

Heavy-ion physics - selected topics -

Dr. Andrea Dubla

19/01/2020

Introduction

Universe evolution

)-15	m • 10 ⁻¹⁰ m			
	formation of	star	dispersion of	today
	neutral atoms 4,000 K 400,000 yr	formation 50 K–3 K 3×10^8 yr	<pre>massive elements <50 K-3 K >3 × 10⁸ yr</pre>	3 K 14 × 10 ⁹ yr

ntroduction

Universe evolution

and gluons are confined inside protons and neutrons

A. Dubla

Introduction

Universe evolution

and gluons are confined inside protons and neutrons

ntroduction

At high temperature and/or pressure, QCD predicts that quarks and gluons are deconfined and form a new state of matter, the so-called Quark-Gluon Plasma (QGP)

laboratory

Phase diagram

 μ_B

\Rightarrow Phase transition to a deconfined state of quarks and gluons: QGP

- Thermal agitation of quarks and gluons increases their average kinetic energy
- Average distance decreases due to increased pressure
- Weaker interactions due to the asymptotic freedom of QCD
- Quarks and gluons are deconfined above the critical temperature

Phase transition

\Rightarrow Numerical QCD computation on a **discrete space-time lattice** (huge computing farms)

 \Rightarrow lattice QCD predicts a smooth cross-over phase transition at $\mu_B = 0$

hadrons (pions)
$$\varepsilon_{had}/T^4 = 3\frac{\pi^2}{30}$$

A. Dubla

(ideal gas)
quarks and gluons
$\varepsilon_{qg}/T^4 = (16 + \frac{7}{8}12N_f)\frac{\pi^2}{30}$
$N_f=$ 3 (u,d,s)

- 3.83 km circumference, 2 independent rings, superconducting magnets
- A. Dubla

Bormio- 2020

- pp collisions: $\sqrt{s} \le 500$ GeV (polarised beams), A-A collisions: $\sqrt{s_{NN}} \le 200$ GeV (A = d, Cu, Au, U, Ru, Zr)₆

The Large Hadron Collider at CERN

The Large Hadron Collider (LHC)

Large Hadron Collider

- 27 km circumference
- superconducting magnets (8 T)
- up to 100 m below ground
- pp: √s = 0.9, 2.36, 2.76, 5.02, 7, 8, 13 TeV (top: 14 TeV)
- pPb: √s_{NN} = 5.02, 8.16 TeV (top: 8.8 TeV)
- Pb-Pb: √s_{NN} = 2.76, 5.02 TeV (top: 5.5 TeV)
- Xe-Xe: $\sqrt{s_{NN}} = 5.44$ TeV

Heavy-ion collision experiments

LHCb

ALICE

A. Dubla

Evolution of a heavy-ion collision

A. Dubla

Expansion & cooling

Several different possibilities:

Several different possibilities:

→ Production of bulk:

information about initial densities, constrain the transport coefficients of the QGP and temperature

travel through the QGP bringing out information on its properties - Heavy quarks

<u>Several different possibilities:</u>

\Rightarrow **Production of bulk**:

information about initial densities, constrain the transport coefficients of the QGP and temperature

Several different possibilities:

Production of bulk: information about initial densities, constrain the transport coefficients of the QGP and temperature

Calibrated probe: travel through the QGP bringing out information on its properties - Heavy quarks

⇒ Shear viscosity η/s:

- tries to equalize expansion rates along the different directions
 - reduces flow anisotropies

A. Dubla

Transport coefficients

- thermal emission from equilibrated source
- \Rightarrow Particle abundances fixed at the chemical freeze-out

$$N_i = \frac{g_i V}{2\pi^2} \int_0^{+\infty} \frac{p^2 dp}{\exp\left[-\left(\frac{E-\mu_B}{T_{\rm chem}}\right)\right] \pm 1}$$

 \Rightarrow Primordial yields modified by resonance decay

 \Rightarrow Excellent agreement with the data using only 3 parameters T_{chem} , μ_B and V

> ⇒ Universal hadronization? - $T_{chem} \sim 156$ for all species?

