

Perspectives in parity violating electron scattering

Frank Maas (Helmholtz Institute Mainz, Institute for Nuclear Phyiscs, PRISMA cluster of excellence Johannes Gutenberg University Mainz)

Kolloquium, Institut of Physics, UNA Mexico, April 4, 2019 The Physics Case of the Weak Charge of Carbon-12

Parity Violating Electron Scattering:

- Electron scattering
- Search for new physics
- Measuring the neutron distribution in nuclei

Electron Scattering

Rutherford Scattering (alpha particles):

Elastic electron scattering off nucleons or nuclei:

Institut für Kernphysik

Differential Cross Section (spin ½ on spinless) :

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} \left| \begin{array}{c} F(q) \end{array} \right|^2_{\rm form \ factor}$$

Charge Distribution $\rho(r)$: Fourier transform of form factor

ρ(r) F(q) homogeneous
sphere
oscillating
sphere with
a diffuse
surface
r → lql→

Momentum Tranfer q of the photon

Form Factors:

Proton charge: form factor at $q^2 = 0$ (GeV/c)² F(q²=0 (GeV/c)²) = +1e

Proton radius: derivative of Form factor at $q^2=0$ (GeV/c)² $\langle r^2 \rangle = -6h^2dF(q^2)/dq^2$

JG U

Institut für Kernphysik

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model

Search for new physics

 $\sin^2 \theta_W = 0.238$ $\theta_W = 29,2^{\circ}$

High precision measurementsof the Weinberg angle sin² θwA.at low energy

Search for New Physics: Various Methods

Accurate theory needed

Direct observation versus precision measurements: top-quark, Higgs

Direct measurements: $M_{\rm H} = 125.14 \pm 0.15 \text{ GeV}$ $m_{\rm t} = 172.74 \pm 0.46 \text{ GeV}$

Indirect prediction: $M_{\rm H} = 90^{+17}_{-16} \text{ GeV}$ $m_{\rm t} = 176.4 \pm 1.8 \text{ GeV}$

Summary: Measurements of sin² θ _{W(effective)}

JG U

Institut für Kernphysik

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model

Møller Scattering

Purely Leptonic

- Coherent quarks in p
- in operation now
 2(2C_{1u}+C_{1d})

• Isoscaler quark scattering • (2C_{1u}-C_{1d})+Y(2C_{2u}-C_{2d})

Atomic Parity Violation

- Coherent quarks in entire nucleus
- Nuclear structure uncertainties
- -376 C_{1u} 422 C_{1d}

Neutrino Scattering

- Quark scattering (from nucleus)
- Weak charged and neutral current difference

7 Courtesy of P. Reimer and R. Arnold

", running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_{W}(\mu)$

Precision measurements and quantum corrections:

IGU

Universal quantum corrections: can be absorbed into a scale dependent, "running" sin² θ_{eff} or sin² $\theta_{w}(\mu)$

 $\succ \gamma Z$ box graph contributions obtained by modelling hadronic effects:

Hadronic uncertainties suppressed at lower energies

Low beam energy experiment:
P2 @ MESA

Progress in Theory

- Theory uncertainties in box diagrams
- 2 loop corrections
- Hadronic contributions in loops
- Auxiliary measurements
- PV-asymmetry in Carbon

Sensitivity to new physics beyond the Standard Model

JGU

Institut für Kernphysik

Sensitivity to new physics beyond the Standard Model

Extra Z

Mixing with Dark photon or Dark Z

Contact interaction

New Fermions

Dark Photon, Z-Boson

Running $\sin^2 \theta_w$ and Dark Parity Violation

JGU

Supersymmetry

Example: Supersymmetric standard model extensions Kurylov, Ramsey-Musolf, Su (2003), updated

Complementary access by weak charges of proton and electron

JG U

Institut für Kernphysik

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model

Proton: special case

Proton Weak	charge: Q _w (p)	=	1 – 4 sin² θ _ν	v
Error:	$\Delta Q_w(p)$	=	4 ∆sin² €) _w
Rel. error:	$\Delta Q_w(p)/Q_w(p)$	=	4/((1/sin² θ _\	<mark>_N) – 4)</mark> (∆sin² θ _w /sin² θ _w)
Rel. error	$\Delta \sin^2 \theta_w / \sin^2 \theta_w$	=	$((1/\sin^2 \theta_w) - 4)/4 \Delta Q_w(p)/Q_w(p)$	
Example:	sin² θ _w (50 MeV)	=	0.238	
	4/($(1/\sin^2 \theta_W) - 4$)	~	20	
	∆Q _w (p)/Q _w (p)	=	2% fro	om Experiment
	$\Delta sin^2 \theta_w / sin^2 \theta_w$	=	0.1 % sa	me precision as LEP, SLAC
Neutron Weak charge: $\Delta Q_w(p)/Q_w(n)$		=	∆sin² θ _w /siı	n² θ _w

