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Introduction
Stable nuclei are qualitatively described by “simple” models

@ (semi-empirical) liquid-drop model
e (basic) shell model
New techniques enable ab initio methods (A-body models)
What happens far from stability ?
Experimentally, Radioactive-lon Beams (RIB) available since 80s

= study of structure far from stability
= discovery of exotic structures

e halo nuclei
@ exotic decays
o ...
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Basic features in nuclear structure Liquid-drop model

Charge distributions in (stable) nuclei
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e constant density p, out to the surface (saturation)
@ same skin thickness ¢

(Stable) nuclei look like liquid drops of radius R « A!/?



Liquid-drop model

Binding energy per nucleon B(Z, N)/A has smooth behaviour
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Liquid-drop model

Bethe-Weizsacker semi-empirical mass formula
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Basic features in nuclear structure Liquid-drop model

Variation from the semi-empirical mass formula

S. E. Mass Formula
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More bound systems at Z or N = 2,8, 20, 28, 50, 82, 126

magic numbers
= shell structure in nuclei as in atoms ?



Basic features in nuclear structure Shell model

Shell model
Developed in 1949 by M. Goeppert Mayer and H. Jensen
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Example
Shell model explains the higher stability at some Z and N

It predicts the spin and parity of ground state of most nuclei
and some of their excited levels, e.g. 'O and '"F
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Basic features in nuclear structure Shell model

Nowadays

Can we go beyond these models ?

Can we build ab initio models ?
i.e. based on first principles

@ nucleons as building blocks
@ realistic N-N interaction
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Ab initio nuclear models

@ Ab initio nuclear models
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Ab initio nuclear models

A-body Hamiltonian
Nuclear-structure calculations : A nucleons (Z protons+N neutrons)

Relative motion described by the A-body Hamiltonian
A A
H = Z T; + Z V,‘j
i=1 j>i=1
= solve the A-body Schrédinger equation

{E,} is the nucleus spectrum

13/36



Realistic N-N interactions
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Ab initio nuclear models

Light nuclei calculations
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Ab initio nuclear models

Three-body force
Need three-body forces to get it right. .

H= ZT+ZV,J+ Z Vi + -

Jj>i=1 k> j>i=1
But there is no such thmg as three-body force. ..

They simulate the non-elementary character of nucleons
= include virtual A resonances, N...

Phenomenological 3-body interaction fitted on A > 2 levels : IL2
Alternatively, derived from EFT
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Ab initio nuclear models

Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries
with resolution scale A that selects appropriate degrees of freedom :
nuclear physics is not built on quarks and gluons,

but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty
e naturally includes many-body forces
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Expansion of the EFT force
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Ab initio nuclear models

Solving the Schrédinger equation
Y usually developed on a basis {|®p,)} :
W) = D (D I¥,) )

]
Solving the Schroédinger equation reduces to matrix diagonalisation

(D HIP,) = ( Dy HIDy YDy [P,
[v]
= E, <(D[;1]|‘Pn>
= need to build an efficient set of basis states {|®y,;)}
Clear short review paper : [Bacca EPJ Plus 131, 107 (2016)]
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Example : oxygen isotopes
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[Hebeler et al. Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)]

Different ab initio models predict similar result
All require 3N forces to reproduce the dripline at *O
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Ab initio nuclear models

What happens far from stability ?
Liquid-drop and shell models are fair models of stable nuclei
What happens away from stability ?

In 80s Radioactive-lon Beams were developed
Enable study of nuclear structure
[see M. Pfitzner on Tuesday & S. Zacarias on Wednesday]

e are radioactive nuclei compact ?
e are shells conserved far from stability ?