D. Devetak et al. arXiv:1909.10485 [hep-ph]

pt-differential particle spectra

$$\frac{d^2 N}{m_{\rm T} dm_{\rm T} dy} = e^{-\frac{m_{\rm T}}{T_{slope}}}$$

$\Rightarrow p_{\rm T}$ spectra of identified hadrons

- hardening of the spectra moving from pions to proton
- Radial push (flow) depends on particle mass

$$T_{slope} = T_{kin} + \frac{1}{2}m_i \langle v_\perp \rangle$$

 \Rightarrow Pions at low p_T are significantly underestimated \Rightarrow Resonances or non-thermal production from evolving coherent fields?

D. Devetak et al. arXiv:1909.10485 [hep-ph]

A. Dubla

pt-differential particle spectra

Global fit procedure

Model	Best fi
$\tau_0 [\mathrm{fm/c}]$	0.27
η/s	0.22
$(\zeta/s)_{ m max}$	0.05
$T_{\rm fo} [{\rm MeV}]$	136.9

Integrated spectra and <pt>

 \Rightarrow Pions are underestimated due to the difference observed at low $p_{\rm T}$

A. Dubla

 $\Rightarrow < p_{\rm T} >$ for protons is also not perfectly reproduced - missing hadronic rescattering?

t	
	J

Strange and multi-strange baryons

 \Rightarrow (multi-)strange hadrons prefer higher freeze-out temperature (T_{fo} = 145 MeV) - sequential hadronization at different temperatures for different flavours? R. Bellwied et.al. PRL 111, 202302 (2013); D. Devetak et al. arXiv:1909.10485 [hep-ph] - additional resonance feed-down might improve the agreement with data

A. Dubla

t	
	J

Collectivity: azimuthal anisotropy

Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy

about the properties (η/s) and the evolution of the system

A. Dubla

$$E\frac{\mathrm{d}^3 N}{\mathrm{d}^3 p} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$

v_n measurements probe:

 \Rightarrow Low/intermediate p_T : collective motion, degree of thermalization of produced quarks and hadronization mechanism (recombination)

Collectivity: azimuthal anisotropy

$$\frac{dN}{d(\varphi - \Psi_R)} = \frac{N_0}{2\pi}$$

 \rightarrow Elliptic deformation of the source in the transverse plane.

 $-v_2 \neq 0 \rightarrow \text{difference}$ in the number of particle emitted parallel (0° and 180°) and perpendicular (90° and 270°) to the impact parameter b

Collectivity: azimuthal anisotropy

$$(1+2\sum_{n}v_{n}\cos[n(\varphi-\Psi_{R})])$$

Fourth harmonic: in case of a perfect fluid it has to be $v_4 = 0.5 v_2^2$

Shear viscosity

 \rightarrow u₁ > u₂ > u₃: shear viscosity will make them equal and destroy the elliptic flow v2

Shear viscosity

A. Dubla

 \rightarrow u₁ > u₂ > u₃: shear viscosity will make them equal and destroy the elliptic flow v2

→ Higher harmonics represent smaller differences which get destroyed more easily, and which, if measurable, makes them more sensitive probes to η/s

Bormio- 2020

Time line of important experimental and theoretical developments leading towards increasingly

Temperature dependent shear and bulk viscosity!

Transport coefficients

Temperature dependent shear and bulk viscosity

- \Rightarrow **n**/s(T) from Yang-Mills theory using a diagrammatic representation based on functional renormalization group in terms of gluon spectral functions (PRL 115, 112002 (2015))
- $\Rightarrow \zeta/s(T)$ from phenomenological parameterization (PRL 115, 132301 (2015))

A. Dubla

ransport coefficients

Charged hadron flow

→ Agreement within the statistical uncertainties with the experimental measurements by ALICE

sensitive to the shear viscosity over entropy density ratio

Identified particle flow

identified hadrons

- insight about radial flow of the expanding system

\Rightarrow Comparison with p_T -differential flow coefficients of identified hadrons

- interplay between radial and elliptic flow leads to the mass ordering of the v_n coefficients

A. Dubla et al. Nucl.Phys. A979 (2018) 251-264

Effect of the hadronic phase

 \Rightarrow Comparison with p_T -differential spectra and flow of identified hadrons

