- HADRON PHYSICS LECTURE ON SELECTED TOPICS OF THE CONFERENCE

Harald Merkel

Johannes Gutenberg-Universität Mainz

59thInternational Winter Meeting on Nuclear Physics Bormio, January 19th, 2020

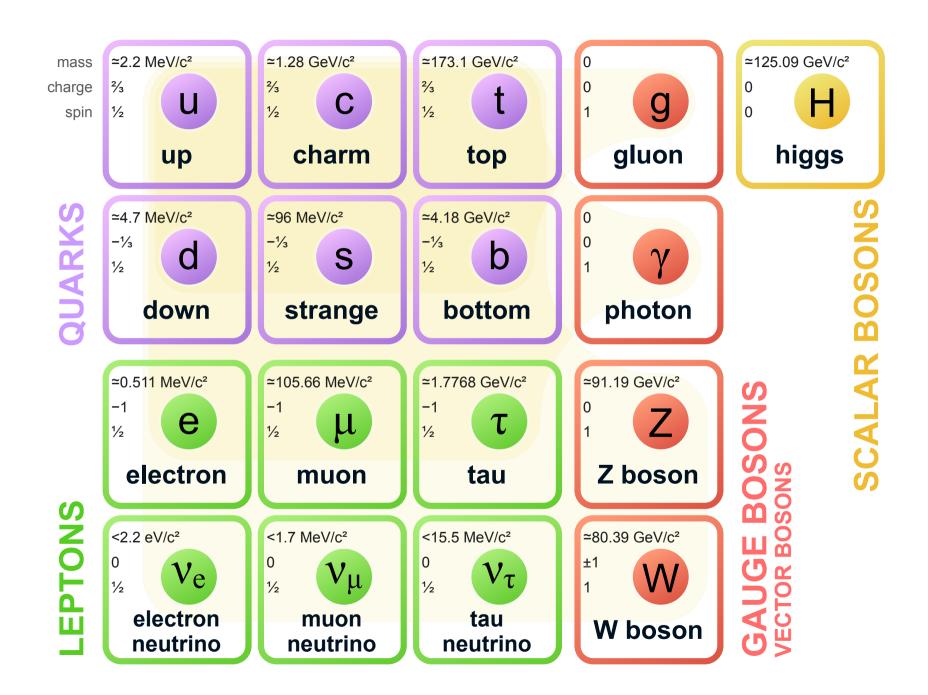
- From Hadrons to QCD → brief motivation of the fundamental theory
 - ➤ Quarks as building blocks → QCD Lagrangian
- From QCD to Hadrons → deriving expectations from QCD Lagrangian
 - ▶ e.g. Symmetries of QCD → potential models, Effective theories, Lattice
- Determination of Hadron properties
 - ▶ Methods: e^+e^- Annihilation, γ +Baryon, Hadron-Hadron Collisions, Electron Scattering
 - ➤ Mass, Width, Decays, Quantum Numbers, Wave-Function (Form-Factor, Polarizabilities, ...)
- Compare experiments with expectations: Exotics, ...

Hadron Physics

Invited Speakers (Hadron Physics only) Bormio 2020:

- Christoph Blume (University of Frankfurt)
 Recent Results from HADES
- David Hornidge (University of Mount Allison)
 Hadron polarizability measurements
- Stefano Spataro (University of Torino)
 Exotic results from BESIII
- Wolfram Weise (TU-München)
 Hyperon-nuclear interactions and strangeness in neutron stars
- Hartmut Wittig (University of Mainz)
 A glimpse of the H dibaryon from a lattice QCD perspective

The Standard Model of Elementary Particles



Quark Model

Introduced 1964 by Gell-Mann/Zweig to clean up "particle zoo"

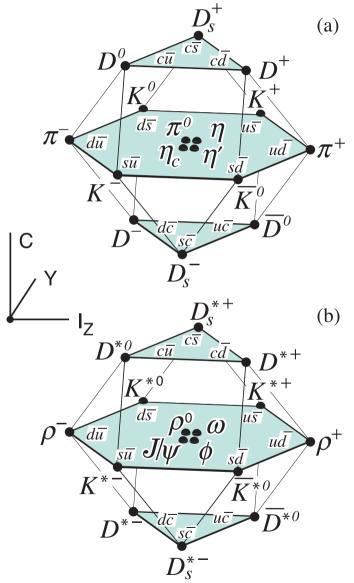
Mesons as Quark-Antiquark Pair:

Pions:

π^+	π^0	π^-	η_1
$ u\overline{d}\rangle$	$\left \frac{1}{\sqrt{2}} \left(\left u \overline{u} \right\rangle - \left d \overline{d} \right\rangle \right) \right $	$ d\overline{u}\rangle$	$\left \frac{1}{\sqrt{2}} \left(\left u \overline{u} \right\rangle + \left d \overline{d} \right\rangle \right) \right $

Kaons:

... 6 flavours \rightarrow 36 Mesons?



Baryons

Baryons as three quark states

Examples:

 $p: |u \uparrow u \downarrow d \uparrow\rangle$

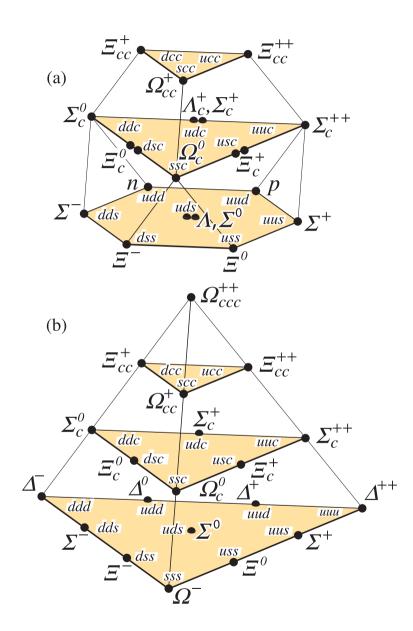
 $n: |u \uparrow d \downarrow d \uparrow\rangle$

 $\Delta(1232): |u \uparrow u \uparrow d \uparrow\rangle$

 $\Lambda: |u \uparrow d \downarrow s \uparrow\rangle$

. . .

Ground states are OK, excited states?



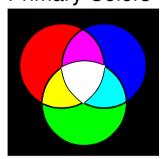
Problem: Δ^{++} with angular momentum $J = \frac{3}{2}$:

$$\Delta^{++} = \underbrace{|uuu\rangle}_{\text{flavour}} \cdot \underbrace{|\uparrow\uparrow\uparrow\rangle}_{\text{spin}} \cdot \underbrace{|l=0\rangle}_{\text{orbital }l}$$

- Not possible for Fermions → additional antisymmetric charge necessary
- Not visible for three- and two-quark states

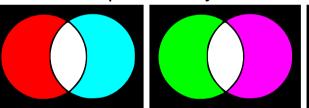
Color Analogy:

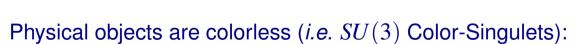
Three colors: Primary Colors



Two Colors:

Color – complementary Color





Baryons: red-green-blue tripletts

$$|qqq\rangle = \sqrt{\frac{1}{6}}(|\textit{RGB}\rangle - |\textit{RBG}\rangle + |\textit{BRG}\rangle - |\textit{BGR}\rangle + |\textit{GBR}\rangle - |\textit{GRB}\rangle)$$

Mesons: color-anti-color pairs

$$|q\overline{q}\rangle = |R\overline{R}\rangle + |G\overline{G}\rangle + |B\overline{B}\rangle$$

QCD Lagrangian

Lagrangian field theory:

$$L=T-V$$
 and Lagrange's Equation $\dfrac{\mathrm{d}}{\mathrm{d}t}\left(\dfrac{\partial L}{\partial \dot{q}_i}\right)-\dfrac{\partial L}{\partial q_i}=0$ or with continuous field $\phi(x_\mu)$ $\dfrac{\partial}{\partial x_\mu}\left(\dfrac{\partial \mathcal{L}}{\partial(\partial\phi/\partial x_\mu)}\right)-\dfrac{\partial \mathcal{L}}{\partial\phi}=0$

Only two ingredients for \mathcal{L}_{QCD} :

• Quarks are massive spin $\frac{1}{2}$ particles \Rightarrow Dirac equation for free lagrangian

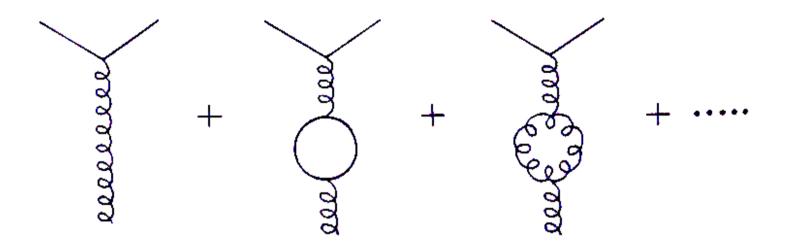
$$\mathcal{L}_0 = \overline{q}_j (i \gamma^{\mu} \partial_{\mu} - m) q_j$$

• Gauge invariant under SU(3) color symmetry *i.e.* invariant under local phase rotation: $q(x) \to e^{i\alpha_a(x)T_a}q(x)$ with eight 3×3 matrices T_a

$$\mathcal{L}_{\rm QCD} = \overline{q}(i\gamma^{\mu}\partial_{\mu} - m)q - g(\overline{q}\gamma^{\mu}T_{a}q)\,G_{\mu}^{a} - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}$$
 with 8 massless vector gauge fields transforming like
$$G_{\mu}^{a} \to G_{\mu}^{a} - \frac{1}{g}\partial_{\mu}\alpha_{a} - f_{abc}\alpha_{b}G_{\mu}^{c}$$
 gauge field strength tensor
$$G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a} - g\,f_{abc}G_{\mu}^{b}G_{\nu}^{c}$$

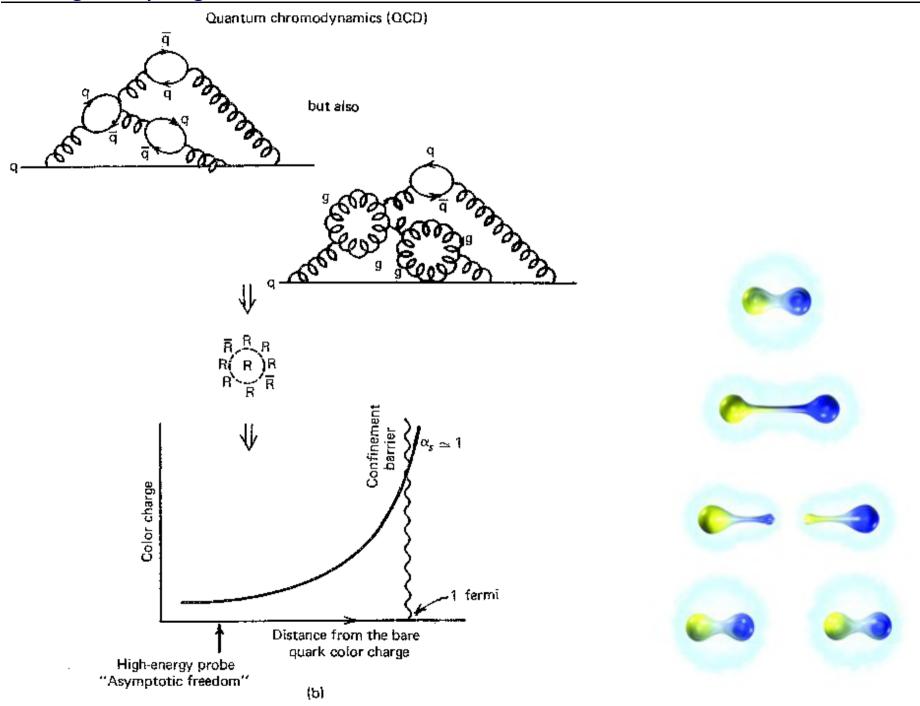
$$SU(3) \text{ structure constants given by } [T_{a}, T_{b}] = i\,f_{abc}T_{c} \qquad \Rightarrow \text{``non abelian''}$$

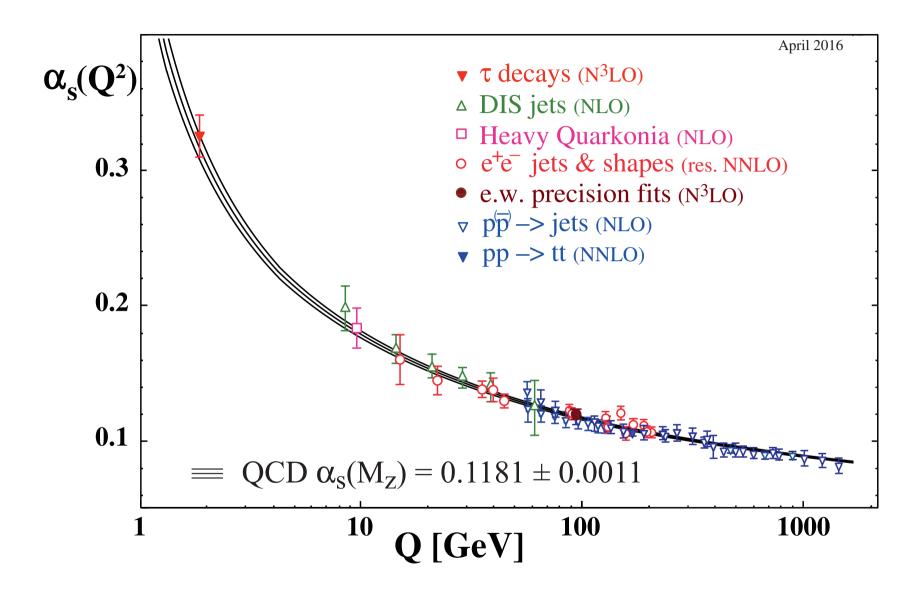
Charge Screening



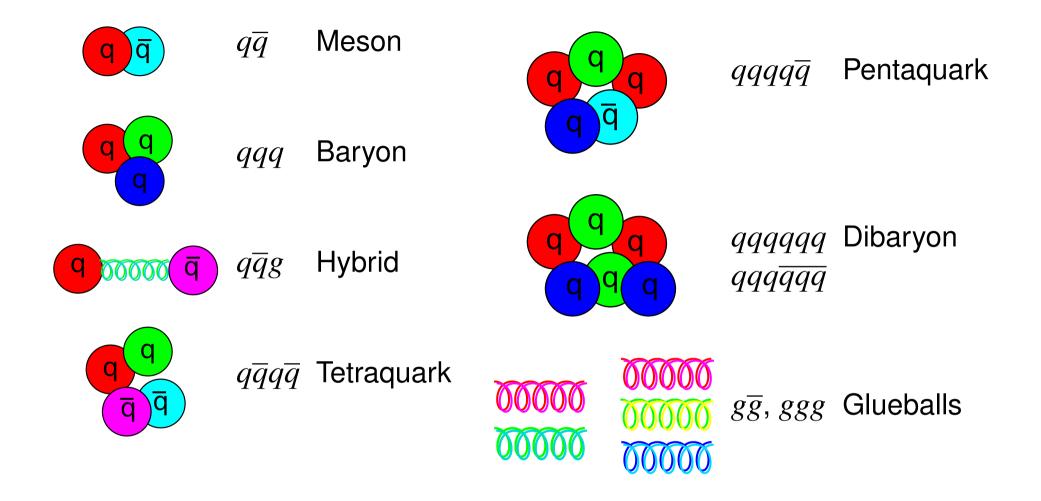
- Quark loops like lepton loops in QED
- For each flavour, large mass supressed
- Additional:
 - ➤ Gluon Loops
 - ► Large contribution: 8 gluons
 - ➤ opposite sign!

