Recent progress in Core-Collapse Supernovae Evan O'Connor, Stockholm University

Outline:

- SN theory & status
- Nuclear EOS (work by Andre Schneider)

Supernovae have a broad connection to the Universe

Neutrinos & Gravitational Waves

Nucleosynthesis

Wikimedia/Jennifer Johnson

Extreme Nuclear Physics

Long gamma-ray burst

Science/MacFadyen

Evan O'Connor – Bormio 2020

Neutron Star & Black Holes Masses in the Stellar Graveyard in Solar Masses 40

Galaxy Evolution

High-Z & SCP

Hubble

2 of 21

Collapse Phase

- Most massive stars core collapse during the red supergiant phase
- CCSNe are triggered by the collapse of the iron core (~1000km, or 1/10⁶ of the star's radius)
- Collapse ensues because electron degeneracy pressure can no longer support the core against gravity

Electron Captures during Collapse

CCSNe: The Stages

CCSNe: The Stages

t = -5ms

- The prevailing mechanism is the turbulence-aided neutrino mechanism
 - Neutrinos from core heat outer layers
 - Drives convection
 - Turbulence pressure support aids heating and drives explosion
- Very successful in 2D*, many successful explosions
- Success in 3D too: fewer simulations

Typical Evolution

Sensitivity to Neutrino Microphysics

The Core-Collapse Supernova Problem

Understanding the transition from an imploding iron core to an exploding star has been a persistent and difficult problem in astrophysics.

Requires:

3D - (I	Magneto)hydrodynamics
General Relativity	Nuclear Reactions
Progenitors	Nuclear Equation of State
Neutrino Transport & Interactions	Computational Physics

Not all core collapses will succeed

Smartt et al.

- Progenitors of Type II-P CCSNe suggest a maximum mass of ~16.5 +/- 1.5 M_{sun} – but RSG extend to 25 M_{sun} (Smartt 2015)
- Black holes exist! We see stellar mass black holes in binaries with stars and with other black holes
- We have seen preliminary evidence that massive stars disappear, perhaps following a failed supernovae

Evan O'Connor – Bormio 2020

Global effort towards agreement

- Want to demonstrate the community's ability to simulate SN
- Comparison of 6 core-collapse supernova codes
- *Very carefully* control input physics and initial conditions to ensure fair comparison

Global Comparison of Core-Collapse Superno Simulations in Spherical Symmetry

Journal of Physics: G 45 10 2018

3DnSNe-IDSA

FLASH

GR1D

Fornax

Vertex

Agile-Boltztran

Excellent Agreement in 1D

Same EOS, Same progenitors, Same **Explosion Successes in multiD – 2D** gravity, Same neutrino interactions -250 Mean Shock Radius [km] EO & Couch (2018a) 12WH07 s15WH07 Summa et al. (2016) s20WH07 200 400 s25WH07 350 300 [Ⅲ] 250 200 201 201 200 150 100 00 50 2.0 s12-2007 50 1D 1.5 $\dot{M} \left[\mathrm{M_{\odot}\,s^{-1}} \right]$ s15-2007 s15WW95_LS180 s20-2007 1.0 s25-2007 0.8 1.0 0.2 0.4 0.6 0.0 $t - t_{\text{bounce}}[s]$ 0.5 500 Bruenn et al. (2013) B12-WH07 0.0 B15-WH07 Vartanyan et al. (2018) 0.0 0.6 0.8 0.4 0.5 0.1 0.2 0.3 0.7 B20-WH07 400 time after bounce [s] 500 B25-WH07 Radius [km] 12 WH07 SFHo 1D Shock Radius [km] 13 WH07 SFHo 400 15 WH07 SFHo 16 WH07 SFHo 300 17 WH07 SFHo 19 WH07 SFHo **Jean Shock** 20 WH07 SFHo 200 21 WH07 SFHo 25 WH07 SFHo 100 100 0.0 0.1 0.2 0.3 0.5 0.6 0.7 0.4 Time after bounce [s] 50 200 100 150 Time after Bounce [ms]

Evan O'Connor – Bormio 2020

As much as possible

Explosion Successes in multiD – 3D

- Similar progenitors
- GR gravity
- Non-rotating

Nuclear Equation of State and Core Collapse

Wide variety of finite temperature EOS to choose from

Need:

- $1e-12 < n_b [fm^{-3}] < 10$
- 0.01 < T [MeV] < 150
- $0 < Y_p < 0.6$

Impact assessed only with systematic studies

Schneider et al. (2019b)

Evan O'Connor – Bormio 2020

What about in a supernova?

Cold Neutron Star

- S_{P} : Impacts maximum mass
- S_{K} : v. large impact on NS radius
- S_S: impact on low mass NS only
- S_m: minimal impact

Hot Supernova

- S_P: No impact in early stages
- S_K: Mild impact on radii
- S_S: Mild impact on radii
 - S_m: strong impact on radii

Effective mass (via the impact on the thermal EOS) plays strong and important role in supernova evolution

et

വ

It does impact the evolution in 3D! Schneider et al. (2019b) see also Yasin et al. (2018)

high m*, less pressure, more compact, more heating

- High effective mass gives lower thermal pressure, P_{th} ~ 1/m*
- 2. More compact protoneutron stars
- 3. More and hotter neutrinos
- 4. Greater heating and convection
- 5. Higher chance of explosion

- Core-Collapse supernovae are multi-physics. They require precise nuclear and neutrino microphysics and detailed neutrino transport in 3D
- Core Collapse simulations in multiD explode via the turbulence-aided neutrino mechanism, across codes and progenitors
- Equation of state impacts core collapse evolution mainly through thermal effects, less sensitive to cold NS EOS