Future wEFT constraints from APV and PVES

Adam Falkowski at Mainz MITP workshop: Impact on low energy measurements Current QWEAK, PVDIS, and APV cesium experiments:

Projections from combined P2, SoLID, and APV radium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0 \pm 0.70 \\ 0 \pm 0.97 \\ 0 \pm 7.4 \end{pmatrix} \times 10^{-3}$$

$$\mathcal{L}_{\text{wEFT}} \supset -\frac{1}{2v^2} \sum_{q=u,d} g_{AV}^{eq} (\bar{e}\,\bar{\sigma}_{\rho}e - e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q + q^c\sigma^{\rho}\bar{q}^c) -\frac{1}{2v^2} \sum_{q=u,d} g_{VA}^{eq} (\bar{e}\,\bar{\sigma}_{\rho}e + e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q - q^c\sigma^{\rho}\bar{q}^c)$$

AA, Grilli Di Cortona, Tabrizi 1802.08296

AA, Gonzalez-Alonso in progress

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19 %	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

Experimental Method: Parity Violating Electron Scattering

SFB 1044

 $\sigma \sim \mathcal{M} \mathcal{M}^* \text{ Phasespace} \\ \sim (j_{\mu} \frac{1}{Q^2} J^{\mu}) (j_{\mu} \frac{1}{Q^2} J^{\mu})^* \\ j_{\mu} \sim \overline{e} \gamma_{\mu} e \text{ Vector Current}$

$$I_{\gamma}^{\mu} \sim \left\langle N | q^{\mu} \overline{u} \gamma_{\mu} u + q^{d} \overline{d} \gamma_{\mu} d + q^{s} \overline{s} \gamma_{\mu} s | N' \right\rangle \\
 = \overline{\mathcal{P}} \left[\gamma^{\mu} F_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} F_{2} \right] \mathcal{P}$$

$$\tilde{q}^{d}_{V} = \tau_3 - 2q^d \sin^2(\theta_W)$$

$$\begin{split} \tilde{J}_{Z}^{\mu} &\sim \left\langle N | \tilde{q}^{\mu} \overline{u} \, \gamma_{\mu} \, u + \tilde{q}^{d} \overline{d} \, \gamma_{\mu} d + \tilde{q}^{s} \overline{s} \, \gamma_{\mu} s | N' \right\rangle \\ &= \overline{\mathcal{P}} [\gamma^{\mu} \tilde{F}_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} \tilde{F}_{2}] \mathcal{P} \end{split}$$

JGU

GU

Institut für Kernphysik

Parity Violating Asymmetry in elastic electron proton scattering

Parity violating cross section asymmetry

$$A_{ep} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_w)\epsilon' G_M^{\gamma} G_A^{Z}}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$

$$A_{\rm RL} = \underbrace{A_{\rm V} + A_{\rm A}}_{= A_0} + A_{\rm S} \begin{cases} A_{\rm V} = -a\rho_{eq}' \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right] \\ A_{\rm A} = a \frac{(1 - 4\sin^2\theta_W)\sqrt{1 - \epsilon^2}\sqrt{\tau (1 + \tau)}G_M^p G_A^p}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \\ A_{\rm S} = a\rho_{eq}' \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \end{cases}$$

 $a = -G_F q^2 / 4\pi \alpha \sqrt{2}, \ \tau = -q^2 / 4M_p^2, \ \epsilon = [1 + 2(1 + \tau) \tan^2 \theta / 2]^{-1}$

FB7

е

Institut für Kernphysik

JGU

Institut für Kernphysik

SFB 1044

Parity violating cross section asymmetry

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
polarisation measurement hadron structure

$$F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$$

JGU

Institut für Kernphysik

Conceptually very simple experiments

A = $(N^+-N^-)/(N^++N^-)$ $\Delta A = (N^++N^-)^{-1/2} = N^{-1/2}$ A = 20 x 10⁻⁹ 2% Measurement N = 6.25 x 10¹⁸ events

Highest rate, measure Q²: Large Solid Angle Spectrometers

Systematic effects: detector related (false) asymmetries:

Institut für Kernphys

Measure Flux of Scattered electrons:

- no pile-up (double count losses)
- sensitive to small electr. fields.
- no separation of phys. process

Institut für Kernphysik

PVeS Experiment Summary

SFB 1044 Institut für Kernphysik

The P2 Experiment at the MESA accelerator in Mainz

• Contributions to $\Delta sin^2 \Theta_W$ for 35° central scattering angle, E=150 MeV, 10000 h of data taking

JG U P2-Precision in sin² θw

	Total	Statistics	Polarization	Apparative	FF	Re(□ _{yzA})
∆sin²(θ _w)	3.1e-4	2.6e-4	9.7e-5	7.0e-5	1.4e-4	6e-5
	(0.13 %)	(0.11 %)	(0.04 %)	(0.03 %)	(0.04 %)	(0.03 %)
∆A ^{exp} /ppb	0.44	0.38	0.14	0.10	0.11	0.09
	(1.5 %)	(1.34 %)	(0.49 %)	(0.35 %)	(0.38 %)	(0.32 %)

JG U Optimization of acceptance in $\Delta \theta$

$\frac{|JG|U}{|U|} = \frac{|JG|U}{|U|} = \frac{|JG|U|} =$

£

JG U

$E_{ m beam}$	$155\mathrm{MeV}$
$ar{ heta}_{ m f}$	35°
$\delta heta_{ m f}$	20°
$\langle Q^2 \rangle_{L=600\mathrm{mm},\ \delta\theta_\mathrm{f}=20^\circ}$	$6\times 10^{-3}({\rm GeV/c})^2$
$\langle A^{ m exp} angle$	$-39.94\mathrm{ppb}$
$(\Delta A^{\mathrm{exp}})_{\mathrm{Total}}$	0.56 ppb (1.40%)
$(\Delta A^{\exp})_{\mathrm{Statistics}}$	0.51 ppb (1.28%)
$(\Delta A^{\exp})_{ m Polarization}$	0.21 ppb (0.53 %)
$(\Delta A^{\mathrm{exp}})_{\mathrm{Apparative}}$	0.10 ppb (0.25%)
$\langle s_{ m W}^2 \rangle$	0.23116
$\langle s_{\rm W}^2 \rangle$ $(\Delta s_{\rm W}^2)_{\rm Total}$	$\begin{array}{c} 0.23116\\ 3.3\times10^{-4}(0.14\%)\end{array}$
$\langle s_{W}^{2} \rangle$ $(\Delta s_{W}^{2})_{Total}$ $(\Delta s_{W}^{2})_{Statistics}$	$\begin{array}{c} 0.23116\\\\ 3.3\times10^{-4}~(0.14\%)\\\\ 2.7\times10^{-4}~(0.12\%)\end{array}$
$\langle s_{W}^{2} \rangle$ $(\Delta s_{W}^{2})_{\text{Total}}$ $(\Delta s_{W}^{2})_{\text{Statistics}}$ $(\Delta s_{W}^{2})_{\text{Polarization}}$	$\begin{array}{c} 0.23116\\\\ 3.3\times10^{-4}(0.14\%)\\\\ 2.7\times10^{-4}(0.12\%)\\\\ 1.0\times10^{-4}(0.04\%)\end{array}$
$\begin{array}{c} \langle s_{\mathrm{W}}^2 \rangle \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Total}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{Statistics}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{Polarization}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{Apparative}} \end{array}$	$\begin{array}{c} 0.23116\\\\\hline 3.3\times10^{-4}~(0.14~\%)\\\\\hline 2.7\times10^{-4}~(0.12~\%)\\\\\hline 1.0\times10^{-4}~(0.04~\%)\\\\\hline 0.5\times10^{-4}~(0.02~\%)\end{array}$
$\begin{array}{c} \langle s_{\mathrm{W}}^2 \rangle \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Total}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{Statistics}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Polarization}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Apparative}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{Mparative}} \end{array}$	$\begin{array}{c} 0.23116\\\\ \hline 3.3\times10^{-4}~(0.14~\%)\\\\ \hline 2.7\times10^{-4}~(0.12~\%)\\\\ \hline 1.0\times10^{-4}~(0.04~\%)\\\\ \hline 0.5\times10^{-4}~(0.02~\%)\\\\ \hline 0.4\times10^{-4}~(0.02~\%)\end{array}$
$\begin{array}{c} \langle s_{\mathrm{W}}^2 \rangle \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Total}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{Statistics}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Polarization}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Apparative}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{Apparative}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\square_{\gamma Z}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{nucl. FF}} \end{array}$	$\begin{array}{c} 0.23116\\ \hline 3.3\times10^{-4}~(0.14~\%)\\ \hline 2.7\times10^{-4}~(0.12~\%)\\ \hline 1.0\times10^{-4}~(0.04~\%)\\ \hline 0.5\times10^{-4}~(0.02~\%)\\ \hline 0.4\times10^{-4}~(0.02~\%)\\ \hline 1.2\times10^{-4}~(0.05~\%)\end{array}$
$\begin{array}{c} \langle s_{\mathrm{W}}^2 \rangle \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Total}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Statistics}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Polarization}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{A}\mathrm{pparative}} \\ \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{M}\mathrm{pparative}} \\ \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{mucl. FF}} \\ \\ \langle Q^2 \rangle_{\mathrm{Cherenkov}} \end{array}$	$\begin{array}{c} 0.23116\\ \hline 3.3\times10^{-4}~(0.14~\%)\\ \hline 2.7\times10^{-4}~(0.12~\%)\\ \hline 1.0\times10^{-4}~(0.04~\%)\\ \hline 0.5\times10^{-4}~(0.02~\%)\\ \hline 0.4\times10^{-4}~(0.02~\%)\\ \hline 1.2\times10^{-4}~(0.05~\%)\\ \hline 4.57\times10^{-3}~({\rm GeV/c})^2\\ \end{array}$