Strong Coupling Constant

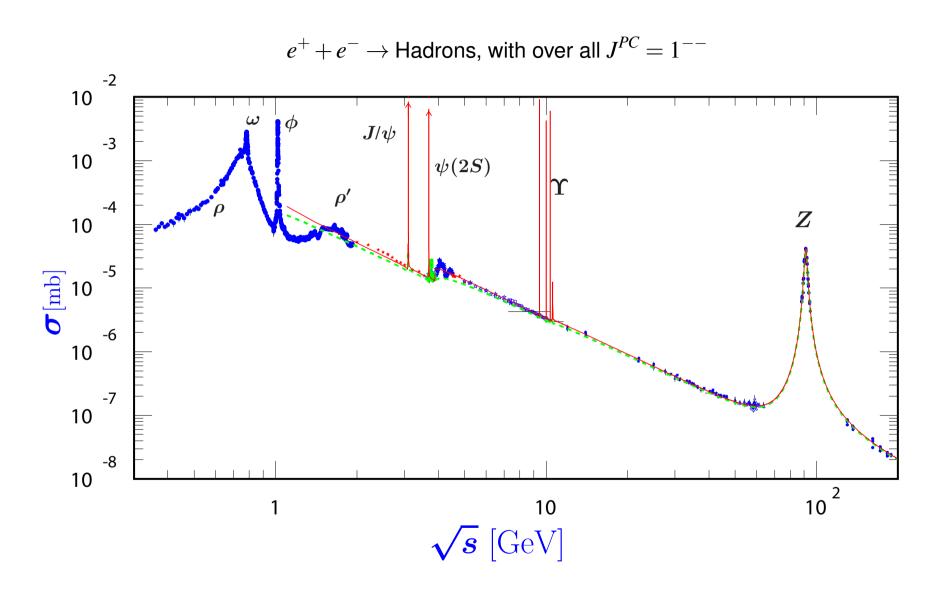




Possible Quark States

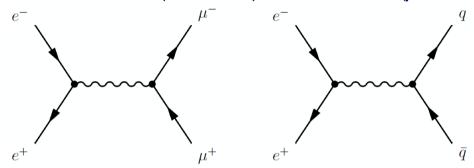


- Not only $q\overline{q}$ and qqq states \Rightarrow a new zoo of "Exotics" is expected!
- Important for most of them: "Color-Singulet" does not mean "white"!
 Two singulets are always decoupled → non-trivial binding (e.g. "white" exchange) neccessary



e^+e^- Annihilation: general features

Idea: Relate $q\bar{q}$ cross section to known (i.e. QED) cross section (μ to be distinguishable from e):



 $\mu^+\mu^-$ cross section from QED:

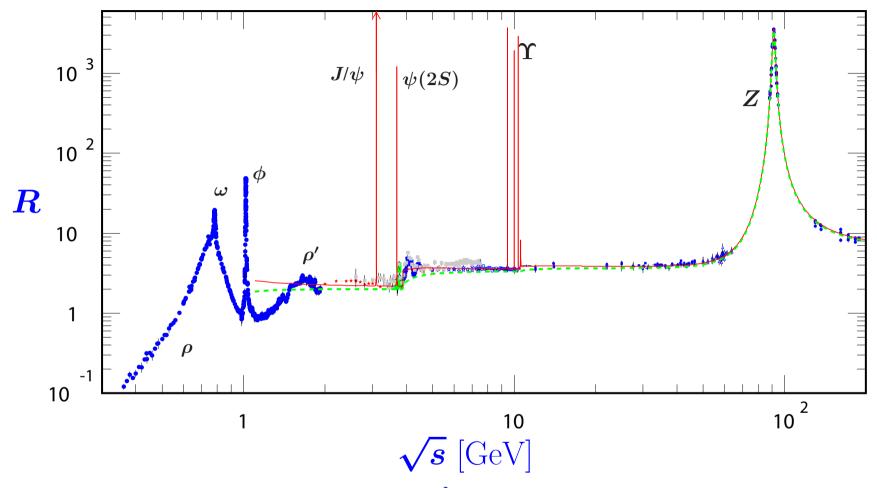
$$\sigma(e^+e^- \to \mu^+\mu^-) = \frac{4\pi\alpha^2}{3s}$$

 $q\overline{q}$ cross section (also only QED!):

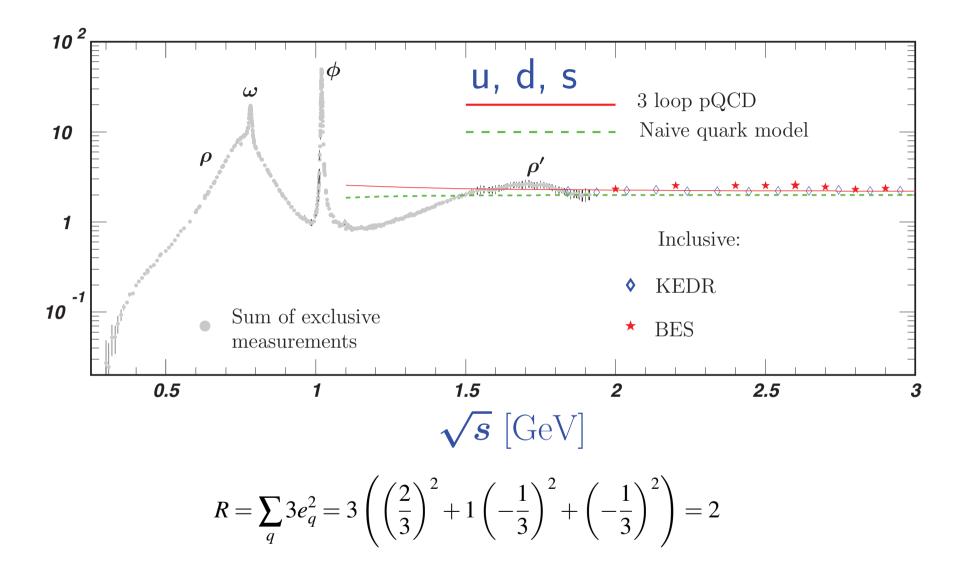
$$\sigma(e^+e^- \to q\overline{q}) = N_c e_q^2 \ \sigma(e^+e^- \to \mu^+\mu^-)$$
 with $e_q = \begin{cases} -\frac{1}{3} & \text{for } q = d, s, b \\ +\frac{2}{3} & u, c, t \end{cases}$ and $N_c = 3$ number of colors.

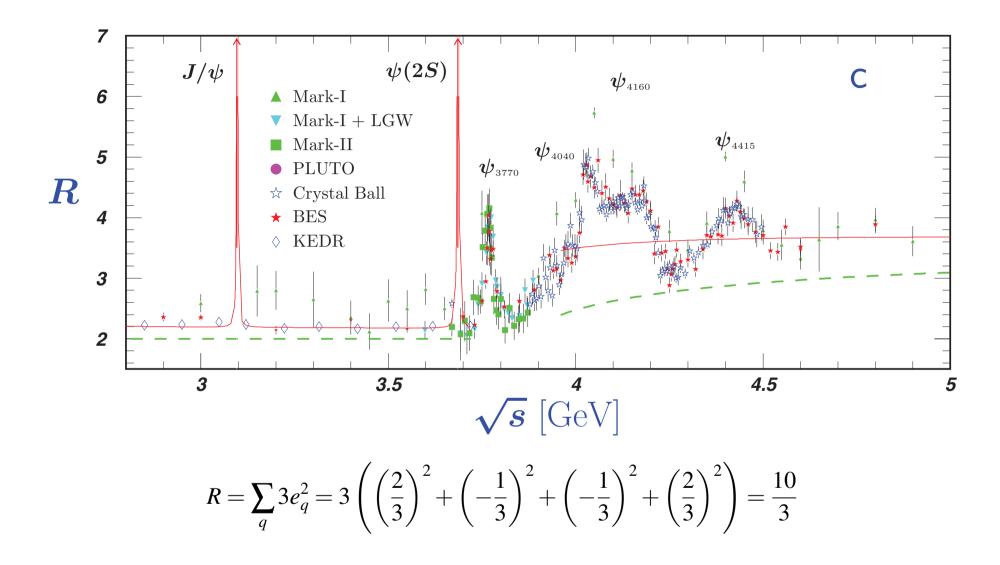
$$R = \frac{\sigma(e^+e^- \to \text{Hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = \sum_q 3e_q^2$$

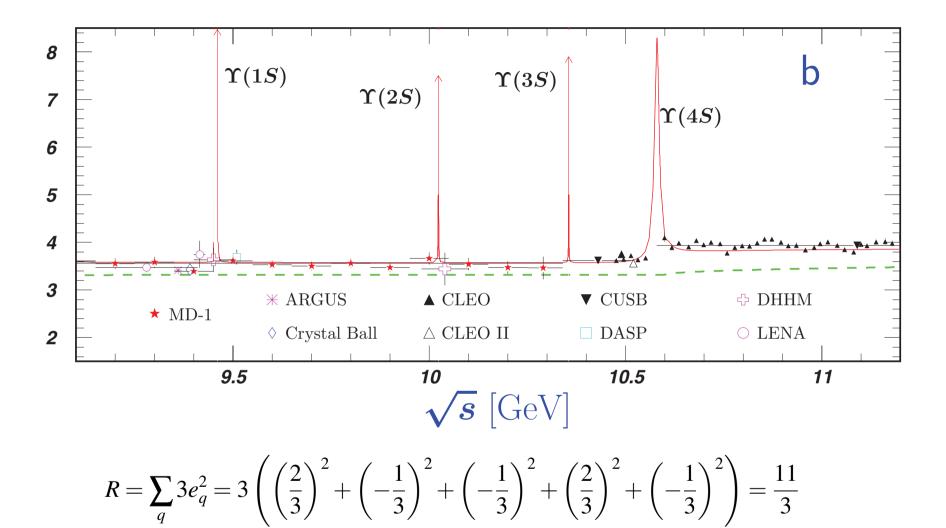
e^+e^- Annihilation



- with QCD corrections: $R = \sum_q 3e_q^2(1 + \frac{\alpha_s(Q^2)}{\pi})$
- confirms quark charge
- ullet confirms (again) $N_c=3$ colors







Consequences from QCD for Hadron Properties

Symmetries of the QCD Lagrangian: Parity

 \mathcal{L}_{QCD} is invariant under parity transformation (*i.e.* point reflection)

$$\hat{P}:(t,\vec{x})\to(t,-\vec{x})$$

Eigenvalues:

$$\hat{P}^2(\phi(t,\vec{x})) = \hat{P}(\hat{P}(\phi(t,\vec{x}))) = \hat{P}(\phi(t,-\vec{x})) = \phi(t,\vec{x})$$

 \Rightarrow $\hat{P}(\phi(t,\vec{x}) = P\phi(t,\vec{x})$ with Eigenvalues $P = \pm 1$ (actually $\pm e^{i\phi}$, but we can redefine \hat{P})

Consequences for Hadrons:

- All states can be decomposed into states with P = +1 or P = -1
 - ➤ Might be degenerated?
- System of Hadrons

$$\hat{P}\left(\phi_1(t,\vec{x})\otimes\phi_2(t,\vec{x})\otimes\cdots\otimes\phi_N(t,\vec{x})\right)=P_1\left(\phi_1(t,\vec{x})\right)\times P_2\left(\phi_2(t,\vec{x})\right)\times\cdots\times P_N\left(\phi_N(t,\vec{x})\right)$$

Parity is a "multiplicative" quantum number

- Hadrons produced via QED/QCD from a state with defined total parity have same total parity
- ullet Additional U(1) Symmetries for Baryon-Number, Charge, Lepton Number \Rightarrow combined parity operators
- Define intrinsic parity $P_{\text{Proton}} = P_{\text{Neutron}} = P_{\text{Electron}} = +1$:

Symmetries of the QCD Lagrangian: Experimental determination of Parity

Example: Parity of the pion

$$^{2}H+\pi^{-}\rightarrow n+n$$

- measure angular momentum (i.e. angular distribution)
- intrinsic parity P(p) = P(n) = 1
- $\begin{array}{ll} \bullet \text{ Deuteron has Spin} & S_d &= 1 \\ \text{Pion has Spin} & S_\pi &= 0 \\ s\text{-Wave} & L &= 0 \\ n \text{ antisymmetric} \end{array} \right\} \Rightarrow \text{total orbital momentum of final state } L = 1 \Rightarrow P = (-1)^L$
- Sum

$$\underbrace{(1)}_{p\uparrow}\underbrace{(1)}_{n\uparrow}\underbrace{(P_{\pi})}_{\text{Pion}} = \underbrace{(-1)}_{L=1}\underbrace{(1)}_{n\uparrow}\underbrace{(1)}_{n\uparrow}$$

 \Rightarrow Pion has parity $P_{\pi} = -1$, it is a "pseudoscalar" particle

General approach:

- calculate parity of initial state
- examine strong and electromagnetic (not weak!!!) decays, determine angular momenta
- tie to defined intrinsic parity

Symmetries of the QCD Lagrangian: Charge Conjugation

 \mathcal{L}_{QCD} is invariant under Charge Conjugation (*i.e.* exchange particle \rightarrow antiparticle)

$$\hat{C}:\ket{\phi}
ightarrow\ket{\overline{\phi}}$$

Same properies as a parity operator

- Eigenvalues $C = \pm 1$
- Multiplicative quantum number for a system
- New: only neutral particles can be eigenstates!