- Heavier particles are pushed to higher momenta
- Larger $< p_T >$
- Stronger mass scaling

Quantitative characterisation of QGP

A. Dubla

Bormio- 2020

Several different possibilities:

 → Production of bulk:
 information about initial densities, constrain the transport coefficients of the QGP and temperature

travel through the QGP bringing out information on its properties - Heavy quarks

- initial stages of the collisions via hard scattering processes
- \Rightarrow They experience the full evolution of the system \rightarrow sensitive probes of the properties of the QGP

- → Hadronization: fragmentation vs coalescence
- \Rightarrow Cold Nuclear Matter effect: modification of nPDF (shadowing)

Why heavy quarks?

– Quark can loose energy via collision (collisional) and gluon radiation (radiative)

Quark energy loss in QGP

Quark energy loss in QGP

- Radiative energy loss similar to electron bremsstrahlung in electrodynamics

Casimir coupling factor: 4/3 for quarks and 3 for gluons

A. Dubla

Quark energy loss in QGP

- Radiative energy loss similar to electron bremsstrahlung in electrodynamics

 $\omega \frac{\alpha}{d\omega} \propto \alpha$

Casimir coupling factor: 4/3 for quarks and 3 for gluons

Color-charge effect: Quarks loose less energy than gluons!

R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff: Nucl. Phys. B 483 (1997) 291 Nucl. Phys. B 484 (1997) 265

A. Dubla

Quark energy loss in QGP

- Radiative energy loss similar to electron bremsstrahlung in electrodynamics

Dead-cone effect

Quark energy loss in QGP

- Radiative energy loss similar to electron bremsstrahlung in electrodynamics

Dead-cone effect

Quark energy loss in QGP

Heavy quarks loose less energy than light quarks!

Yu. Dokshitzer and D.E. Kharzeev, Phys.Lett. B 519 199- 206 (2001). M. Djordjevic, M. Gyulassy, Nucl. Phys. A733 (2004) 265.

Building an observable: nuclear modification factor

 Production of hard probes (heavy quarks, jets...) in A-A collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)

Dokshitzer and Kharzeev, PLB 519 (2001) 199 Wicks, Gyulassy, J.Phys. G35 (2008) 054001

Building an observable: nuclear modification factor

 Production of hard probes (heavy quarks, jets...) in A-A collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)

– If no QGP is formed $\rightarrow R_{AA} = 1$ (binary scaling)

transverse momentum (GeV/c)

Building an observable: nuclear modification factor

 Production of hard probes (heavy quarks, jets...) in A-A collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)

- QGP is formed $\rightarrow R_{AA} < 1$

Level of suppression depends on QGP properties

transverse momentum (GeV/c)

Heavy-flavour production cross section in pp collisions - JHEP10(2018)061 0.2 TeV **13 TeV** 2.76 TeV 5.02 TeV 7 TeV - ALICE-PUBLIC-2018-005 PHENIX at 200 GeV (mb/(GeV/c)² **ALICE** Preliminary 10 GeV⁻²c³) $c,b \rightarrow e, |y| < 0.8$ (a)∃ pp **√***s* = 2.76 TeV pp $\sqrt{s} = 7 \text{ TeV}$ pp **s** = 5.02 TeV $p+p \rightarrow (e^+ + e^-)/2 + X at \sqrt{s}=200 GeV$ 10 d³₀/dp³ (mb **PHENIX** data 0^{-3} FONLL(total) 10 dy) FONLL($c \rightarrow e$) 10^{-4} 10 FONLL(b \rightarrow e) <u>dp)/</u> 10⁻⁵⊾ FONLL(b \rightarrow c \rightarrow e) ш 10⁻ d²0 10⁻⁶ 10⁻ • Data, *lyl* < 0.8 • Data, *lyl* < 0.5 $/(2\pi p_{T})$ • Data (JHEP 10 (2018) 061) 10-7' 10 • Data (arXiv:1910.09110) **FONLL** (JHEP 05 (1998) 007) Phys.Rev. D86 (2012) 112007 2.1% lumi. unc. not shown Phys.Rev. C91 (2015) 044907 ± 3.5% lumi. unc. not shown 1.9% lumi. unc. not shown 10 10⁻⁸' arXiv:1405.3301 [nucl-ex] **10**⁻¹⁰ FONLL 2.5 2 (b) 1.5