Hadronic Parity Violation

Institut für Kernphysik

P2-Spectrometer: 0.6 T Superconducting Solenoid

IGU P2: International Collaboration

The P2 Experiment Becker, D., Bucoveanu, R., et al. Eur. Phys. J. A (2018) 54: 208.

A future high-precision measurement of the electroweak mixing angle at low momentum transfer

Dominik Becker^{1,2}, Razvan Bucoveanu^{1,3}, Carsten Grzesik^{1,2}, Ruth Kempf^{1,2}, Kathrin Imai^{1,2}, Matthias Molitor^{1,2}, <u>Alexey Tyukin^{1,2}, Marco Zimmermann^{1,2}</u>, David Armstrong⁴, Kurt Aulenbacher^{1,2,5}, Sebastian Baunack^{1,2}, Rakitha Beminiwattha⁶, Niklaus Berger^{1,2}, Peter Bernhard^{1,7}, Andrea Brogna^{1,7}, Luigi Capozza^{1,2,5}, Silviu Covrig Dusa⁸, Wouter Deconinck⁴, Jürgen Diefenbach^{1,2}, James Dunne¹⁷, Jens Erler⁹, Ciprian Gal¹⁰, Boris Gläser^{1,2}, Boxing Gou^{1,2,5}, Wolfgang Gradl^{1,2}, Michael Gericke¹¹, Mikhail Gorchtein^{1,2}, Yoshio Imai^{1,2}, Krishna S. Kumar¹², Frank Maas^{1,2,5,a}, Juliette Mammei¹¹, Jie Pan¹¹, Preeti Pandey¹¹, Kent Paschke¹⁰, Ivan Perić¹³, Mark Pitt¹⁴, Sakib Rahman¹¹, Seamus Riordan¹⁵, David Rodríguez Piñeiro^{1,2,5}, Concettina Sfienti^{1,2,3,7}, Iurii Sorokin^{1,2}, Paul Souder¹⁶, Hubert Spiesberger^{1,3}, Michaela Thiel^{1,2}, Valery Tyukin^{1,2}, and Quirin Weitzel^{1,7}

- ¹ PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz, Germany
- ² Institute of Nuclear Physics, Johannes Gutenberg-Universität Mainz, Germany
- ³ Institute of Physics, Johannes Gutenberg-Universität, Mainz, Germany
- ⁴ College of William and Mary, Williamsburg, Virginia, USA
- ⁵ Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, Germany
- ⁶ Louisiana Tech University, Ruston, Louisiana, USA
- ⁷ Detector Laboratory, PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz, Germany
- ⁸ Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA
- ⁹ Departamento de Física Teórica, Instituto de Física, Universidad Nacional Autónoma de México, CDMX, México
- ¹⁰ University of Virginia, Charlottesville, Virginia, USA
- ¹¹ Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
- ¹² Department of Physics and Astronomy, Stony Brook University, Stony Brook, USA
- ¹³ Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- ¹⁴ Virginia Tech University, Blacksburg, Virginia, USA
- ¹⁵ Physics Division, Argonne National Laboratory, Argonne, USA
- ¹⁶ Physics Department, Syracuse University, Syracuse, USA
- ¹⁷ Mississippi State University, Mississippi State, MS, USA

