

The KM3NeT project: status and future perspectives

C. Distefano LNS-INFN On behalf of the KM3NeT Collaboration

International Winter Meeting on Nuclear Physics

The KM3NeT project

KM3NeT is a research infrastructure in the Mediterranean Sea hosting neutrino detectors

KM3Net/ORCA (Oscillation Research with Cosmics in the Abyss)

neutrino physics and low energy neutrino astronomy (neutrinos of tens of GeV)

KM3Net/ARCA (Astroparticle Research with Cosmics in the Abyss)

discovery and observation of high energy (GeV ÷ PeV) neutrino sources of cosmic origin

2

International Winter Meeting on Nuclear Physics

Neutrino detection channels

Muons:

highest effective area, good angular resolution (~0.1°) High atmospheric muon background: look at events from below only

Showers:

Remove atmospheric muon background: studies over 4π. 'Good' energy resolution, worse directional resolution: diffuse flux!

Taus: Unambiguous topology

International Winter Meeting on Nuclear Physics

The KM3NeT detector design

A 3D array of optical sensors built with a modular design:

- Digital Optical Module (DOM): multi-PMT optical module consisting of 31 3" PMTs.
- Detection unit (DU): vertical slender string host 18 DOMs
- Building blocks (BBs) of 115 DUs each (ORCA: 1 BB, ARCA: 2 BBs)
- Power and data distributed by a single backbone cable with breakouts at DOMs
- Sea network of submarine cables and Junction Boxes connected to shore via a main e/o cable
- All data to shore

International Winter Meeting on Nuclear Physics

200/700 m

The KM3NeT detector layouts

ORCA ARCA

Location	France	Italy
Depth	2500 m	3500 m
DU distance	23 m	90 m
DOM spacing	9 m	36 m
DU height	200 m	700 m
Instrumented mass	8 Mton	2*500 Mton

ARCA: 2 building blocks

International Winter Meeting on Nuclear Physics

The KM3NeT Optical Module

KM3NeT

The DOM is a new design for optical sensors developed in the collaboration.

It is a 17" glass sphere with inside:

- 31 x 3" PMTs
- Light reflector rings around PMTs
- LED beacon and acoustic piezoelectric
- Tiltmeter/compass
- Gbit/s fibre DWDM for data transmission
- Hybrid White Rabbit for time synchronization
- Digital photon counting
- Directional information
- Wide angle of view
- Improved background rejection
- Compact and cost effective design: photocathode area ≃ 3 x 10" PMTs 1 DOM equivalent to 3 ANTARES OMs

International Winter Meeting on Nuclear Physics

Detection Unit: vertical slender string with 18 DOMs

String: 1 Buoy 2 Dyneema ropes 18 DOMs Electro-optical backbone: Flexible hose 7mm Oil-filled 18 fibres 2 copper wires (375VDC)

Different geometric arrangement for the two detectors:

36 (ARCA) /9 (ORCA) m distance between DOMs
72 (ARCA) /36 (ORCA) m anchor-first storey
700 (ARCA) /200 (ORCA) m total height from seabed

DU Base:

Anchor with electro-optical ROV mateable connector Base Module:

CLB (white rabbit timing) Power control board Optical amplifier Hydrophone LBL beacon

International Winter Meeting on Nuclear Physics

Detection unit deployment

KM3NeT

The Launcher of Modules (LoM)

- 2m diameter
- efficient deployment
- autonomous unfurling
- reusable
- deployment of several strings per sea operation

KM3NeT/ORCA: science goals

- Atmospheric flux of ν_e and $\nu_\mu\,$ well known
- Wide range of neutrino energies (GeV PeV)
- Wide range of zenith angles -> wide range of baselines (50 – 12800 km)
- Distortion of the neutrino oscillation pattern due to matter effects in the Earth

International Winter Meeting on Nuclear Physics

Bormio, 20-24 January 2020

Event reconstruction: fit hit position, time and multiplicity

- Median zenith angle resolution of 7°(5°) for 5(10) GeV for both track and shower channels.
- Dominated by the intrinsic v-lepton scattering angle
- Largely independent of vertical spacing

International Winter Meeting on Nuclear Physics

Energy resolution

KM3NeT

Energy reconstruction: fit number of hits and event topology (neural network)

• Energy resolution better than 30% in the relevant energy range

Particle identification

Random Decision Forest technique to both identify atmospheric muons and perform track-shower separation

- At 10 GeV:
 90% correct ID for v_e CC
 70% correct ID for v_u CC
- Able to suppress atmospheric muon background and noise to the 3% level
- Still preserves 95% of the neutrino signal

International Winter Meeting on Nuclear Physics

Sensitivity to exclude the wrong hierarchy

Systematics:

- Atmospheric flux parameters
- Neutrino oscillation parameters

International Winter Meeting on Nuclear Physics

INFN Measurement of the oscillation parameters

- $sin^2\theta_{23}$ and Δm^2_{23} measured via the disappearance of v_{μ} in the atmospheric flux
- 2-3 % precision in Δm_{23}^2 and 4-10% in $sin^2\theta_{23}$

Solid : NH correct Dashed : NH wrong

International Winter Meeting on Nuclear Physics

Other potential physics avenues

PMNS unitarity

Sterile neutrinos

But also:

- Earth tomography and composition
- Supernova monitoring
- Indirect search for Dark Matter
- Low energy (GeV-TeV) neutrino astrophysics

International Winter Meeting on Nuclear Physics

KM3NeT/Arca: science goals

Astrophysical neutrinos:

- are optimal probes to observe high energy processes also in the deep Universe.

- are smoking gun of hadronic process in cosmic accelerators.

complete the multi-messenger scenario:
 Electromagnetic counterparts, Cosmic Rays,
 Gravitational Waves...