8

p_ (GeV/c)

data

0.5

0

ALI-PREL-1468

A. Dubla

1.5₿

\Rightarrow Testing the centre-of-mass energy dependence down to $p_T = 0.5$ GeV/c \Rightarrow at the upper edge of FONLL calculation at all energies

Bormio-2020

D and B meson cross section in pp collisions at LHC

- D meson upper edge of FONLL calculations - B meson consistent with central values of FONLL at high p_{T} , on the upper edge at low p_{T46}

A. Dubla

 $\Rightarrow R_{AA}(0-10\%) \rightarrow$ suppression up to a factor 5 observed in the 10% most central Pb-Pb collisions

 $\Rightarrow R_{AA}(0-10\%) \rightarrow$ suppression up to a factor 5 observed in the 10% most central Pb-Pb collisions

 \Rightarrow Increasing suppression from peripheral (60-80%) to central (0-10%) Pb-Pb collisions

A. Dubla

Bormio- 2020

 \Rightarrow Heavy-quark transport in medium with realistic evolution necessary to describe R_{AA} at low/ intermediate p_T — need to include modification of nPDF

 \Rightarrow Heavy-quark transport in medium with realistic evolution necessary to describe R_{AA} at low/ intermediate p_T — need to include modification of nPDF

 \Rightarrow Models based on pQCD energy loss provide a good description of R_{AA} at high p_T

Bormio- 2020

Heavy-flavour hadron decay electron nuclear modification factor

- Data are better described when the nuclear PDFs (EPS09) are included in the model calculation (TAMU, POWLANG and MC@sHQ+EPOS2) in both centrality intervals
- Suppression at intermediate/high p_{T} is better described by models that include both radiative and collisional energy loss processes
- A. Dubla

ALI-PUB-159953

- POWLANG: Eur.Phys.J. C73 (2013) 2481;

- TAMU: Phys.Lett. B735 (2014) 445-450;

- MC@HQ+EPOS: PRC 89 (2014) 014905;

Bormio- 2020

 $\Rightarrow R_{AA}$ of prompt non-strange D mesons compared with those of charged particles and pions

 $\Rightarrow R_{AA}$ of prompt non-strange D mesons compared with those of charged particles and pions

pQCD models including mass-dependent radiative and collisional energy loss predicts a difference between the D-meson and non-prompt J/ ψ R_{AA}

A. Dubla

\Rightarrow New R_{AA} measurement of non-prompt D meson - hint of a smaller suppression for beauty than charm

\Rightarrow New R_{AA} measurement of non-prompt D meson - hint of a smaller suppression for beauty than charm - model can describe the data within uncertainty

Bormio- 2020

Anisotropic flow of heavy-flavour

A. Dubla

non-zero D⁰ v₂ and $D^0 v_2 < ch. hadrons v_2$

$v_3 > 0$ for charm at LHC!

- v₃ for charged particle larger that D⁰ v₃ - not fully significative

Extraction of QGP information

 \Rightarrow **Ongoing:** theoretical effort through statistical analysis to constrain model parameter like charm diffusion coefficient

A. Dubla

Yingru Xu et al. Nucl.Phys. A967 (2017) 668 - 671 Phys. Rev. C 98, 064901 (2018)

⇒ Models fits performed to extract info about QGP and heavy-quark energy loss

Bormio- 2020

Did we learn already everything?

Did we learn already everything?

Of course NOT!!! Many questions still need to be addressed....

Some of the missing pieces....

→ Hadronization mechanisms: fragmentation vs coalescence

Some of the missing pieces.....