JGU P2-experimental setup SFB 1044 Institut für Kernphysik

JGU Cherenkov "Quartz" detectorSFB 1044 Institut für Kernphysik

Full GEANT4 simulation

Institut für Kernphysik

Full GEANT4 simulation

Dominik Becker

JGU P2-Detector response SFB 1044 Institut für Kernphysik

Full GEANT4 simulation

Institut für Kernphysik

Number of PMT cathode electrons emitted per event

JG U Q²-Measurement SFB 1044 Institut für Kernphysik

JG U Hydro-Möller Polarimeter SFB 1044 Institut für Kernphysik

SFB 1044 Institut für Kernphysik

The MOLLER Experiment at JLAB

MOLLER Apparatus

43

hybrid spectrometer coil

Technical Challenges Evolutionary Improvements from Technology of Third Generation Experiments

- ~ 150 GHz scattered electron rate
- 1 nm control of beam centroid on target
- > 10 gm/cm² liquid hydrogen target
 - 1.5 m: ~ 5 kW @ 85 μA
- Full Azimuthal acceptance with $\theta_{lab} \sim 5 \text{ mrs}$
 - novel toroidal spectrometer pair
 - radiation hard, highly segmented integrating detectors
- Robust and Redundant 0.4% beam polarimetry

Institut für Kernphysik

EB/

Complementary access by weak charges of proton and electron

SFB 1044 Institut für Kernphysik

Neutron Skin in heavy nuclei:
Neutron Skin for beginner

Nuclear charge radii

Where do the neutrons go?

Neutron Skin for beginner

(a) ^{⊉0}

Where do the neutrons go?

Pressure forces neutrons out against surface tension

--→EOS

Stable Nucleus

neutron

proton

Neutron Skin for beginner

Where do the neutrons go?

Pressure forces neutrons out against surface tension

---→EOS

Phases of Nuclear Matter

A heavy nucleus (like ²⁰⁸Pb) is 18 orders of magnitude smaller and 55 orders of magnitude lighter than a neutron star

LRP Nuclear Science Advisory Committee(2008)

They are bound by the same EOS

WHY?

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$
symmetry energy
$$E_{sym}(\rho) = \left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$
slope parameter
$$L = 3\rho_{0}\frac{\partial E_{sym}(\rho)}{\partial \rho}\Big|_{\rho_{0}}$$
curvature parameter
$$K_{sym} = 9\rho_{0}^{2}\frac{\partial^{2}E_{sym}(\rho)}{\partial \rho^{2}}\Big|_{\rho_{0}}$$

 $\overline{0}$

۱p

L =

M. Thiel Bormio 2015

 $\rho_0 = 0.16 \text{ fm}^{-3}$

WHY?

M. Thiel

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$
symmetry energy
$$E_{sym}(\rho) = \left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$
ter
$$e_{\rho_{0}}\frac{\partial E_{sym}(\rho)}{\partial \rho}\Big|_{\rho_{0}}$$
ameter
$$e_{2}\frac{\partial^{2}E_{sym}(\rho)}{\partial \rho^{2}}\Big|_{\rho_{0}}$$

$$X. \operatorname{Roca-Maza et al., PRL 106 (2011) 252501} M. The lage$$

slope paramet

$$L = 3\rho_0 \frac{\partial E_{sym}\left(\rho\right)}{\partial \rho}$$

curvature para

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}\left(\rho\right)}{\partial \rho^2} \bigg|_{\rho}$$

WHY?

Pressure @ low $\rho \longrightarrow$ Crust thickness

Pressure @ high p from mass measurements

2017 BREAKTRHOUGH of the YEAR!

Historical first detection of gravitational waves from a binary neutronstar merger

GW170817: A play in three acts

- Act 1: Ligo-Virgo detect GW from BNS merger
 - Source properties inferred from "matched filtering"
 - Extraction of "chirp" mass and "tidal polarizability" Stringent limits on the EOS of dense matter

Act 2: Fermi/Integral detect short γ-ray burst

- detected ~2 seconds after GW signal
- Confirms long-held belief of the association between BNS merger and γ-ray bursts

Act 3: ~70 telescopes tracked the "kilonova"

- Afterglow of the explosive merger ~11 hours later
- Powered by the radioactive decay of "r-process" elements BNS mergers as a critical site for the r-process!