Experimental determination: e.g. C-Parity of the pion from decay:

$$\pi^0 \rightarrow \gamma + \gamma$$

- ullet C-Parity of photon $C(\gamma) = -1$ from QED
- Multiplicative $\Rightarrow C(\pi^0) = (-1)_{\gamma}(-1)_{\gamma} = 1$

Quantum numbers of the Pion: $J^{PC} = 0^{-+}$

C-Parity only for neutral particles

- ullet Combination with Isospin Rotation $\hat{R}:|I,I_z> o |I,-I_z>$
- ullet Define G-Parity: $\hat{G}=\hat{C}\hat{R}$ for charged mesons

Natural Quantum numbers

ullet "Natural" quantum numbers for mesons: J^{PC} with $|L-S| \leq J \leq |L+S|$

$$\begin{array}{l} \hat{P}(Y_{lm}(\theta, \phi)) = Y_{lm}(\pi - \theta, \phi + \pi) = (-1)^{l}Y_{lm}(\theta, \phi) \\ \text{intrinsic parity from Dirac Equation:} \quad P(q) \neq P(\overline{q}) \end{array} \} \quad \Rightarrow \quad \hat{P}|q\overline{q}\rangle = (-1)^{L+1}|q\overline{q}\rangle$$

Charge Parity of a Meson as a Quark-Antiquark pair:

$$\hat{C}(|q\overline{q}\rangle) = C|q\overline{q}\rangle$$

➤ Charge Conjugation corresponds to exchange of quark/antiquark

Exchange of Wavefunctions (see above)
$$C=(-1)^{L+1}$$
 \Rightarrow $\hat{C}(|q\overline{q}\rangle)=(-1)^{L+S}|q\overline{q}\rangle$ Spin flip/No Spin flip for $S=0/S=1$ $C=(-1)^{S+1}$

• Allowed: $0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 1^{++}, 2^{--}, 2^{-+}, 2^{++}, 3^{--}, 3^{+-}, 3^{++}, \dots$ Not allowed: $0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots \Rightarrow \text{Exotic Mesons}$

$2S+1L_J$	S	L	J	Р	O	J^{PC}	Mesons			3	Name
$^{1}S_{0}$	0	0	0	_	+	0_{-+}	π	η	η'	K	pseudo-scalar
$^{3}S_{1}$	1	0	0	_	_	1	ρ	ω	φ	K^*	vector
$^{1}P_{1}$	0	1	1	+	_	1+-	b_1	h_1	h_1'	K_1	pseudo-vector
$^{3}P_{0}$	1	1	0	+	+	0_{++}	a_0	f_0	f_0'	K_0^*	scalar
$^{3}P_{1}$	1	1	1	+	+	1++	a_1	f_1	$f_1^{\check{\prime}}$	K_1	axial vector
$^{3}P_{2}$	1	1	2	+	+	2++	a_2	f_2	f_2'	K_2^*	tensor

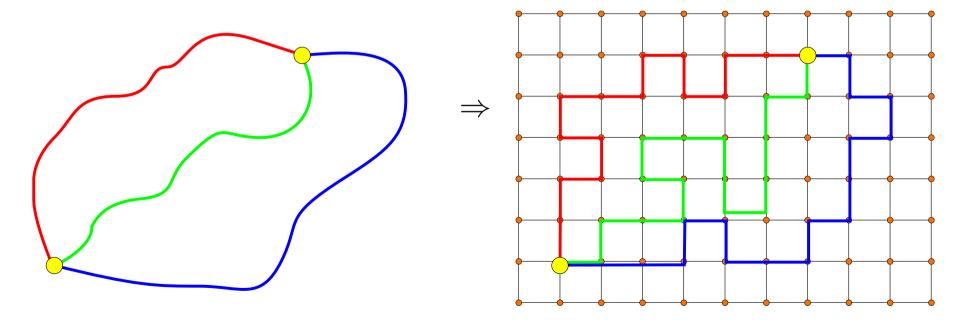
Theoretical Approaches

The "brute force" approach: Lattice QCD

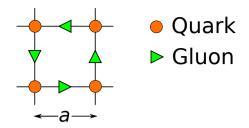
Starting point: Feynman's Path Integral formulation of Quantum Mechanics:

$$\psi(x_2,t_2) = \frac{1}{Z} \int e^{iS} \psi(x_1,t_1) \,\, \mathcal{D} x$$
 with
$$\int \mathcal{D} x : \text{Integration over } \textit{all } \text{paths } x(t) \text{ with } x(0) = x_1$$
 and the action
$$S = \int_{t_1}^{t_2} L(x,\dot{x},t) \,\, \mathrm{d} t$$

(a.k.a. Fermat's principle, Hamilton's principle, principle of least action)



Lattice QCD



Transform to Euclidean Space (neccessary to use Monte-Carlo-Methods):

$$t \to i\tau$$

$$-(\mathrm{d}t^2) + \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2 \to \mathrm{d}\tau^2 + \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2$$

Define Link Variables for gluonic field

$$U_{\mu} = \exp\left(iaG_{\mu}\left(n + \frac{\hat{\mu}}{2}\right)\right)$$

 $U_{\mu\nu}(n)$: closed loop around one tile, "plaquette"

ullet Fermion action bei discretizing derivatives $\partial \phi_t pprox rac{\phi(t+a) - \phi(t-a)}{2a}$

$$S = \int \overline{u}(iD_{\mu}\gamma_{\mu} + m)u d^4x \qquad o \qquad D_{\mu} = rac{1}{2a} \left[U_{\mu}(x)q(x+a\hat{\mu}) - U_{\mu}(x-a\hat{\mu})^{\dagger}q(x-a\hat{\mu}) \right]$$

• Gluonic action:

$$S = -\frac{1}{2g^2} \operatorname{Tr} \int G_{\mu\nu} G^{\mu\nu} d^4x \qquad \rightarrow \qquad S_L = -\frac{1}{2g^2} \sum a^4 \operatorname{Tr} (1 - U_{\mu\nu}(n))$$

Lattice

Final Step: Numeric solution via Markov-chain Monte-Carlo:

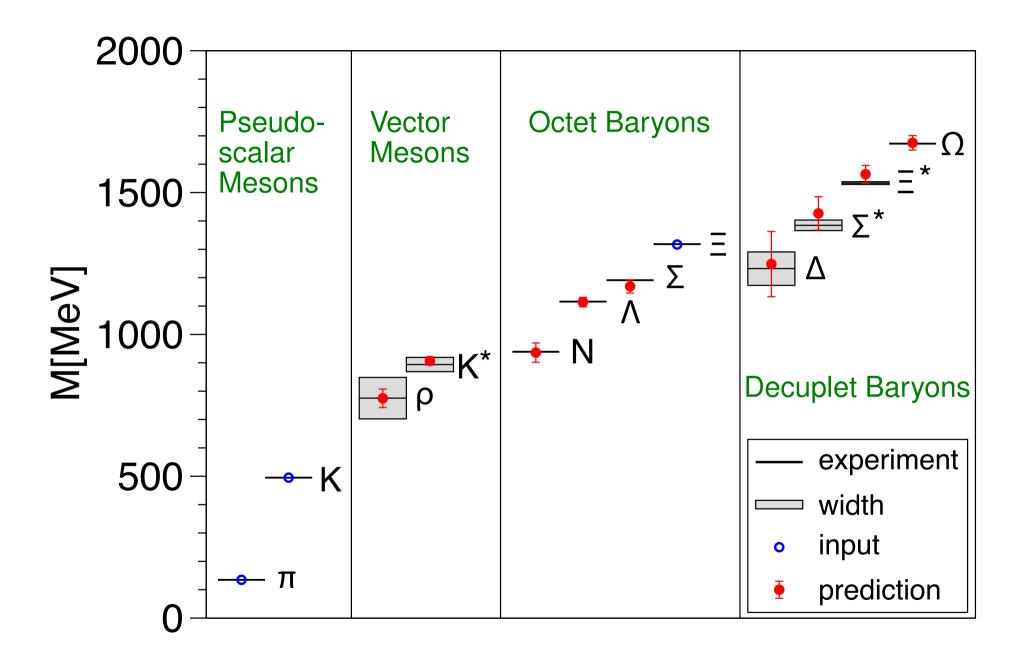
- Choose a start-configuration C₀
- Accept a random next configuration C_{n+1} with probability

$$P = \min\left(1, \frac{W(C_{n+1})}{W(C_n)}\right)$$

- \Rightarrow We don't need to know the probability density function, we need only the *relative* weight W(C), calculated by discretized path integral!
- ullet Repeat until "thermalization", i.e. distribution of configurations corresponds to W(C)
- Repeat everything with different Lattice spacing a
- Extrapolation $a \rightarrow 0$

Summary:

- Gauge invariant
- Works in the non-perturbative regime
- Finite volume, finite momentum

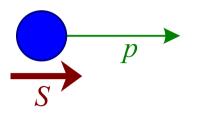


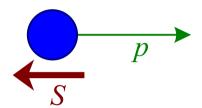
Still one symmetry of QCD not used...

Helicity: Spin projection in direction of motion

Right-handed:

Left-handed:





Not a good quantum number: inversion by "overtaking" reference frame!

Better: Chirality

$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

For massless particles:

$$\gamma^5 \cdot u_+ = \gamma^5 \cdot \begin{pmatrix} \chi \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \end{pmatrix} = \gamma^5 \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = +u_+ \quad \text{and} \quad \gamma^5 \cdot u_- = \gamma^5 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} = -u_-$$

Eigenvalues of γ^5 are the eigenvalues of helicity for particles with $m \to 0$

Chiral Symmetry

Projection Operator

$$\frac{1}{2}(1+\gamma^5)u = u_R \qquad \qquad \frac{1}{2}(1-\gamma^5)u = u_L$$

Consequences for *Dirac Equation* $(i\gamma^{\mu}p_{\mu}-m)u=0$:

$$\overline{u}\gamma^{\mu}u = (\overline{u}_R + \overline{u}_L)\gamma^{\mu}(u_R + u_L) = \overline{u}_R\gamma^{\mu}u_R + \overline{u}_L\gamma^{\mu}u_L$$

for $m \to 0$: left-/right-handed particles interact only with left-/right-handed particles

Def.: Chiral Symmetry: invariant under separate rotations

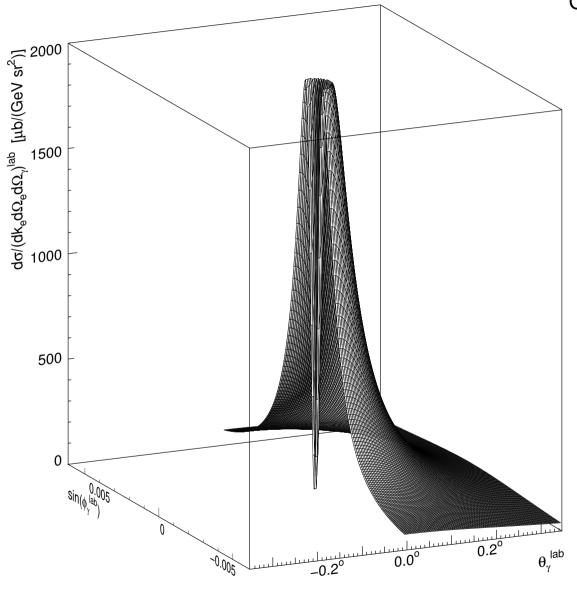
$$\psi_L o e^{-i heta_L} \psi_L$$
 and $\psi_R o \psi_R$ or $\psi_R o e^{-i heta_R} \psi_R$ and $\psi_L o \psi_L$

Chiral Symmetry in QCD: combination with Isospin rotation of $q = \begin{pmatrix} u \\ d \end{pmatrix}$:

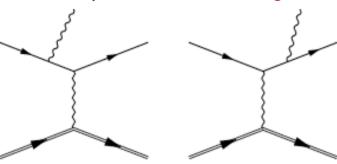
$$U(2)_L \times U(2)_R = \underbrace{SU(2)_L \times SU(2)_R}_{\text{Chiral Symmetry}} \underbrace{\times U(1)_V \times U(1)_A}_{\text{Baryon number, Quan. anomaly}}$$

Chiral Symmetry: QCD invariant under separate isospin rotation for left- and right-handed quarks in the limit of massless quarks

The Power of Chiral Symmetry...