Candidate High Energy neutrino sources in the Universe: cosmic accelerators!

Galactic: SNRs, Microquasars,...

Extragalactic: AGNs, GRBs,...

International Winter Meeting on Nuclear Physics

IceCube at South Pole (under-ice telescope)

The era of neutrino astronomy has begun!

Evidence for High-Energy Extraterrestrial Neutrinos with IceCube (*Science* 2013, 342, 1242856)

Neutrino emission from the direction of the blazar TXS 0506+056 (*Science* 2018, 361, 147)

Questions:

- What are the sources
- Galactic vs extragalactic
- Is there a spectral break
- Flavour composition
- All constrained, but weakly

International Winter Meeting on Nuclear Physics

Why a second neutrino telescope in the Mediterranean

• A km³ telescope in the Mediterranean (North Hemisphere) means:

- full sky coverage
- visibility of Galactic Plane + Galactic Center
- > 1.5 sr common view per day

• Water vs ice:

- \succ In ice less light absorption \rightarrow better energy reconstruction
- > In water less scattering \rightarrow better pointing accuracy (point source identification!)
- > In seawater: K40 optical background requires causality filters but useful for calibration

International Winter Meeting on Nuclear Physics

Angular and energy resolution

International Winter Meeting on Nuclear Physics

Bormio, 20-24 January 2020

KM3NeT

Benchmark flux : IceCube flux (isotropic and flavour symmetric)

 $\Phi(E) = 1.2 \cdot 10^{-8} (E/1 \text{ GeV})^{-2} \exp(-E/3 \text{ PeV}) \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

Goal: don't just re-discover the IceCube flux, investigate it!

• Track event channel

Analysis for up-going events based on maximum likelihood of preselected events. Pre-cuts on $\theta_{zen} > 80^\circ$, reconstruction quality parameter and Nhit (proxy for muon energy)

• Shower event channel

Containment cut on reconstructed vertex to remove atmospheric muons (excludes upper 100m layer) All sky analysis based on BDT and maximum likelihood.

International Winter Meeting on Nuclear Physics

Source identification: point-like sources

Visibility of Galactic Plane + Galactic Center Better angular resolution in water will help the source identification

Up-going muon neutrinos analysis Better sensitivity (for equivalent exposure) and better sky coverage than IceCube

International Winter Meeting on Nuclear Physics

Source identification: Galactic sources

Expected neutrino spectra estimated from the observed gamma rays spectra:

$$\Phi_{\rm v}(E) = \Phi_0 E^{-\Gamma} \exp(-(E/E_{cut})^{\beta}) \,{\rm TeV}^{-1} \,{\rm s}^{-1} \,{\rm cm}^{-2}$$

 $\Phi_0 \left[10^{-11} \text{ TeV}^{-1} \text{s}^{-1} \text{cm}^{-2} \right]$

F. Vissani, Astr. Phys. 26 (2006) 310F. L. Villante and F. Vissani, Phys. Rev. D78 (2008) 103007

Source	δ	radius	k_0	Γ	E_{cut}	eta
RX J1713.7-3946	-39.77°	0.6°	0.89	2.06	8.04	1
Vela X	-45.6°	0.8°	0.72	1.36	7	1
Vela Jr	-46.36°	1°	1.30	1.87	4.5	1
HESSJ1614-518 (1)	-51.82°	0.42°	0.26	2.42	-	-
HESSJ1614-518(2)	-51.82°	0.42°	0.51	2	3.71	0.5
Galactic Centre	-28.87°	0.45°	0.25	2.3	85.53	0.5

International Winter Meeting on Nuclear Physics

Bormio, 20-24 January 2020

KM3Ne¹

	кмз	NeT	Ϊ
- 4	-		-

Phase	Building blocks		Number of DUs		Physics goal		Status
	ARCA	ORCA	ARCA	ORCA	ARCA	ORCA	
1	0.2	0.06	24	6	Proof of feasibility and first science results. Joined analysis with ANTARES data		Fully funded. First 2 DUs installed and functioning at Capo Passero
2.0	2	1	230	115	All flavor astronomy. Study of the neutrino signal reported by IceCube.	Determination of the neutrino mass hierarchy	Partially funded
3	6	-	690	-	Neutrino astronomy including Galactic sources.		Not yet funded

KM3NeT Phase-1 under construction

Data taking: 4 ORCA strings and 2 ARCA strings

Data under analysis: time calibration, check of Monte Carlo simulations, atmospheric muons...

Muon Depth Dependence

International Winter Meeting on Nuclear Physics

Bormio, 20-24 January 2020

KM3Ne¹

- Reconstruction algorithms under check
- Data Monte Carlo comparison
- Optimization of selection criteria for atmospheric muon rejection

International Winter Meeting on Nuclear Physics

Conclusions

- KM3NeT is a research infrastructure in the Mediterranean Sea, housing the next generation neutrino telescopes: ORCA (Toulon, France) and ARCA (Capo Passero, Italy).
- KM3NeT Phase-1: Under construction
 - Data-taking: 2 ARCA and 4 ORCA DUs at the Italian and French sites respectively
 - Data under analysis: time calibration, check of Monte Carlo simulations, atmospheric muons...
- Following phase KM3NeT 2.0: Partially funded
- Exciting physics prospects:
 - Determination of the neutrino mass hierarchy in ~3 years
 - Measurement of the oscillation parameters, test of the PMNS unitarity, sterile neutrinos...
 - Study IceCube flux from a different hemisphere (5σ in 1 year)
 - Excellent angular resolution: perform neutrino astronomy; discover galactic plane emission, and galactic sources
 - Allows for all flavour neutrino astronomy and spans with ARCA and ORCA a large energy window from GeV to PeV