Neutron-star mergers create gravitational waves, light, and gold!

BL 119, 161101 (2017) PHYSICAL REVIEW LETTERS

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al." (UCO Scientific Collaboration and Virgo Collaboration)

(Received 26 September 2017; revised menuscript received 2 October 2017; published 16 October 2017)

Neutron skins and neutron stars in the multi-messenger era

PHYSICAL REVIEW LETTERS 120, 172702 (2018) Editors' Suggestion Featured in Physics Neutron Skins and Neutron Stars in the Multimessenger Era F. J. Fattoyev,1,* J. Piekarewicz,2,† and C. J. Horowitz1,‡ ¹Center for Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, Indiana 47405, USA ²Department of Physics, Florida State University, Tallahassee, Florida 32306, USA R²⁰⁸_{skin}(fm) FSUGold2 .28 .30 .33 16 RMF022 1400Caus RMF028 2.5 RMF032 PREX O 1200 J0348+0432 J1614-2230 M_{*}/M_{sun} IU-FSU 1000 1.6 1.5 \$* swein et 90% upper bound 800 r=0.98;α=5.28 600 0.5 400 13.5 12.5 13 14 145 0 14 R^{1.4}/₄(km) 10 12 16 R₊(km)

Exciting possibility: If PREX confirms that Rskin is large and LIGO-Virgo that NS-radius is small, this may be evidence of a softening of the EOS at high densities (phase transition?) The very first observation of a BNS merger already provides a treasure trove of insights into the nature of dense matter!

SFB 1044 Institut für Kernphysik

Neutron skin measurements with P2 at MESA

SFB 104 Institut für Kernphys

JGU

Separate excited states with magnetic spectrometer:

SFB 1044 Institut für Kernphysik

Weak charge in light nuclei (Carbon):

Introduction Achievable Precision Experimental Realization Conclusion

- Basic Setup
- Geant4 RayTracing Plots
- Separation of Excited States

EXPERIMENTAL REALIZATION

@ Beam energyE = 150 MeVMeasuring time t = 2500hScattering angle $\Theta = 40^{\circ} + -9^{\circ}$ Beam current $I = 150 \mu A$ Target density $d = 5g/cm^2$ Beam current $I = 150 \mu A$

We can achieve $\frac{\delta \sin^2 \Theta_W}{\sin^2 \Theta_W} = 0.3\%$

$$A_{PV} = \frac{G_F \cdot Q^2}{\sqrt{2}\pi\alpha} \sin^2 \Theta_W \longrightarrow \frac{\delta A_{PV}}{A_{PV}} = \frac{\delta Q_W^C}{Q_W^C} = \frac{\delta \sin^2 \Theta_W}{\sin^2 \Theta_W} = 0.3\%$$

$$Q_W^C = -24 \sin^2 \Theta_W \longrightarrow \frac{\delta A_{PV}}{\Delta_{PV}} = \frac{\delta Q_W^C}{Q_W^C} = \frac{\delta \sin^2 \Theta_W}{\sin^2 \Theta_W} = 0.3\%$$

Reminder: With Hydrogen:

$$\frac{\delta A_{PV}}{A_{PV}} = 1.7\%$$

$$\frac{\delta Q_W^H}{Q_W^H} = 2\%$$

 $\frac{\delta \sin^2 \Theta_{W}}{\sin^2 \Theta_{W}} = 0.15\%$

$$\frac{\delta \sin^2(\Theta_{W})}{\sin^2(\Theta_{W})} \approx 0.003$$
$$Q^2 \approx 0.01$$

$$[2 g^{eu} - g^{ed}]_{AV}$$

Institut für Kernphysik

- Parity violating electron scattering: "Low energy frontier" comprises a sensitive test of the standard model complementary to LHC
 Output
 Description:
 Desc
- Determination of $sin^2(\theta_w)$ with high precision (similar to Z-pole)
- P2-Experiment (proton weak charge) at MESA in preparation (2022), MOLLER Experiment at Jlab in preparation
- New MESA energy recovering accelerator at 155 MeV, target precision is 2 % in weak proton charge i.e. 0.15% in $sin^2(\theta_w)$,
- Sensitivity to new physics up to a scale of 50 MeV up to 50 TeV
- Much more physics from PV electron scattering: Neutron Skin in heavy nuclei, weak charge in light nuclei
- Together with Moeller@Jlab (electron weak charge) and SOLID@Jlab (quark weak charge) very sensitive test of standard model and possibility to narrow in on Standard Model Extension