QED Example: Bremsstrahlung



- Virtual intermediate electron
- $\frac{1}{p-m} \to 0$ Peak in electron direction
- Exactly at $\theta_{\gamma e} = 0$:
 - ► Emmission of Spin 1 Photon
 - ➤ No orbital angular momentum
 - ➤ ⇒Spin Flip of electron breaks Chiral Symmetry
 - ightharpoonup Cross section ightharpoonup 0
 - ⇒ Chiral symmetry is powerfull

Expectations from Chiral Symmetry for Hadron Physics

Mass of light quarks:

$$m_u = 2.2 \,\mathrm{MeV}$$
 $m_d = 4.7 \,\mathrm{MeV}$

$$m_q \ll m_{
m Hadrons}$$

Chiral symmetry $SU(2)_R \times SU(2)_L$ should be conserved at least at 1% level!

Expectations:

Parity doublets: all light quark states have partner with oposite parity

Observation:

- No parity doubletts in baryon or meson spectrum seen! e.g. $\rho(770) < a_1(1200)$
- ullet Three ridiculous light mesons $\pi^0,~\pi^+,~\pi^-$ with $m_\pi \ll {2\over 3} m_p$

Hypothesis:

- Chiral Symmetry is spontaneously broken
- $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V \times SU(2)_A$

of standard vector $SU(2)_V$ and rest $(SU(2)_A \equiv SU(2)_L \times SU(2)_R / SU(2)_V$ is not a group!)

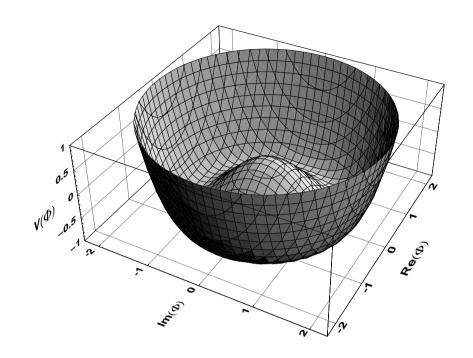
Spontaneous Symmetry Breaking and Goldstone-Theoreme

2-dimensional Example:

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m^2 \phi^* \phi - \frac{\lambda}{4} (\phi^* \phi)^2$$

Minimum at

$$|\phi| = k = \sqrt{-m^2/\lambda}$$



Replace complex scalar field $\phi = ke^{i\theta/k}, \quad \theta \in \mathbb{R}$

$$\Rightarrow \mathcal{L} = \frac{1}{2} (-i e^{-i\theta/k} \partial^{\mu} \theta) (i e^{i\theta/k} \partial_{\mu} \theta) - \frac{1}{2} m^2 k^2 - \frac{\lambda}{4} k^4 = \frac{1}{2} \partial^{\mu} \theta \partial_{\mu} \theta - \underbrace{\frac{1}{2} m^2 k^2 - \frac{\lambda}{4} k^4}_{\text{const. in } \theta}$$

 \Rightarrow Real scalar field θ ist massless!

Spontaneous Symmetry Breaking ⇒ massless Goldstone-Bosons. ⇒ QCD: Pions

Chiral Effective Field Theories

What are the relevant degrees of freedom? $\Rightarrow e.g.$ pions as Goldstone-Bosons

Ingredients for an effective field theory:

- Most general Lagrangian in theses DoF respecting the Symmetries of L_{QCD}
 - ⇒ series in terms of derivatives, fields
 - \Rightarrow this is a perturbative theory!
- Most important: sort these terms!
 - \blacktriangleright Expansion in mass terms (explicit symmetry breaking by $-\overline{q}_f M q_f$)
 - ➤ Simultaneously expansion in *p*
 - ▶ Order Scheme → define what is LO, NLO, NNLO!
- Derive Feynman rules, calculate observables order by order, ...

To deal with:

- Regularization ⇒ Low Energy Constants Fit to experiment, limits predictive power
- Degrees of freedom: e.g. better to include resonances?
- Convergence of series
- **9** ...

N.B.: Theorists' "Slang"

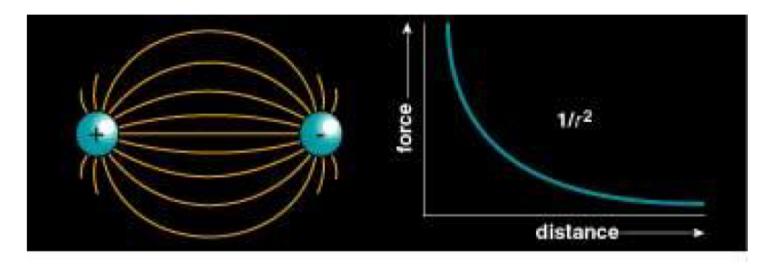
If a theorist uses the word

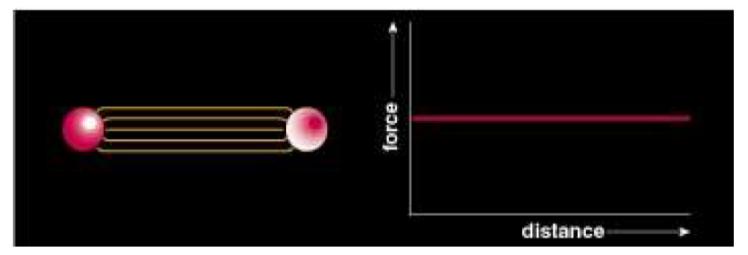
"chiral"

like e.g. in "Chiral Extrapolation of Lattice QCD" this usually means

"Using methodes from Effective Field Theories using the Chiral Symmetry of QCD"

Potential Models





- ullet Idea: heavy quarks o non-relativistic
- A quark in the potential of a mean field

Simple Model: Non-relativistic Potential Model

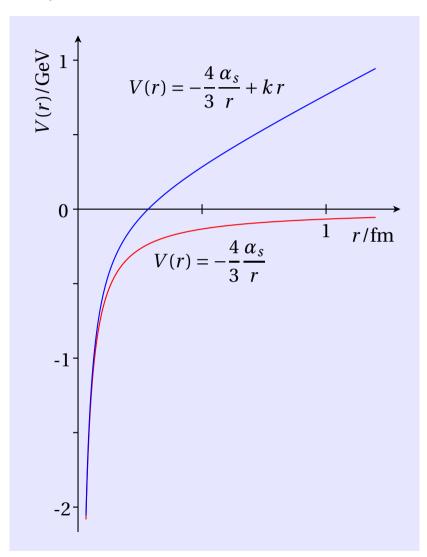
Model: quarks in the potential of the rest of the meson/baryon

$$\bullet$$
 $V(r \rightarrow 0)$

- ➤ Asymptotic freedom
- ► Massless gluons

 → infinite range Coulomb like potential $\frac{1}{r}$
- $\bullet V(r \rightarrow \infty)$
 - ▶ Confinement potential $k \cdot r$
 - ➤ Running coupling constant

$$V(\vec{r}) = -\frac{4}{3} \frac{\alpha_s}{r} + k \cdot r$$



Simple Model: Non-relativistic Potential Model

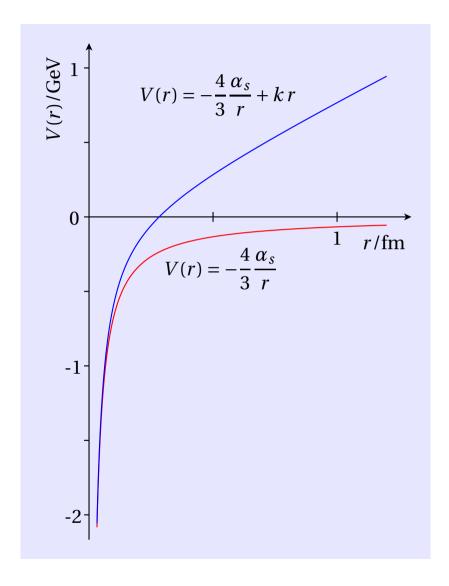
Non-relativistic $q\overline{q}$ potential:

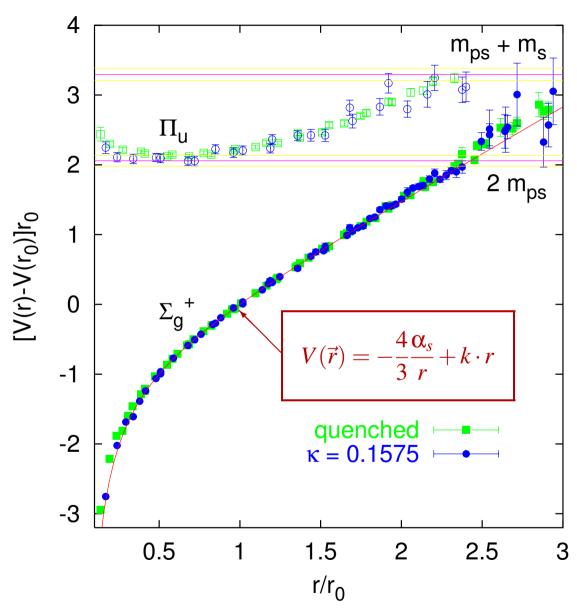
$$V(\vec{r}) = -\frac{4}{3} \frac{\alpha_s}{r} + k \cdot r$$

Running Coupling constant:

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - n_f)\log\left(\frac{Q^2}{\Lambda^2}\right)}$$

 n_f : number of flavours $\Lambda pprox 0.2\, {
m GeV}$: QCD Scale parameter $k pprox 1\, {
m \frac{GeV}{fm}}$: QCD String constant





Quenched approximation, i.e. no disconnected quark loops

Other usefull Ingredients: Spin Dependent Potential

Neccessary extensions of potential model:

Spin-Orbit (fine structure)

$$V_{LS} = \frac{1}{2m_c^2 r} (\vec{L} \cdot \vec{S}) \left(3 \frac{\mathrm{d}V_V}{\mathrm{d}r} - \frac{\mathrm{d}V_V}{\mathrm{d}r} \right)$$

Spin-Spin (hyperfine structure)

$$V_{SS} = \frac{2}{3m_c^2 r} (\vec{S}_1 \cdot \vec{S}_2) \nabla^2 V_V(r)$$

Tensor force

$$V_T = \frac{2}{12m_c^2} (3(\vec{S} \cdot \hat{r})(\vec{S} \cdot \hat{r}) - S^2) \left(\frac{1}{r} \frac{\mathrm{d}V_V}{\mathrm{d}r} - \frac{\mathrm{d}^2 V_V}{\mathrm{d}r^2} \right)$$

with V_V , V_S vector and scalar part of the previous potential

Finding Hadrons \Rightarrow Just looking for Bumps?

What is a Bump? The Line Shape:

- $\begin{array}{lll} \bullet \mbox{ Strong Decay} & \Rightarrow & \mbox{ Lifetime} & \tau \approx 10^{-23} \mbox{ s} \\ & \Rightarrow & \mbox{ Width} & \Gamma_0 \approx 100 \frac{\mbox{MeV}}{c} \end{array}$
- Breit-Wigner Amplitude (complex mass in Dirac-propagator)

$$BW(m) = \frac{\Gamma_0/2}{m_0 - m - i\Gamma_0/2}$$

valid for
$$\Gamma_0 \ll m_0 \ m_0 \gg$$
 Threshold Energy

Better (relativistic, orbital momentum, phase space included):

$$BW(m) = \frac{m_0 \Gamma(m)}{m_0^2 - m^2 - i m_0 \Gamma(m)}$$

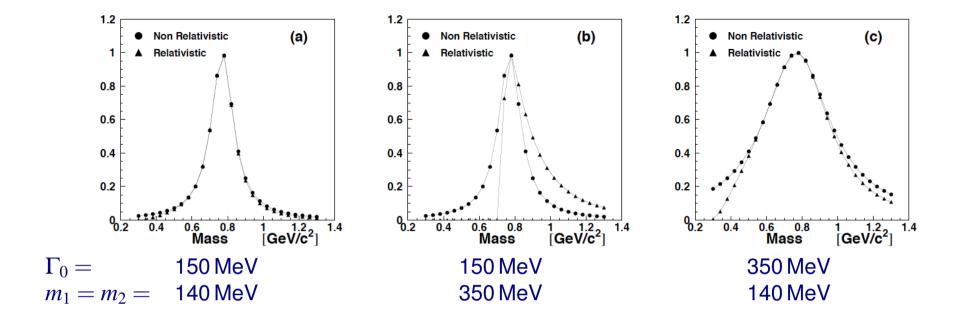
with
$$\Gamma(m) = \Gamma_0 \frac{m_0}{m} \frac{p}{p_0} \frac{F_l^2(p)}{F_l^2(p_0)}$$

angular momentum barrier: $F_0(p) = 1$

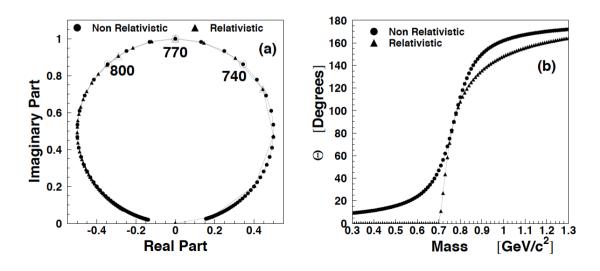
$$F_1(p) = \sqrt{2z/(z+1)}$$
 with $z = (p/p_R)^2$
 $F_2(p) = \sqrt{13z^2/((z-3)^2 + 9z)}$

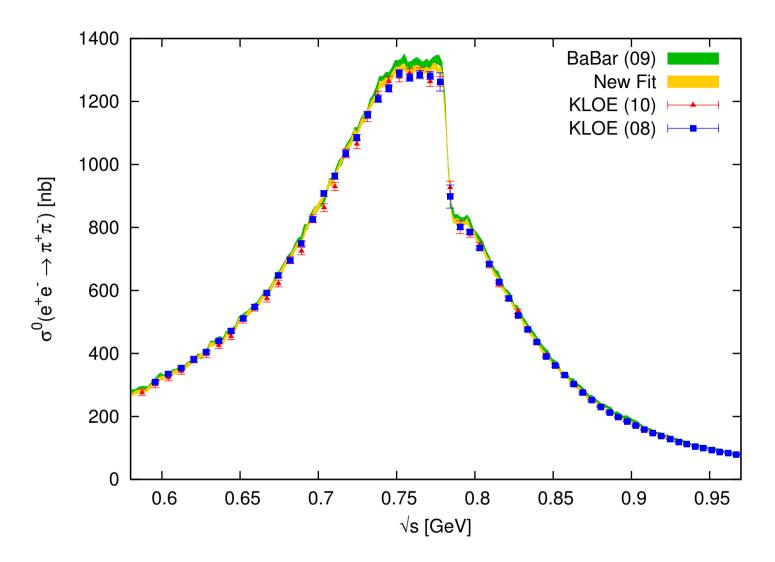
. . .