→ Hadronization mechanisms: fragmentation vs coalescence

→ Future experiments

$\Rightarrow \Lambda_c / D0$ ratio sensitive to hadronisation mechanism - Recombination → enhancement

Charmed baryons

ALI-PREL-325749

Bormio-2020

	_
_	_
	—
	-
	_
	_
	-
	_

Charmed baryons

$\Rightarrow \Lambda_c / D0$ ratio

sensitive to hadronisation mechanism

- Recombination \rightarrow enhancement
- Already an enhancement in small systems

ALI-PREL-323761

Bormio-2020

Charmed baryons

$\Rightarrow \Lambda_c / D0$ ratio

sensitive to hadronisation mechanism

- Recombination \rightarrow enhancement
- Already an enhancement in small systems

Multiplicity dependence in pp collisions

- Enhancement over default Pythia
- Color reconnection models describe data

Severe consequence for total charm cross section

What are the limits of the factorisation approach and fragmentation function universality?

A. Dubla

ALI-PREL-336442

Bormio- 2020

Charmed baryons

Another player in this game

→ Ratio with heavier baryons Ξ^{0}_{c} : - expected larger enhancement

 \rightarrow Clear and significant peaks in the $p_{\rm T}$ interval 3-8 GeV/c

Some of the missing pieces.....

→ Hadronization mechanisms: fragmentation vs coalescence

Magnetic fields generated in heavy-ion collisions

→ Future experiments

Magnetic field in QGP

 \Rightarrow Quickly decreases (~1 fm/c) as the non-colliding protons fly away

 \Rightarrow In non-central heavy-ion collisions an enormous magnetic field (10¹⁸ G) is generated by the movement of the non-colliding protons (Biot-Savart law)

Biggest magnetic field in the universe

 \rightarrow order of magnitude larger than the one of the magnetars

 \rightarrow it will have a **lot of implications**: astrophysics, cosmology

 \Rightarrow varying magnetic field will influence moving charges (quarks)

*first proposed by Gursoy et al: Phys. Rev. C 89, 054905 (2014)

 \Rightarrow presence of a conducting QGP substantially delays the decay of the magnetic field

> - assumption: constant conductivity as a function of temperature $\sigma = 0.023 \text{ fm}^{-1}$

H.-T. Ding, et al, Phys. Rev. D 83, 034504 B. B. Brandt et al, JHEP 1303, 100 (2013) A. Amato, et al, Phys. Rev. Lett. 111, 172001 (2013)

- \Rightarrow varying magnetic field will influence moving charges (quarks)
- → very few ingredients needed: charged and conductive QGP
- ⇒ the result: charge-dependent **directed flow**, asymmetric in rapidity

– where does it come from?

 \rightarrow electric field induced by decreasing B (Faraday effect)

*first proposed by Gursoy et al: Phys. Rev. C 89, 054905 (2014)

Bormio- 2020

- \Rightarrow varying magnetic field will influence moving charges (quarks)
- the result: charge-dependent **directed flow**, asymmetric in rapidity \Rightarrow

– where does it come from?

- \rightarrow electric field induced by decreasing B (Faraday effect)
- \rightarrow Lorentz force on moving charges (Hall effect)

*first proposed by Gursoy et al: Phys. Rev. C 89, 054905 (2014)

Bormio- 2020

- \Rightarrow varying magnetic field will influence moving charges (quarks)
- the result: charge-dependent directed flow, asymmetric in rapidity \Rightarrow

– where does it come from?

- \rightarrow electric field induced by decreasing B (Faraday effect)
- \rightarrow Lorentz force on moving charges (Hall effect)

*first proposed by Gursoy et al: Phys. Rev. C 89, 054905 (2014)

Charge-dependent v₁

\Rightarrow prediction for Pb-Pb collisions at 2.76 TeV: ~10⁻⁵

- the rapidity slope varies with p_{T} , different contribution of Faraday and Lorentz

\Rightarrow formation time ~ 0.1 fm/c \rightarrow comparable to the time scale when B is maximum

What about heavy-flavour?

