GF
2\/510\/\/(")

Electromagnetic and weak charge density distributions are the crucial input

(1)

Weak potential: V;, (r)=-

for determinations of PV asymmetry in Coulomb distortion approach!



MODELS FOR EM CHARGE DISTRIBUTION

. Sum of Gaussians (SG): 0. (1) = 122: A |:8Xp£_ (r— 2Ri)2 j+exp£_ (r + 2Ri)2 ﬂ
y 4

- Fourier-Bessel (FB): Pa(r)=0(R-1)>"a, j,(var /R)

[H. de Vries et al, ADNDT, 1981]

S e R

sinh(c/a)
cosh(r/a)+cosh(c/a)

[Piekarewicz et al., PR, 2016] @

- Symmetrized Fermi (SF): £ (r) =1



CHARGE DISTRIBUTION PARAMETRIZATIONS

Z=6, MN=6

: d’r rszM (r)

~ 2
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r, fm
Two parameters of both Helm and SF distributions are adjusted to reproduce

the first two moments (R2, and R>,) of the SG distribution! @



Fbeam=0.125GeV
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Coulomb distortion is clearly significant for scattering off C-12.To see

difference between SG, FB, SF and Helm we need to zoom in. @



UNCERTAINTY DUE TO EM CHARGE DISTRIBUTION IN C-12
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SF and Helm distributions, normalized to reproduce the first two moments

(R%, and R%,) of the SG, do not bring significant uncertainty in kinematics

of interest. @



WEAK DENSITY DISTRIBUTION

« No neutron skin:

pw(r) — |:(1_4Sin2 QW )_;:l pch(r) — QN pch(r)
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- Model neutron skin using 2p

symmetrized Fermi model:
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UNCERTAINTY DUE TO WEAK SKIN
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A =A,, (AR = AR, — SR)

=T

" [Horowitz, PRC, 1998]
= Epeam=0.155GeV Knowledge of weak skin
i Ren=2.46932fm .

N ARy =-0.0266261fm with accuracy better than
- -08[ S(AR)=0.01R

~1% of R, is must for sin?0,,

extraction on C-12 at MESA.
7. deg

Motivation for additional (backward) measurement of PV asymmetry

at MESA? @



CONTRIBUTION FROM WEAK SKIN

Ay (0) = A% (6) + x(e)(f‘j

A, (0 =25°) =0.386 ppm +9.887 ppm(

A, (0=90°)=4.177ppm+1270 ppm(
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OTHER EFFECTS TO CONSIDER
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Not yet considered:
= Radiative corrections: bremsstrahlung + loops, need quantitative estimate of target recoil
= Dispersive corrections: gamma-Z box (need to avoid double counting)

= Inelastic contributions: depends on experimental conditions @



INTERPLAY BETWEEN PV AND BEAM-NORMAL
ASYMMETRIES

= PV measurements provide high

precision test of the SM, therefore of
significant experimental interest.
Beam-normal asymmetry may be
measured using the same
apparatus.

o= * « Transverse component of beam

>
+ N

polarization can provide
considerable background
contribution in PV measurements.

= Lack of understanding of one of the
observables casts doubt on the
d o, — d o, d GT —d (7¢ other. It is crucial that theory is able
= B, = to describe both.

_d0%+dae " do’ +do’ @
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BEAM-NORMAL ASYMMETRY IN E-N SCATTERING

;- |m[T;;Abs(T27)]N m

|Tl;/ |2 E

beam

[de Rujula, Kaplan, de Rafael, NPB, 1971]

A, ~1ppm, B, ~10 ppm for proton target and E;,.;,,=0.5 GeV

Small transverse component of the electron spin can lead to a
substantial systematic effect on the PV asymmetry!



BEAM-NORMAL 53A CALCULATION USING PLANE WAVES
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INELASTIC TPE PARAMETRIZATION

Inelastic contribution (everything but the nucleus in the intermediate

state). Realistic estimate is possible for the case of nearly forward electron
scattering:

_ _ [Afanasev, Merenkov, PLB, 2004]
- WAP-M? + . L
Wos =1 {—gaﬁ y ottt Bty ((11 E;Z P, P, |0 (W?) [Gorchtein, Horowitz, PRC, 2008]
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THEORY VS EXPERIMENT
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- The approach works well for light nuclei and forward scattering angles

- Fails completely for lead = calculation seems to miss important properties

of heavy nucleus

=)



ESTIMATE OF B,, INCLUDING COULOMB DISTORTION

The Dirac equation:
|:07- p+/m, +V(r)]w =Ey
Assuming that V(r) = Vc(x):
L (1] e, 1[T(0)-g(@)e™ e
w=—oj/ | +— i
J2 1 2\ F(0)+g(0)e? ) r

f(0) and g(6) are the direct and spin-flip scattering amplitudes:

f(@)_%i{(lﬂ) exp(2i5,_, ;) ~1]+1[exp(2i6,_,) ~1]} R (cos 6)

g(@)_zii exp(2io,_) —exp(2io___, 1) P*(cos )



ESTIMATE OF B,, INCLUDING COULOMB DISTORTION

Polarized cross section:
do(e) ~[| T F+|gff +i(fg"— f'g)sing|
Beam-normal single-spin asymmetry:

do'—do* do(p=712)-do(p=3712) I

Bn_ 0 L B & 2
do' +do” do(p=x/2)+do(p=3x/2) || +|g]|

Also known as the Sherman function or analyzing power



THEORY VS EXPERIMENT ONCE AGAIN
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- Coulomb distortion effectively takes into account multiple photon exchanges between the
electron and the target nucleus when the latter remains in the ground state

- Previously calculated by E. Cooper and C. Horowitz  [Cooper, Horowitz, PRC, 2005]

- The inelastic contribution is dominant

- Effects due to absorptive potential need to be included in Coulomb distortion calculation@



WORK IN PROGRESS

Include absorptive potential into the Dirac equation:

|G- B+ M, +V (N FiV,, (r) | =Ey*

The absorptive potential is modeled using the plane wave result:

abs(r Ebeam) — E beam )qu jo (qr) In |:1+Q_2:| exp[_BQ2 /2]
T m

e

C(E

I do wo , (®)

beam
27[ Ebeam @,



CONCLUSION

- Implemented Coulomb distortion formalism to provide PV
asymmetry predictions

- Studied effects due to various nuclear charge distribution
models on PV asymmetries

- Parametrized neutron skin and its uncertainty using 2p
symmetrized Fermi model. Considerable effect on PV
asymmetry predictions

- Studied effects due to Coulomb distortion on beam-normal
asymmetry

- Absorptive potential implementation is required to describe
existing data on beam-normal asymmetry from heavy nuclel
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