Example $\rho(770)$



Argand-Diagramm:





no clean Breit-Wigner $\rightarrow \rho - \omega$ interference at the position of the ω mass \rightarrow amplitude and phase changed \Rightarrow all open channels have to be considered on complex amplitude level!

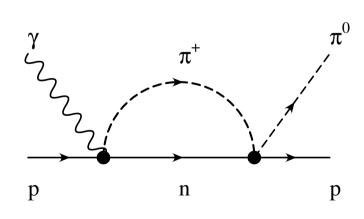
Coupled channels

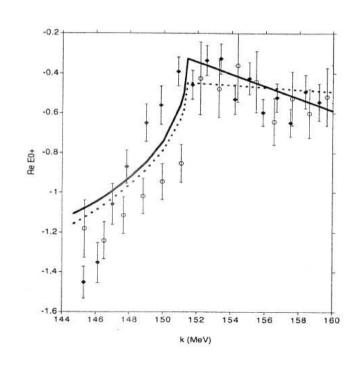
Simplest Example: proton around the pion production threshold three open channels: $\gamma + p$, $n + \pi^+$, $p + \pi^0$

Scattering matrix (S-Matrix) of complex transition amplitudes:

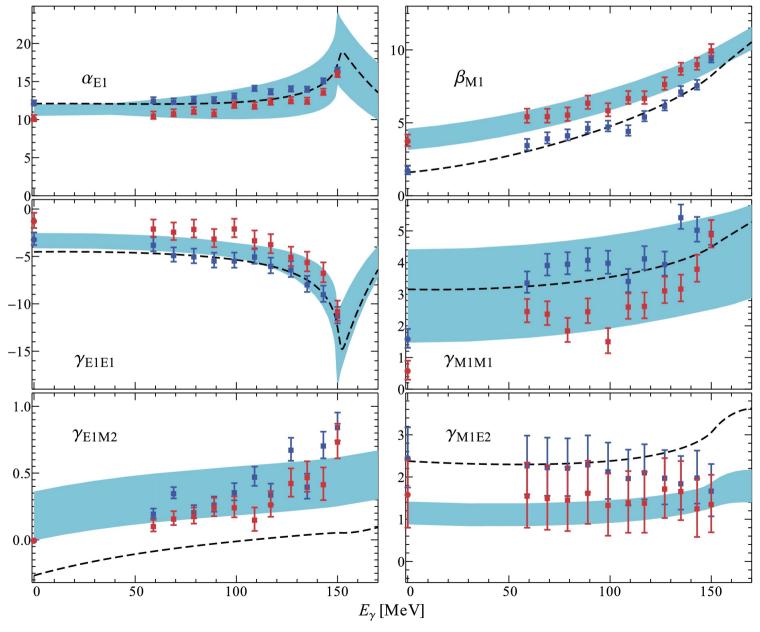
$$\left(egin{array}{c} p+\gamma \ n+\pi^+ \ p+\pi^0 \end{array}
ight)_{ ext{final}} = \left(egin{array}{c} A_{\gamma\gamma} & A_{\gamma\pi} & A_{\gamma\pi} \ A_{\gamma\pi} & A_{\pi^+\pi^0} & A_{\pi^+\pi^0} \ A_{\gamma\pi} & A_{\pi^+\pi^0} & A_{\pi\pi} \end{array}
ight) \cdot \left(egin{array}{c} p+\gamma \ n+\pi^+ \ p+\pi^0 \end{array}
ight)_{ ext{initial}}$$

- All channels are seen in all other channels
- $\gamma + p \rightarrow p + \pi^0$, s-wave:





Polarizabilities in Compton Scattering (partial waves):



Is the Scattering Phase an Observable?

Quantum-mechanics: An absolute phase is not measureable!

But:

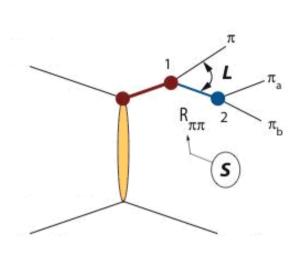
Elastic scattering: optical Theorem

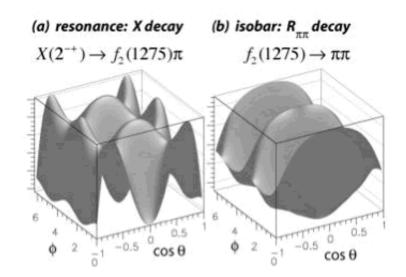
$$\sigma = \frac{4\pi}{k} \operatorname{Im} \left\{ f(\theta = 0) \right\}$$

- Elastic phase is a transition phase
- Direct measureable at forward direction ($\theta = 0$) in

- Unitarity of S-matrix fixes phase of all scattering amplitudes
 - \Rightarrow Scattering amplitudes have relative phases (inital state \rightarrow final state)!
 - ⇒ Production amplitudes are also **Observables** (but in reality hard to determine absolute)

The Art of Partial Wave Analysis





- Limited significance of single channels (even if this presentation is "standard" in talks...)
- All open channels have to be fitted simultanously
- Separate for every angular momentum (Partial Wave)
- Fit on *Amplitude* level (not cross section!)
- Polarization degrees of freedom
- Resonances: Breit-Wigner width (line shape, pole position), mass
- Background contributions
- Combinatorical background
- **9** ...

Hundreds of parameters, most determined with limited significance

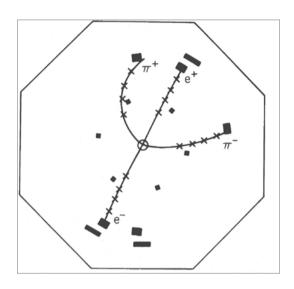
I only believe in peaks seen

```
...in several channels
...by different groups,
...measured with different apparatus,
...with different analysis
```

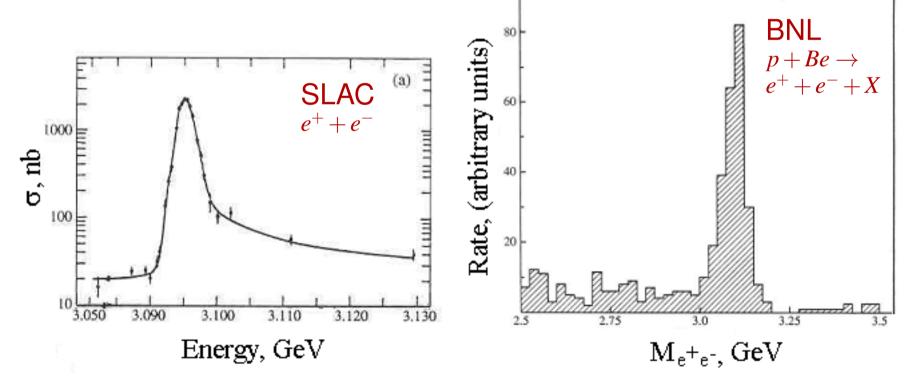
and still I have doubts...

Heavy Quark Mesons

The J/ψ discovery



- Simultanious discovery 1974 in BNL and SLAC
- First evidence of a new quark: charm
- Confirmation of quark model (c missing partner of s)
- ullet Bound state of $c\overline{c}$ quarks
- ⇒ new era of heavy quark physics



J/ψ -Decays

Below open charm threshold:

- ⇒ electro-magnetic decay of same order of magnitude as strong decay
- $\Rightarrow J/\psi$ is a very small resonance

Above open charm threshold:

$$\begin{array}{c}
c \\
\overline{u}, \overline{d}, \overline{s} \\
u, d, s
\end{array}$$

⇒ broad resonances

Heavy Quark Systems

Heavy Quarks:

$$m_c = 1.3 \,\mathrm{GeV}$$

$$m_b = 4.2 \,\mathrm{GeV}$$

$$m_c = 1.3 \,\mathrm{GeV}$$
 $m_b = 4.2 \,\mathrm{GeV}$ $m_t = 170 \,\mathrm{GeV}$

Heavy Quark Systems are non-relativistic:

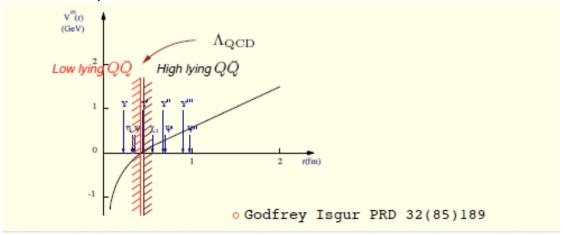
$$m_{J/\Psi} = 3.1 \,\text{GeV} = 2 \times m_c + 2 \times 0.25 \,\text{GeV}$$

$$\Rightarrow \qquad \beta = \frac{p}{E} \approx \frac{0.25 \,\text{GeV}}{1.3 \,\text{GeV}} = 0.2$$

• The mass scale is *perturbative*:

$$m_Q \gg \Lambda_{QCD}$$

Potential model for description well suited



non-perturbativ – transition – perturbative regime

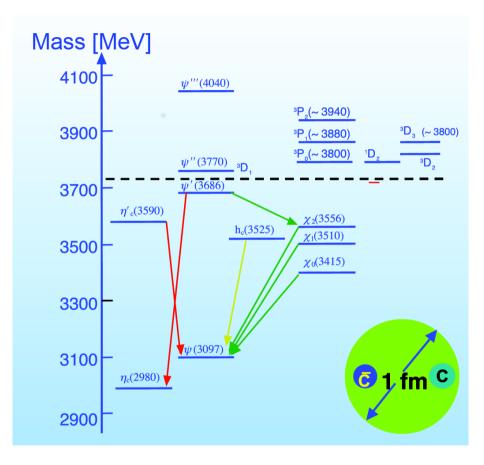
Positronium as Model for Quarkonium (Charmonium or Bottomonium)

0.1 nm (e)

Positronium

-7000

Charmonium



Production channels

Weak decay

 $\frac{d}{d} = \frac{c}{c}$

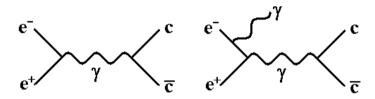
Belle

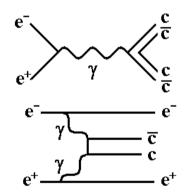
- e⁺e⁻ annihilation and initial state radiation
 - only $J^{PC} = 1^{--}$
 - -0 < E < c.m. energy
- Double Charmonium

$$-J/\psi + c\overline{c}$$

• Two-photon production

$$-C = +1$$



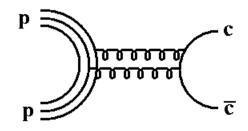


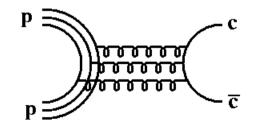
BESIII

• $p\overline{p}$ annihilation

- 2 gluons: 0^{-+} , 0^{++} , 2^{++}

- 3 gluons: 1⁻⁻, 1⁻⁺

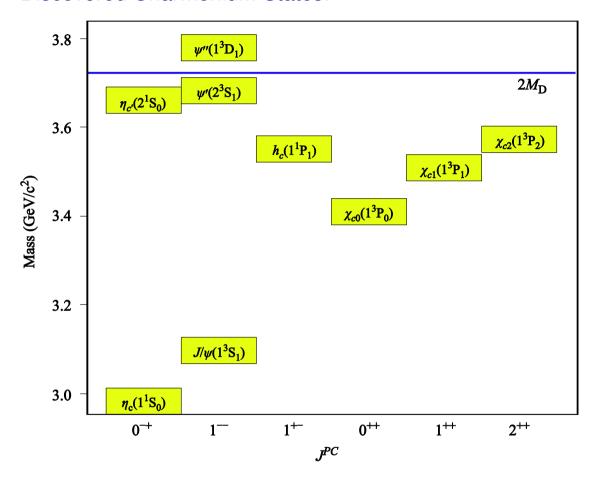




PANDA

Charmonium States below open charm threshold

Discovered Charmonium States:



- Solution of non rel.
 Schrödinger-Equation
- Notation:

$$\eta_c \quad \psi \quad h_c \quad \chi_{1,2,3}$$

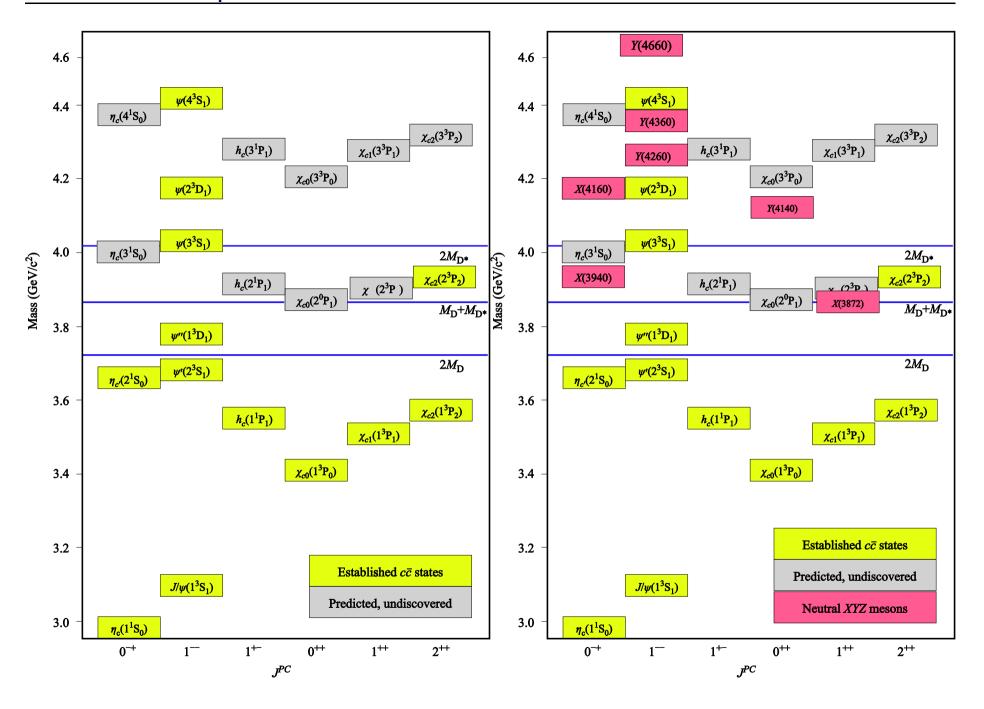
- 8 States well established
- ullet Hyperfine splitting to adjust spin dependent potential V_{SS}

$$\Delta m_{hf}(1S) = m(J/\Psi) - m(\eta_c)$$

= 116 MeV

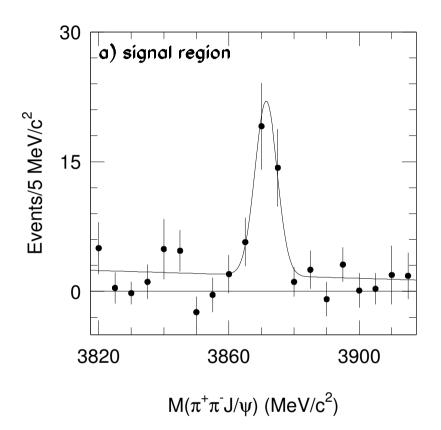
- Look for
 - ▶ Missing States
 - ► Additional States

Charmonium Spectrum



The X(3872) (new PDG2018 naming scheme: $\chi_{c1}(3872)$)

Belle (2013): A new state, not quite fitting into spectrum:



Discovery channel:

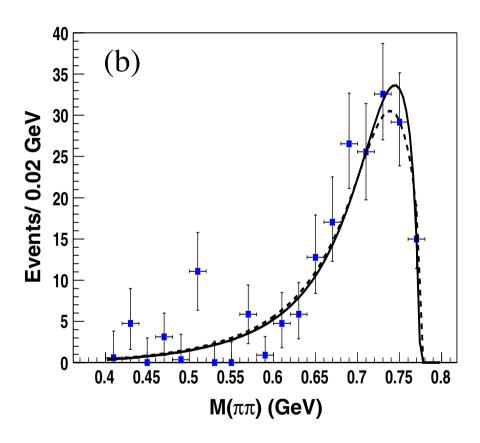
$$e^+e^-
ightarrow \Upsilon(4S)
ightarrow B^+B^- \ B^+
ightarrow K^+ \underbrace{\pi^+\pi^- J/\psi}_{
m subsystem}$$

- Decay to J/ψ : $c\overline{c}$ content necessary
- ullet Isospin: Decay via $ho o \pi^+\pi^-$ or $\omega o \pi^+\pi^-$
- ullet ρ decay is isospin violating \to suppressed
- Both channels are of same order
- \Rightarrow additional u and d content?

- Resonance confirmed by BaBar, BES, CDF, D0, LHCb, ...
- LHCb: Quantum Numbers $J^{PC} = 1^{++}$, I = 0 (these are not exotic!)

$$X(3872) \rightarrow \rho + J/\psi$$

 $\rho \rightarrow \pi^{+} + \pi^{-}$



- ullet Two Pion distribution described by Breit-Wigner with known ho(770) width
- Violates Isospin conservation ⇒ at least two gluons
- ullet Should be suppressed compared to decay via $\omega o \pi^+\pi^-\pi^0$

Interpretations of the X(3872)

X(3872) Properties

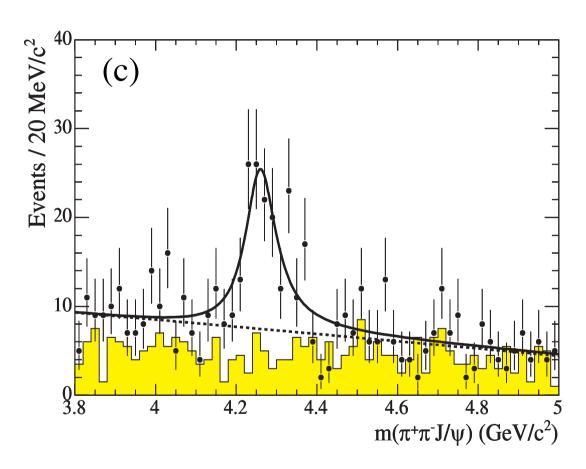
- ullet Mass is very close to open charm threshold $\overline{D}_0 D_0 *$
- Width is very narrow < 1.2 MeV
- ◆ small binding ⇒ huge separation
- ullet Decays to $\rho J/\psi$
- Decays to $\omega J/\psi$
- Decays dominant to \overline{D}_0D_0*

Interpretation:

- Exotic nature? Probably...
- Many interpretations on the market
- Loosely bound \overline{D}_0D_0* molecule?

BaBar (2005) via Initial State Radiation

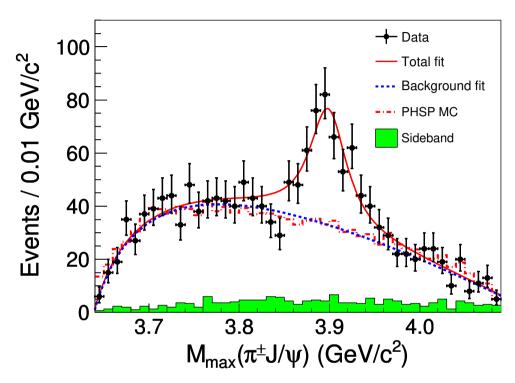
$$e^+ \, e^- \,
ightarrow \, \gamma_{ISR} \, \pi^+ \, \pi^- \, J/\psi$$



- Quantum numbers are now $J^{PC} = 1^{--}$
- Confirmed by CLEAO, CLEOIII, Belle, BESIII
- Weak coupling consistent with hybrid meson

$Z_c^+(3900)$

BES III (2013)



$$e^+e^-
ightarrow\pi^ \underline{\pi^+J/\psi}_{ ext{subsystem}}$$

- Decay to J/ψ : $\Rightarrow c\overline{c}$ content necessary
- Charged!!!!!!

 \Rightarrow at least $c\overline{c}u\overline{d}$

Status:

- Confirmed by several experiments
- Several states
- also Z_h^+ states seen
- ullet PDG 2018 naming scheme: X now χ Isospin 0 Y now ψ Z Isospin 1

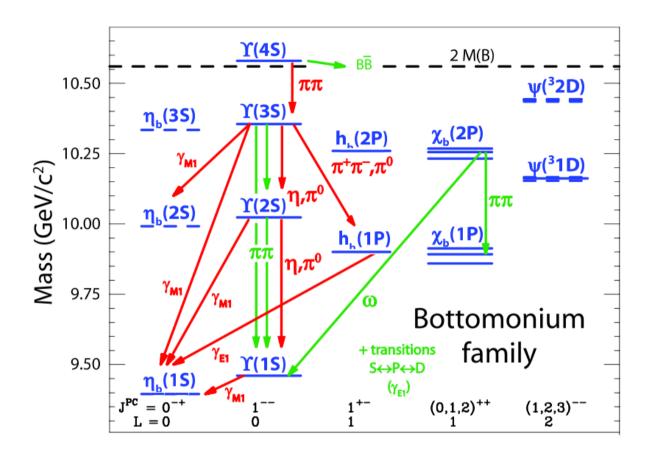
Growing number of states...

Particle Data Group (2018): States near open $c\overline{c}$ or $b\overline{b}$ threshold

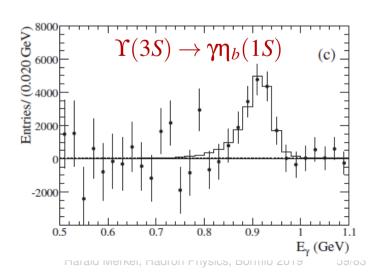
PDG Name	Former/Common Name(s)	m (MeV)	Γ (MeV)	$I^G(J^{PC})$	Production	Decay	Discovery Year	Summary Table
$\chi_{c1}(3872)$	X(3872)	3871.69±0.17	< 1.2	0+(1++)	$B \to KX$ $p\bar{p} \to X$ $pp \to X$	$\pi^{+}\pi^{-}J/\psi$ $3\pi J/\psi$ $D^{*0}\overline{D}^{0}$	2003	YES
					$e^+e^- \to \gamma X$	$\gamma J/\psi \ \gamma \psi(2S)$		
$Z_c(3900)$		3886.6 ± 2.4	28.2 ± 2.6	1+(1+-)	$\psi(4260) \to \pi^- X$ $\psi(4260) \to \pi^0 X$	$\pi^{+}J/\psi \pi^{0}J/\psi (D\bar{D}^{*})^{+} (D\bar{D}^{*})^{0}$	2013	YES
X(4020)	$Z_c(4020)$	4024.1 ± 1.9	13 ± 5	1+(??-)	$\psi(4260, 4360) \to \pi^- X$ $\psi(4260, 4360) \to \pi^0 X$	$\pi^{+}h_{c}$ $\pi^{0}h_{c}$ $(D^{*}\bar{D}^{*})^{+}$ $(D^{*}\bar{D}^{*})^{0}$	2013	YES
$Z_b(10610)$		10607.2 ± 2.0	18.4 ± 2.4	1+(1+-)	$\Upsilon(10860) \to \pi^- X$ $\Upsilon(10860) \to \pi^0 X$	$\pi^{+}\Upsilon(1S, 2S, 3S)$ $\pi^{0}\Upsilon(1S, 2S, 3S)$ $\pi^{+}h_{b}(1P, 2P)$ $(B\bar{B}^{*})^{+}$	2011	YES
$Z_b(10650)$		10652.2 ± 1.5	11.5 ± 2.2	1+(1+-)	$\Upsilon(10860) \to \pi^- X$	$\pi^{+}\Upsilon(1S, 2S, 3S)$ $\pi^{+}h_{b}(1P, 2P)$ $(B^{*}\bar{B}^{*})^{+}$	2011	YES

...and $\approx 25~\text{more}$ unassigned states above threshold

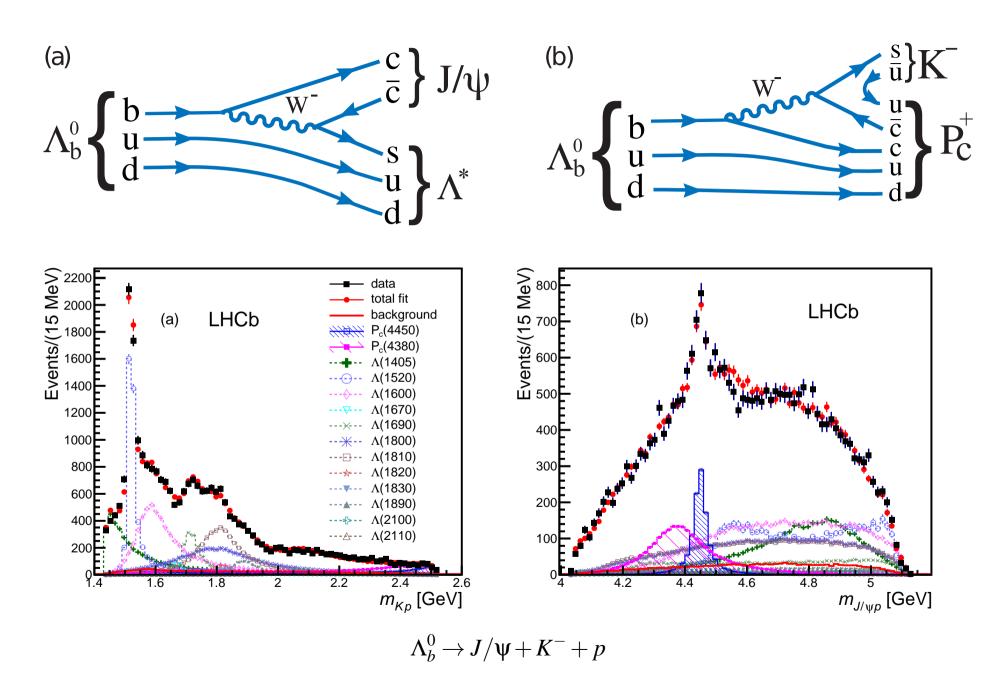
Bottomonium

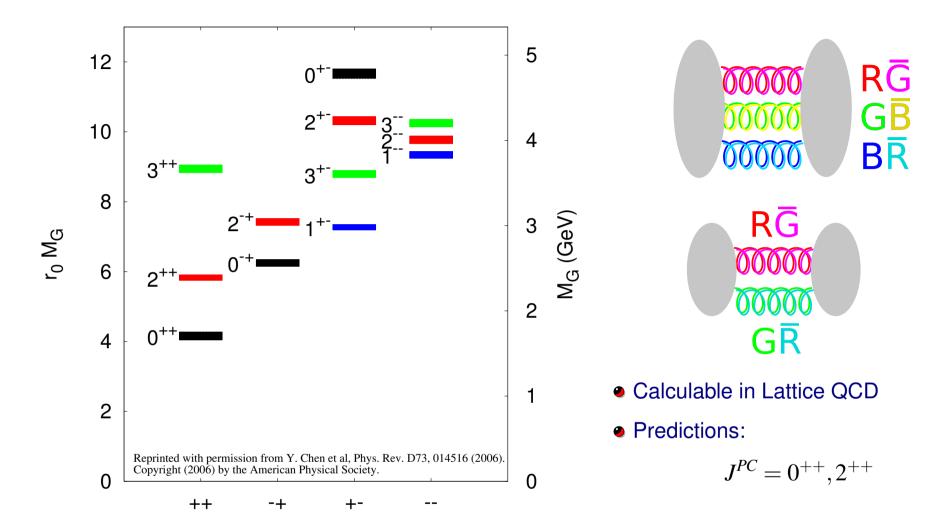


- higher b-quark mass
- lower coupling $\alpha_s(Q^2)$
- dominated by Coulomb term of the potential
- better description by potential models
- ground state $\eta_b(1S)$ discovered 2008



Pentaquark (LHCb 2015)





- Mixing with scalar mesons $f_0(1370)$
- Candidates $f_0(1500)$, $f_0(1710)$, ...
- No clear signature yet

Strangeness

What can we do with the s-quark?

