The search for exotic nuclear structure far from stability

Pierre Capel

19 January 2020

Introduction

Stable nuclei are qualitatively described by "simple" models

- (semi-empirical) liquid-drop model
- (basic) shell model

New techniques enable *ab initio* methods (*A*-body models)

What happens far from stability?

- Experimentally, Radioactive-Ion Beams (RIB) available since 80s
- \Rightarrow study of structure far from stability
- \Rightarrow discovery of exotic structures
 - halo nuclei
 - exotic decays
 - . . .

Nuclear Landscape

- 256 stable nuclei @ $Z \simeq N$ up to 40 Ca @ N > Z for A > 40
- stable nuclei
 - compact
 - magic numbers
- RIB allow to study radioactive nuclei
- Terra incognita between driplines n-dripline unknown beyond O

Basic features in nuclear structure

- Liquid-drop model
- Shell model
- 2 Ab initio nuclear models
- 3 Radioactive-Ion Beams
- Oddities far from stability
 - Halo nuclei
 - Exotic decays

5 Summary

Charge distributions in (stable) nuclei

- constant density ρ_0 out to the surface (saturation)
- same skin thickness t

(Stable) nuclei look like liquid drops of radius $R \propto A^{1/3}$

Liquid-drop model

Binding energy per nucleon B(Z, N)/A has smooth behaviour

Liquid-drop model

Bethe-Weizsäcker semi-empirical mass formula

$$B(Z, N) = a_{\nu}A - a_{s}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{Sym}\frac{(A-2Z)^{2}}{A}$$

Variation from the semi-empirical mass formula

More bound systems at Z or N = 2, 8, 20, 28, 50, 82, 126magic numbers

 \Rightarrow shell structure in nuclei as in atoms?

Shell model

Developed in 1949 by M. Goeppert Mayer and H. Jensen

As electrons in atoms, nucleons in nuclei feel a mean field and arrange into shells

Spin-orbit coupling is crucial to get right ordering of shells

Example

Shell model explains the higher stability at some Z and N

It predicts the spin and parity of ground state of most nuclei and some of their excited levels, e.g. $^{17}{\rm O}$ and $^{17}{\rm F}$

Nowadays

- Can we go beyond these models?
- Can we build ab initio models?
- i.e. based on first principles
 - nucleons as building blocks
 - realistic N-N interaction

Basic features in nuclear structure Liquid-drop model

Shell model

2 Ab initio nuclear models

- 3 Radioactive-Ion Beams
- Oddities far from stability
 Halo nuclei
 - Exotic decays

5 Summary

A-body Hamiltonian

Nuclear-structure calculations : A nucleons (Z protons+N neutrons) Relative motion described by the A-body Hamiltonian

$$H = \sum_{i=1}^{A} T_i + \sum_{j>i=1}^{A} V_{i_j}$$

 \Rightarrow solve the A-body Schrödinger equation

$$H |\Psi_n\rangle = E_n |\Psi_n\rangle$$

 $\{E_n\}$ is the nucleus spectrum

Realistic N-N interactions

 V_{ij} not (yet) deduced from QCD \Rightarrow phenomenological potentials fitted on *N*-*N* observables : d binding energy, *N*-*N* phaseshifts Ex. : Argonne V18, CD-Bonn,...

Light nuclei calculations

[R. Wiringa, Argonne]

Three-body force

Need three-body forces to get it right...

$$H = \sum_{i=1}^{A} T_i + \sum_{j>i=1}^{A} V_{ij} + \sum_{k>j>i=1}^{A} V_{ijk} + \cdots$$

But there is no such thing as three-body force...

They simulate the non-elementary character of nucleons \Rightarrow include virtual Δ resonances, \bar{N} ...

$$\begin{array}{c|c} \overline{\pi,\rho,\omega} & \underline{\Delta,N^*} \\ \overline{\pi,\rho,\omega} & \overline{n},\rho,\omega \end{array} \end{array} \qquad \overline{\pi,\rho,\omega} \xrightarrow{\overline{N}} \\ \overline{\pi,\rho,\omega} \end{array}$$

Phenomenological 3-body interaction fitted on A > 2 levels : IL2 Alternatively, derived from EFT

Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries with resolution scale Λ that selects appropriate degrees of freedom : nuclear physics is not built on quarks and gluons, but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/Λ

- gives an estimate of theoretical uncertainty
- naturally includes many-body forces

Expansion of the EFT force

Solving the Schrödinger equation $H |\Psi_n\rangle = E_n |\Psi_n\rangle$

 Ψ usually developed on a basis { $|\Phi_{[\nu]}\rangle$ } :

$$\Psi_n \rangle = \sum_{[\nu]} \langle \Phi_{[\nu]} | \Psi_n \rangle | \Phi_{[\nu]} \rangle$$

Solving the Schrödinger equation reduces to matrix diagonalisation

$$\langle \Phi_{[\mu]} | H | \Psi_n \rangle = \sum_{[\nu]} \langle \Phi_{[\mu]} | H | \Phi_{[\nu]} \rangle \langle \Phi_{[\nu]} | \Psi_n \rangle$$

= $E_n \langle \Phi_{[\mu]} | \Psi_n \rangle$

 \Rightarrow need to build an efficient set of basis states $\{|\Phi_{[\nu]}\rangle\}$

Clear short review paper : [Bacca EPJ Plus 131, 107 (2016)]

[Hebeler et al. Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)]

Different *ab initio* models predict similar result All require 3N forces to reproduce the dripline at ²⁴O

What happens far from stability?