Reactions involving radioactive nuclei useful in astrophysics
[see 2nd part,
Yu. Litvinov on Thursday and E. O’Connor on Friday]
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Radioactive-lon Beams

© Radioactive-lon Beams
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Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus
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Where ?
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In-flight projectile fragmentation

Primary beam ’7 high-energy primary beam
eavy ions| I ‘ﬂ ht .
. Llé Fr:men:g of heavy ions (e.g. %0, ¥Ca, U...)
' separator on thin target of light element (Be or C)

Thin target = fragmentation/fission produces

@ _radoactve - MANY exotic fragments at = vpeam
—|"™" Sorted in fragment separator
=g

1\

Used for high-energy reactions (KO, breakup. . .)
Examples : NSCL (MSU), RIKEN, GSI, GANIL
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Existing NSCL @ MSU
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Radioactive-lon Bear

Future : FRIB @ MSU

Ga'§i$iogpjng { : g

|FastBeamArea - ¢ F

Reaccelerated Beam Area

Stopped Beam Area

3 Space for future expansion
of the science program

Fragment Reaccelérator i
Separator (EEEEBD)
SRF High Bay
U 200 feet
| |
| T T T ‘
Production 50 meters
Target
Systems

T © 7 Linac Segment 1 Iiié‘

 Linac Segment2 -

\ Foldmg' Segment_éJ

27/36




Oddities far from stability Halo nuclei

@ Oddities far from stability
@ Halo nuclei
@ Exotic decays
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Oddities far from stability Halo nuclei

Halo nuclei
Exotic structure discovered by |. Tanihata [PLB 160, 380 (1985)]

Very large matter radius (R > A!/3)
Seen as core + one or two neutrons at large distance
llLi ZUSPb

e Light, neutron-rich nuclei
e small S, or Sy,

One-neutron halo
1Be = 'Be + n
BC="C+n
Two-neutron halo
‘He =*He +n +n
Hi=%%i+n+n

[M. Pfitzner’s talk on Tuesday & S. Zacarias’ talk on Wednesday]
Two-neutron halo nuclei are Borromean. ..

c+n+n is bound but not two-body subsystems

e.g. ®°He bound but not °He nor ?n 29/35



Oddities far from stability Halo nuclei

Borromean nuclei

Named after the Borromean rings. ..
[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]
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QOddities far from stability Exotic decays

Search for exotic decays using a TPC
Close to the dripline exotic decays have been predicted

@ [3-delayed particle emission

@ proton radioactivity
Using a Time-Projection Chamber where such events can be seen

counting gas at atmospheric pressure

P
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| system
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[see M. Pflitzner’s talk on Tuesday]
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B-delayed particle emission

_q
Away from stability, 3 decay "z st
can lead to emission of particles L iz
[see M. Pfutzner’s talk on Tuesday] B

SZn
2n+A2741

Provides structure information : "
. 0 ns1Z41
@ Two-neutron halo nuclei c+n+n AZ41
can decay into c+d
e.g.°*He—» a +d
= emphasises role of halo
o 8He — a+t+n
Depends on 3N correlations

[M. Pfiitzner et al. RMP 84, 567 (2012)]
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QOddities far from stability Exotic decays

Single-proton radioactivity

V()

Similar process as the a decay :
the proton is held within nucleus by
Coulomb barrier under which it tunnels

Tp = Spaexp{-2 [ \2u[V(r) - Qldr|

LA R s r

Conservation laws 0t T —
o Angular-momentum : I; = Iy +1+s _ " ; ;
o Parity : mim; = (—1) g r ]

Strongly sensitive to Q value and [ - 'Ofﬁf .

= information on structure @ dripline 0° .
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[see M. Pfitzner’s talk on Tuesday]
[M. Pfutzner et al. RMP 84, 567 (2012)]
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QOddities far from stability Exotic decays

Two-proton radioactivity

At the proton dripline,
2p radioactivity is also possible
True 2p radioactivity : not sequential

Predicted in 1960s by Goldansky
Discovered in 2002 by Pfutzner

T, spans 18 order of magnitude

[see M. Pfltzner’s talk on Tuesday]
[Pfltzner et al. RMP 84, 567 (2012)]
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QOddities far from stability Exotic decays

Two-proton radioactivity
A proper theoretical analysis requires a 3-body model

[see M. Pfltzner’s talk on Tuesday]
[Pfutzner et al. RMP 84, 567 (2012)]
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Summary
Liquid-drop and shell model describe qualitatively stable nuclei
Nowadays ab initio nuclear-structure models from first principles

RIBs enable us to study nuclear structure far from stability
New exotic structure discovered :

e halo nuclei
diffuse halo around a compact core

@ shell inversions or shell collapse
@ nuclei beyond the dripline (resonant ground state)
RIB can be used to study reactions of astrophysical interest. ..
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