Is the *s*-quark a light quark?

- Use SU(3) Chiral Perturbation Theory
- $m_u = 2.2 \,\mathrm{MeV}/c \approx m_d = 4.4 \,\mathrm{MeV}/c \approx 0$ $m_s = 96 \,\mathrm{MeV}/c$
- ⇒ ChPT works "fairly well"

Is the *s* quark a heavy quark?

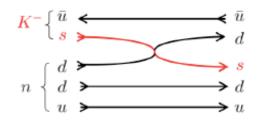
- Use a potential model
- Use constituent quark masses
- $m_{\Lambda} = 1116 \,\mathrm{MeV}/c \Rightarrow m_u = m_d = 300 \,\mathrm{MeV}/c; \quad m_s = 500 \,\mathrm{MeV}/c \gg 96 \,\mathrm{MeV}/c$
- ⇒ Potential model works "fairly well"

⇒ no precission expected

Hypernuclei

Idea: Use strangeness to mark e.g. a single particle in a nuclei!

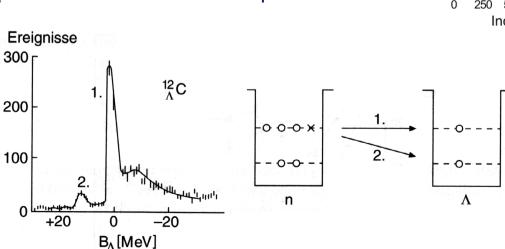
$$K^- + A \rightarrow {}_{\Lambda}A + \pi^-$$

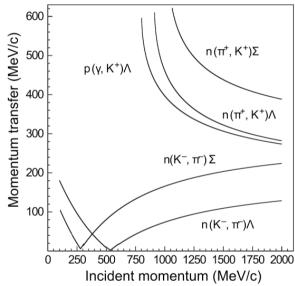


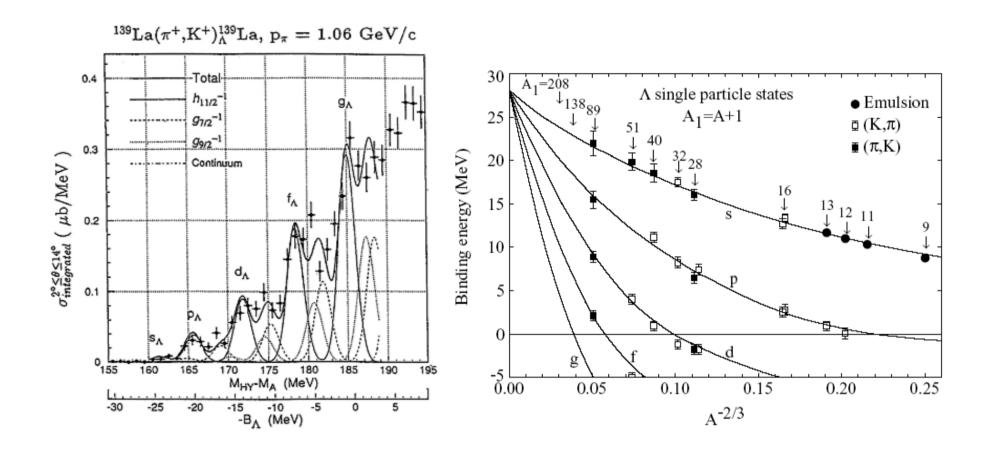
Recoil-less production possible!

⇒ no momentum transfer to the nuclear target

No Pauli-blocking! Hyperons test all states of the potential

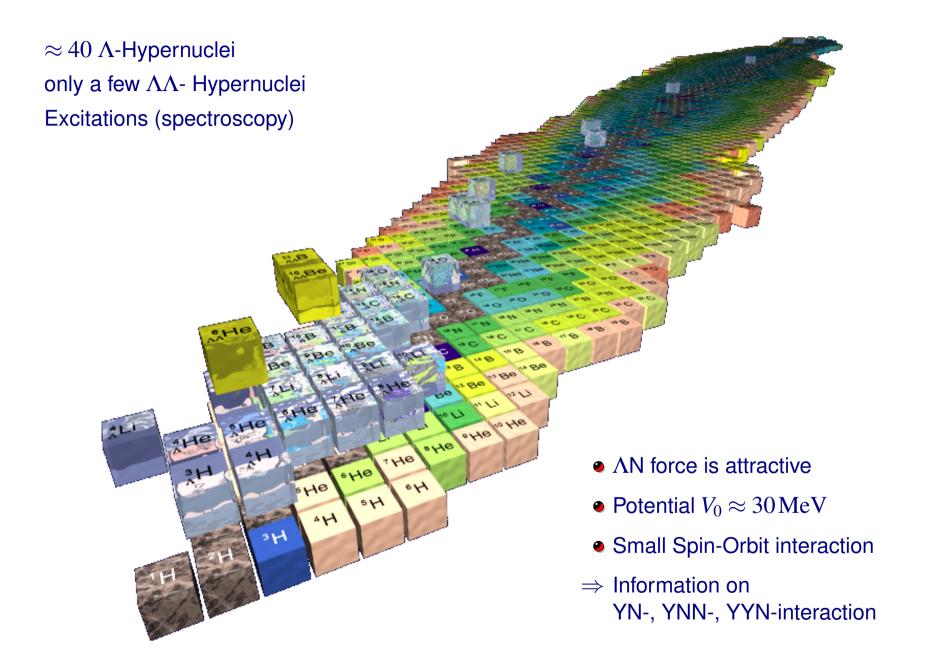






- Complete mapping of the shell structure (single particle states)
- ullet Model potential o deduce hyperon-N interaction
- Excitation spectrum, e.g. via electron scattering

Hypernuclei



Neutron Stars

Neutron Stars

Baronic Number $N_B \sim 10^{57}$

Mass $M \sim 1-2M_{\odot}$

Radius $R \sim 10-12\,\mathrm{km}$

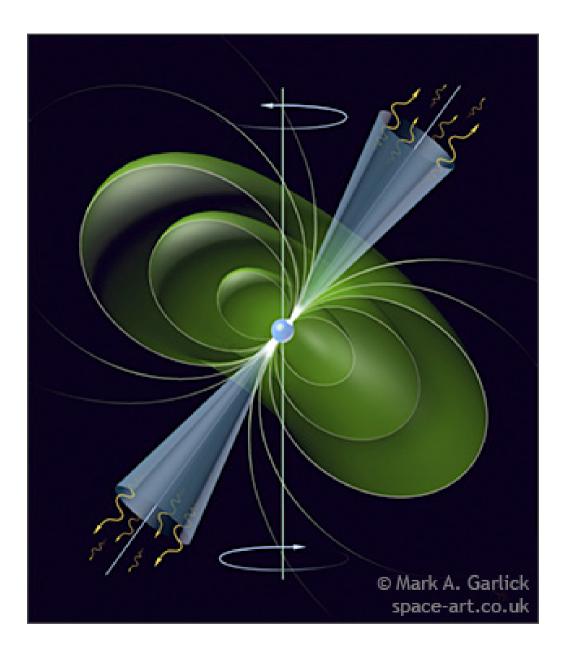
Density $\rho ~\sim ~10^{15} \tfrac{g}{cm^3}$

Magnetic Field $B \sim 10^{8 \cdot \cdot \cdot 16} \, \mathrm{G}$

Electric Field $E \sim 10^{18} \frac{\rm V}{\rm cm}$

Temperature $T \sim 10^{6 \cdot \cdot \cdot 11} \, \mathrm{K}$

shortest Rotation $t \sim 1.58\,\mathrm{ms}$



Equilibrium of electro-weak force:

$$n \leftrightarrow p + e^- + \overline{v}$$

Definition Baryo-Chemical Potential:

$$\mu = \frac{\mathrm{d}E}{\mathrm{d}n}$$
 Change of energy with number

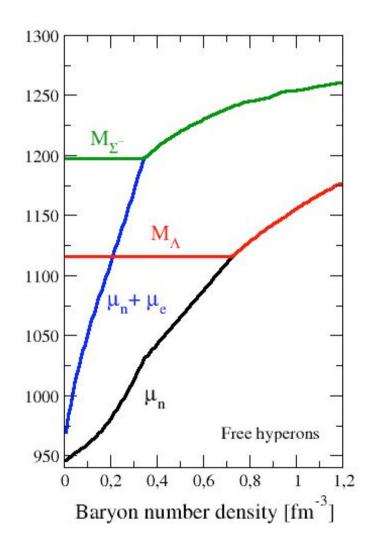
simplifies equilibrium condition for n, p:

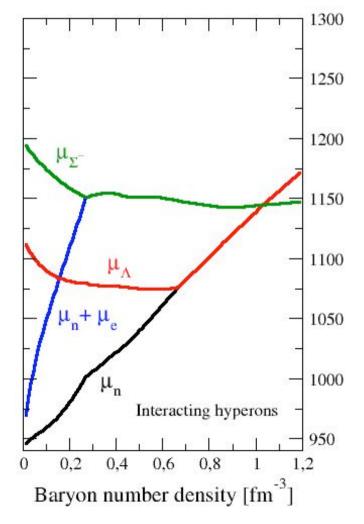
$$\mu_n = \mu_p + \mu_e + \mu_{\overline{\nu}}$$

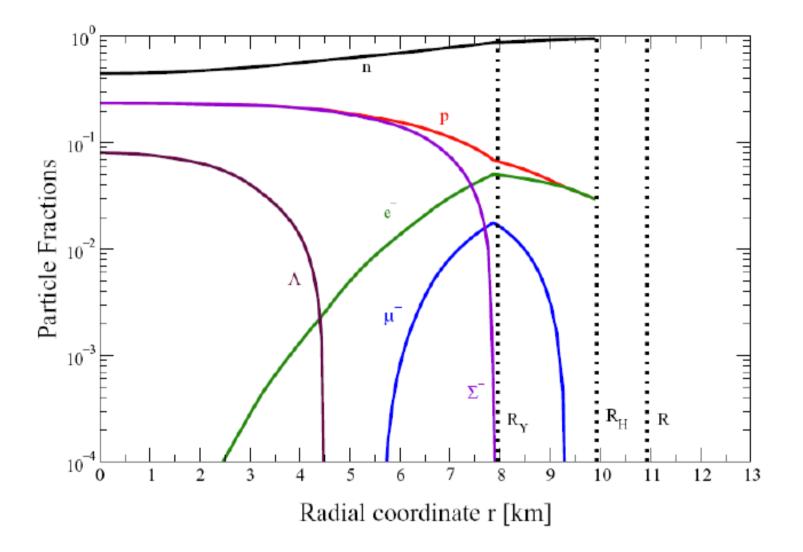
Hyperon content of Neutron Stars

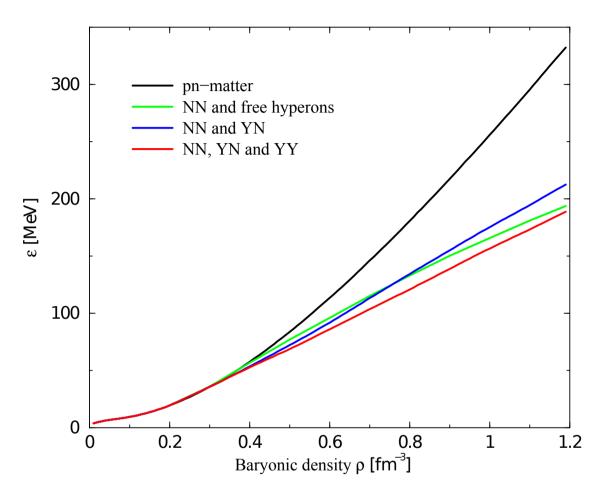
$$n + n \rightarrow n + \Lambda$$
 $p + e^{-} \rightarrow \Lambda + \nu_{e}$
 $n + n \rightarrow p + \Sigma^{-}$
 $n + e^{-} \rightarrow \Sigma^{-} + \nu_{e}$

$$\mu_{\Sigma}^{-} = \mu_n + \mu_{e^-} + \mu_{\nu_e}$$
 $\mu_{\Lambda} = \mu_n$





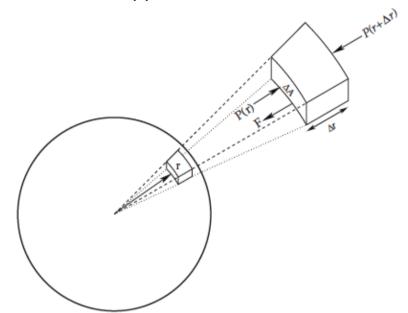




- Equation of State $\varepsilon(\rho)$ (or equivalent $P(\rho) = \rho^2 d(\varepsilon/\rho)/d\rho$) defines hydrostatic properties
- Hyperons "soften" the Equation of State
- What does this mean for a neutron star?