Liquid-drop and shell models are fair models of stable nuclei What happens away from stability ?

In 80s Radioactive-Ion Beams were developed Enable study of nuclear structure

[see M. Pfützner on Tuesday & S. Zacarias on Wednesday]

- are radioactive nuclei compact?
- are shells conserved far from stability?

Reactions involving radioactive nuclei useful in astrophysics

[see 2nd part, Yu. Litvinov on Thursday and E. O'Connor on Friday]

Basic features in nuclear structure

- Liquid-drop model
- Shell model
- 2 Ab initio nuclear models
- 3 Radioactive-Ion Beams
- Oddities far from stability
 Halo nuclei
 - Exotic decays

5 Summary

How?

Idea : break a heavy nuclei into pieces to produce exotic isotopes

• ISOL : Fire a proton at a heavy nucleus

• In-flight : Smash a heavy nucleus on a target

Where?

In-flight projectile fragmentation

high-energy primary beam of heavy ions (e.g. ¹⁸O, ⁴⁸Ca, U...) on thin target of light element (Be or C) \Rightarrow fragmentation/fission produces many exotic fragments at $\approx v_{beam}$ Sorted in fragment separator

Used for high-energy reactions (KO, breakup...)

Examples : NSCL (MSU), RIKEN, GSI, GANIL

Existing NSCL @ MSU

Future : FRIB @ MSU

Basic features in nuclear structure Liquid-drop model

- Shell model
- 2 Ab initio nuclear models
- 3 Radioactive-Ion Beams
- Oddities far from stability
 Halo nuclei
 - Exotic decays

5 Summary

Halo nuclei

Exotic structure discovered by I. Tanihata Very large matter radius ($R \gg A^{1/3}$)

Seen as core + one or two neutrons at large distance

- Light, neutron-rich nuclei
- small S_n or S_{2n}
- One-neutron halo ${}^{11}\text{Be} \equiv {}^{10}\text{Be} + n$ ${}^{15}\text{C} \equiv {}^{14}\text{C} + n$

Two-neutron halo ${}^{6}\text{He} \equiv {}^{4}\text{He} + n + n$ ${}^{11}\text{Li} \equiv {}^{9}\text{Li} + n + n$

[M. Pfützner's talk on Tuesday & S. Zacarias' talk on Wednesday] Two-neutron halo nuclei are Borromean... c+n+n is bound but not two-body subsystems e.g. ⁶He bound but not ⁵He nor ²n

[PLB 160, 380 (1985)]

Borromean nuclei

Named after the Borromean rings...

[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]

Search for exotic decays using a TPC

Close to the dripline exotic decays have been predicted

- β -delayed particle emission
- proton radioactivity

Using a Time-Projection Chamber where such events can be seen

[see M. Pfützner's talk on Tuesday]

β -delayed particle emission

Away from stability, β decay can lead to emission of particles [see M. Pfützner's talk on Tuesday]

Provides structure information :

- Two-neutron halo nuclei c+n+n can decay into c+d e.g. ⁶He→ α + d ⇒ emphasises role of halo
- ⁸He → α+t+n Depends on 3N correlations
- [M. Pfützner et al. RMP 84, 567 (2012)]

Single-proton radioactivity

Similar process as the α decay : the proton is held within nucleus by Coulomb barrier under which it tunnels

$$\Gamma_{\rm p} = S_{\rm p} \frac{N}{4\mu} \exp\left\{-2 \int_{r_2}^{r_3} \sqrt{2\mu \left[V(r) - Q\right]} dr\right\}$$

Conservation laws

- Angular-momentum : $I_i = I_f + l + s$
- Parity : $\pi_i \pi_f = (-1)^l$

Strongly sensitive to Q value and l \Rightarrow information on structure @ dripline

33/36

Exotic decays

Two-proton radioactivity

At the proton dripline, 2p radioactivity is also possible True 2p radioactivity : not sequential

Predicted in 1960s by Goldansky Discovered in 2002 by Pfützner

 $T_{1/2}$ spans 18 order of magnitude

[see M. Pfützner's talk on Tuesday] [Pfützner et al. RMP 84, 567 (2012)]

Two-proton radioactivity

A proper theoretical analysis requires a 3-body model

[see M. Pfützner's talk on Tuesday] [Pfützner *et al.* RMP 84, 567 (2012)]

Summary

Liquid-drop and shell model describe qualitatively stable nuclei Nowadays *ab initio* nuclear-structure models from first principles

RIBs enable us to study nuclear structure far from stability New exotic structure discovered :

- halo nuclei diffuse halo around a compact core
- shell inversions or shell collapse
- nuclei beyond the dripline (resonant ground state)

RIB can be used to study reactions of astrophysical interest...