- \Rightarrow formation time ~ 0.1 fm/c \rightarrow comparable to the time scale when B is maximum
- \Rightarrow resultant effects entail a significantly larger directed flow v_1 of charm quarks compared to light quarks

Bormio- 2020

Charged particle vs heavy-flavour

ALI-PUB-337380

- ⇒ First measurements at the LHC of charge dependent directed flow of light and heavy flavour particles
- difference between charged-particle and heavy-flavour predicted by theory will be experimentally accessible

⇒ it will constrain fundamental and unexplored properties of the QGP like the **conductivity**

Projections for Run3/4

ALI-SIMUL-140076

Extremely good significance is expected in Run3/4 Simulations performed according to the signal expected by theory calculations

Bormio- 2020

Some of the missing pieces....

→ Hadronization mechanisms: fragmentation vs coalescence

Future heavy-ion detector

\Rightarrow Physics potential (just few examples)

- heavy-flavour and quarkonia

- multi-charm hadrons ($\Xi_{cc}, \Omega_{cc}, \Omega_{ccc}$)
- X, Y, Z states
- Soft hadronic and electromagnetic radiation
 - hadrons down to few 10's of MeV/c

- BSM

- dark photons searches

EoI document signed by ~400 physicists (Dec 2018) submitted to European Strategy for Particle Physics Preparatory Group <u>arXiv:1902.01211</u>

K. Fukushima and T. Hatsuda, Rept. Prog. Phys. 74 (2011) 014001

A. Dubla

CBM at FAIR, Darmstadt

- partonic-hadronic **phase transition** (critical point)
- equation of state at high densities (neutron stars)
- hypernuclei and multi-strange hadrons
- charm production at threshold beam energies
- spectra and collective flow studies

Thank you for your attention

CBM at FAIR, Darmstadt

⇒ magnetic field in heavy-ion collision is expected to lead to several novel phenomena e.g. Chiral Magnetic Effect (CME)

\Rightarrow we face different problems: \rightarrow hard to decouple signal (charge separation across reaction plane) **from background** (local charge conservation + flow)

measure a simpler and cleaner observable (not related to the chiral imbalance), use it to calibrate the strength and lifetime of the electromagnetic field

Phases of the collision

 \Rightarrow initial energy density fluctuations \rightarrow geometrical eccentricities \Rightarrow strong interacting gluon field \rightarrow non-zero radial and anisotropic flow

A. Dubla

Phases of the collision

 \Rightarrow main stage in which the flow is built

A. Dubla

\Rightarrow Quark-Gluon Plasma: Viscous hydro \rightarrow EoS, n/s and ζ /s \Rightarrow geometrical eccentricities \rightarrow converted in momentum anisotropies

Phases of the collision

- \Rightarrow phase transition (decrease degrees of freedom)

 - kinetic freeze-out: elastic collisions ceases

A. Dubla

- chemical freeze-out: inelastic collisions ceases \Rightarrow hybrid = IP-Glasma(IS) + MUSIC(QGP) + UrQMD(hadron cascade)

Interlude: Centrality

UCA Spectators: energy in very forward (beam) direction

A. Dubla

- Centrality of a collision:
 - "impact parameter" b
 - N_{coll}: number of inelastic nucleonnucleon collisions
 - Npart: number of nucleons undergoing at least one inelastic nucleon-nucleon collision

Produced particles: multiplicity at central rapidity

Interlude: Centrality

- Geometrical quantities simplify comparison btw. data and theory
- Usually not directly measured but derived from Glauber calculations

Centrality classes defined in terms of multiplicity percentile

D meson production at low pt

 \Rightarrow With D0 mesons HF measurements performed down to 0 GeV/c! - Upper band of FONLL both at central rapidity (ALICE) and forward (LHCb). - LHCb data can be used to constrain gluon parton density functions for $x < 10^{-4}$ 88

Heavy-flavour decay electrons in pp collisions

- at low p_{T} may help to set constraints to the gluon PDF \rightarrow small values of Bjorken-x Eur.Phys.J. C75 (2015) no.12, 610 89

A. Dubla

- Ratios of cross sections at different energies can be used in order to further test the pQCD FONLL calculation. In the ratios, part of the uncertainties cancel out

heavy-ion collisions

$\Rightarrow \Xi_c$ could also provide additional input to better understand the

 \Rightarrow charm-baryon production in pp collisions also serve as a reference for

hadronisation mechanism of strange quarks in pp and Pb-Pb collisions