Neutron Star Structure

Newtonian Approach:



Differential Force:

$$F_r = -\frac{GM(r)\Delta m}{r^2} - P(r + \Delta r)\Delta A + P(r)\Delta A = \Delta m \frac{d^2 r}{dt^2}$$

Equilibrium ($\ddot{r} = \dot{r} = 0$):

$$-\frac{GM(r)\rho(r)}{r^2} - \frac{dP(r)}{dr} = \rho(r)\frac{d^2r}{dt^2} = 0$$

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{GM(r)\rho(r)}{r^2}$$

$$P(0) = P_c$$

$$\frac{\mathrm{d}m}{\mathrm{d}r} = 4\pi r^2 \rho(r)$$

$$m(0) = m_c$$

Neutron star structure

Relativistic Approach:

Escape velocity

$$\frac{1}{2}mv^2 = \frac{GMm}{R} \quad \Rightarrow \quad v \approx \frac{c}{2}$$

- ⇒ relativistic effects are important
- Solve Einstein's field Equation with Energy-Density Tensor of stellar matter $T^{\mu\nu}(\varepsilon, P(\varepsilon))$

$$G^{\mu\nu} = 8\pi T^{\mu\nu} (\varepsilon, P(\varepsilon))$$

 $\varepsilon = \rho c^2$

Solution possible for symmetric, non-rotating star:

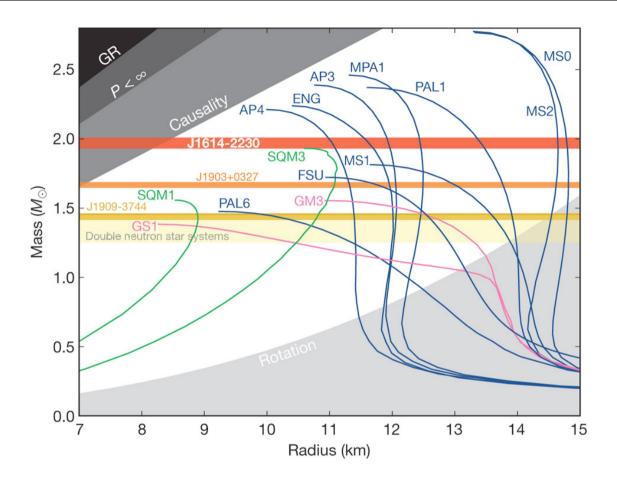
$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{Gm\varepsilon}{c^2r^2} \left(1 + \frac{P}{\varepsilon}\right) \left(1 + \frac{4\pi r^3 P}{c^2m}\right) \left(1 - \frac{2Gm}{c^2r}\right)^{-1}$$

$$\frac{\mathrm{d}m}{\mathrm{d}r} = \frac{4\pi r^2 \varepsilon}{c^2}$$

$$p(0) = P(\varepsilon_c) \quad P(R) = 0$$

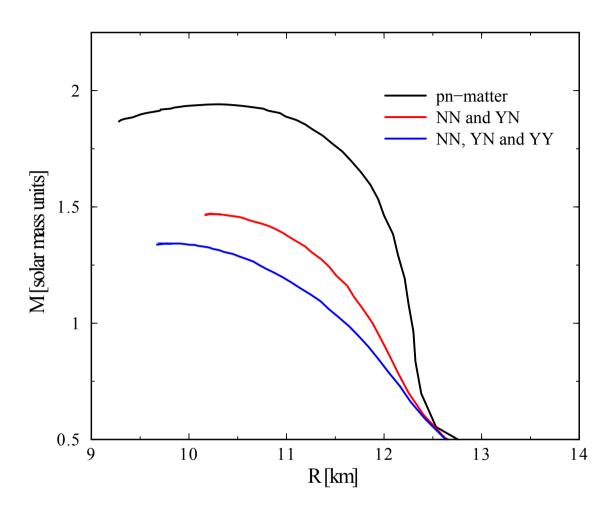
$$m(0) = 0 \quad m(R) = M$$

Tolman-Oppenheimer-Volkoff equations



Constraints:

- General Relativity (GR): Neutron Star is not a black hole $\Rightarrow R > \frac{2GM}{c^2}$
- Compressibility (Stability): $dP/d\rho > 0$ $\Rightarrow R > \frac{9}{4} \frac{GM}{c^2}$
- Causality: Speed of sound less than speed of light $\Rightarrow R > \frac{9}{4} \frac{GM}{c^2}$
- Rotation: Centrifugal force less than gravitational force $\Rightarrow R < \left(\frac{GM}{2\pi}\right)^{1/3} \frac{1}{v^{2/3}}$



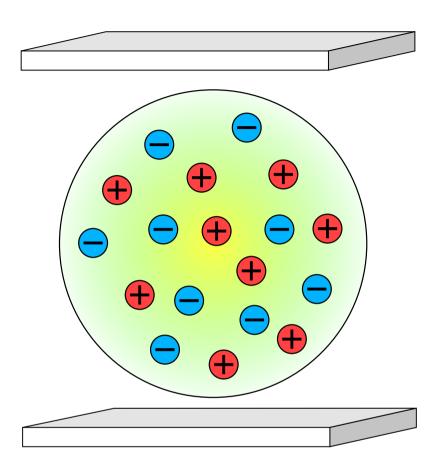
Hyperon Puzzle:

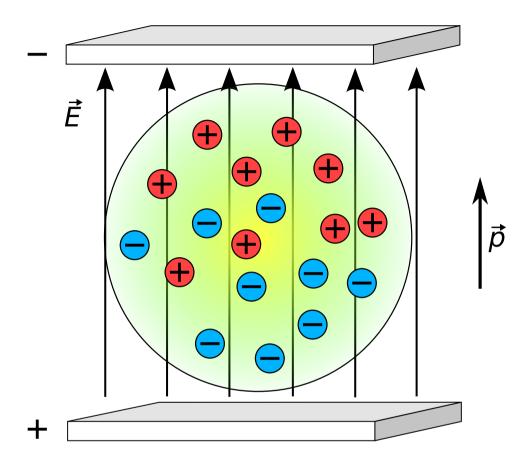
- Softening of Equation of State by Hyperons
- ullet Reduction of maximal Neutron Star Mass by $0.5 M_{\odot}$
- ullet Clear contradiction to observation of 2 M_{\odot}

⇒ Study hyperons in medium in Experiment/Theory

Polarizabilities

Electric Polarizability: α



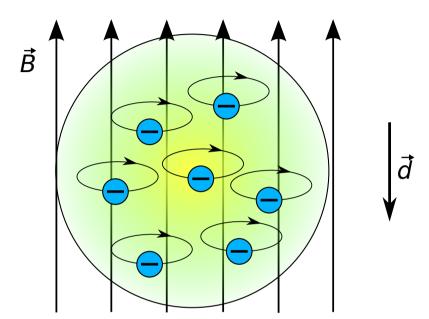


Polarizability α : induced dipole moment $\vec{p} = \alpha \vec{E}$

$$\begin{vmatrix} |\vec{p}| &= e \cdot 1 \text{ fm} \\ \alpha &= 10 \cdot 10^{-4} \text{ fm}^3 \end{vmatrix} \Rightarrow |\vec{E}| = 1.4 \frac{\text{GV}}{\text{fm}}$$

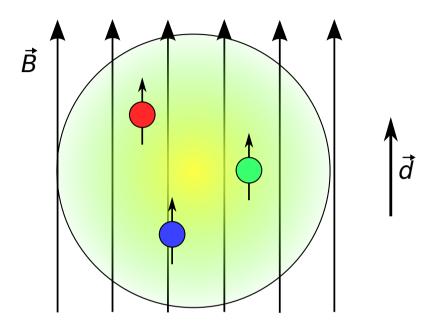
Magnetic Polarizability: β

Diamagnetic



- Induced circular eddy currents
- \vec{p} opposite to external field \vec{B}
- Polarizability $\beta < 0$

Paramagnetic



- Alignment of spins
- \vec{p} parallel to external field \vec{B}
- $\bullet \ \text{Polarizability} \ \beta > 0$

What do we expect?

Diamagnetic:

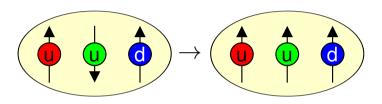
- Only a fraction of the charge is carried by valence quarks
- χPT: Relevant degrees of freedom:

$$\pi^+,\pi^-,\pi^0$$

- Pion cloud
 - ⇒ Currents of spinless charged particles

Paramagnetic:

- Resonance Structure of Nucleons
- Example: $N \rightarrow \Delta(1232)$ excitation:



 \Rightarrow Photon induced spin flip $\frac{1}{2} \rightarrow \frac{3}{2}$

Questions:

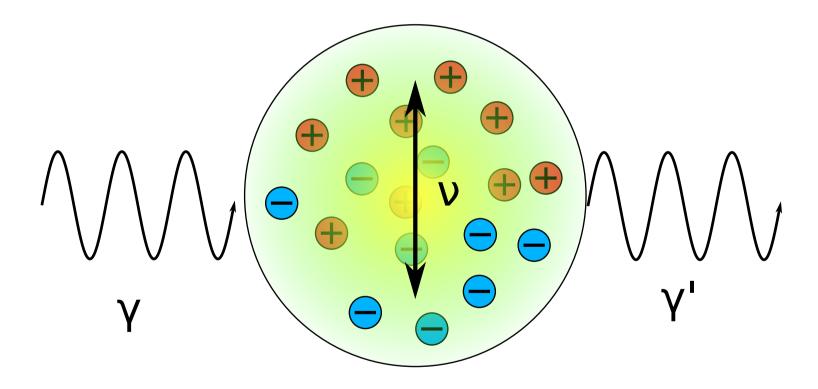
- How to distinguish? \Rightarrow Sign of β
- Transition with energy?
- Transition with resolution (photon virtuality q^2)?

Dynamical Measurement

Huge fields required:

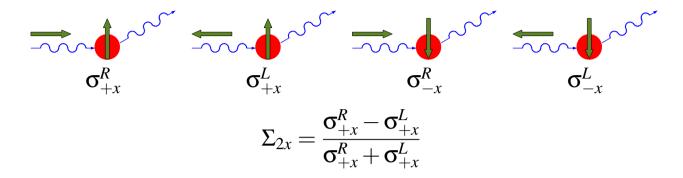
$$\begin{vmatrix} |\vec{p}| &= e \cdot 1 \text{ fm} \\ \alpha &= 10 \cdot 10^{-4} \text{ fm}^3 \end{vmatrix} \Rightarrow |\vec{E}| = 1.4 \frac{\text{GV}}{\text{fm}}$$

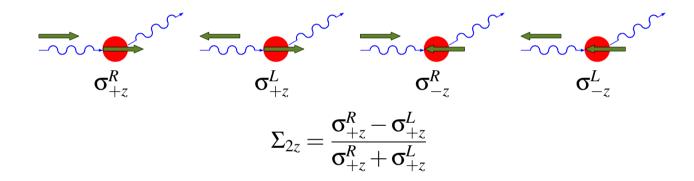
Absorbtion and Emission of photon ⇒ COMPTON SCATTERING

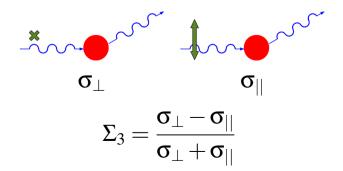


$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_0}{d\Omega} - \frac{e^2}{4\pi m_p} \left(\frac{q'}{q}\right)^2 q q' \left\{ \frac{1}{2} (\bar{\mathbf{\alpha}} + \bar{\mathbf{\beta}}) (1 + \cos\theta)^2 + \frac{1}{2} (\bar{\mathbf{\alpha}} - \bar{\mathbf{\beta}}) (1 - \cos\theta)^2 \right\} + \cdots$$

Polarized Target and polarized beam







	Electric	Magnetic	Longitudinal
<i>L</i> =0			
<i>L</i> =1			
L=2			

	Electric	Magnetic	Longitudinal
<i>L</i> =0			
<i>L</i> =1			
L=2			

	Electric	Magnetic	Longitudinal
<i>L</i> =0			
<i>L</i> =1			
L=2			

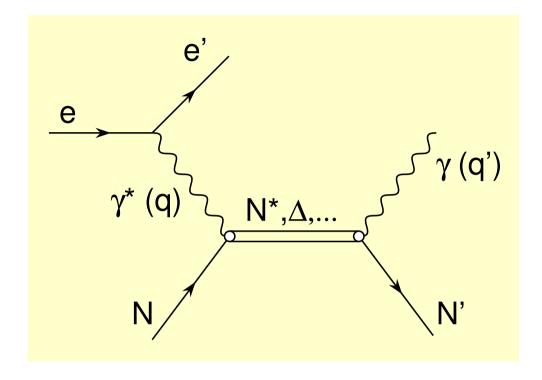
	Electric	Magnetic	Longitudinal
<i>L</i> =0			
<i>L</i> =1			
L=2			

	Electric	Magnetic	Longitudinal
<i>L</i> =0			
<i>L</i> =1			
L=2			

	Electric	Magnetic	Longitudinal
<i>L</i> =0			
<i>L</i> =1			
L=2			

	Electric	Magnetic	Longitudinal
<i>L</i> =0			
<i>L</i> =1			
<i>L</i> =2			

Virtual Compton Scattering



- ullet Polarizabilities depend on photon virtuality Q^2
 - ⇒ Generalized Polarizabilities
- ullet Polarizabilities are defined in static limit q' o 0
- Interpretation of $GP(Q^2)$:
 - ⇒ "Form Factor" measurement in external field
 - ⇒ Fouriertransform of local distribution of polarizabilities

Hadron Physics Conclusions

- An invaluable tool for a deep understanding of strong interaction and QCD
- Exciting experimental Results
 - ➤ New discoveries ≈ 1/year
 - ➤ XYZ and clear signatures of Exotic States
- Continuing Progress in Theory
 - ▶ Lattice QCD
 - ▶ Modelling of exotic states
- Running and new Facilities for Spectroscopy
 - ▶ LHC, e^+e^- Colliders
 - ► JLab 12
 - ➤ PANDA at FAIR
- Connection to Astrophysics
 - ➤ Neutron Stars as dense hadronic matter
- Precission Physics
 - ➤ Determination of Wave Functions
 - ➤ Polarizabilities
- And still a lot to do ...