Inferences About the Equation of State from Gravitational Waves and NICER

J. M. Lattimer

Department of Physics & Astronomy

58th International Winter Meeting on Nuclear Physics Bormio, Italy, 20–24 January 2020

Funding Support:

- US DOE Nuclear Physics
- US DOE Toward Exascale Astrophysics of Mergers and Supernovae (TEAMS)
- NASA Neutron Star Interior Composition ExploreR (NICER)

NSF - Neutrinos, Nuclear Astrophysics and Symmetries (N3AS)

Recent Collaborators:

Duncan Brown & Soumi De (Syracuse), Christian Drischler (Berkeley), Evgeni Kolomeitsev (Matej Bei, Slovakia), Akira Ohnishi (YITP, Kyoto), Madappa Prakash (Ohio), Achim Schwenk (Darmstadt), Andrew Steiner (Tennessee), Ingo Tews (Los Alamos), Tianqi Zhao & Will Farr (Stony Brook)

- Neutron Stars and How They Depend on the Equation of State
- Measuring Neutron Star Properties From Radio and X-ray Observations
- Nuclear Physics Constraints on Neutron Stars and the Equation of State
- Estimating Neutron Star Properties from Neutron Star Mergers and NICER
- Where Do We Go From Here?

(4) (3) (4) (3) (4)

Dany Page UNAM

J. M. Lattimer

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

J. M. Lattimer

Mass-Radius Diagram and Theoretical Constraints

J. M. Lattimer

Nuclear Symmetry Energy and the Pressure

The symmetry energy is the difference between the energies of pure neutron matter (x = 0) and symmetric (x = 1/2) nuclear matter: S(n) = E(n, x = 0) - E(n, x = 1/2)

J. M. Lattimer

Bounds From Unitary Gas Conjecture

120 Neutron matter energy should be larger than the unitary gas energy $E_{UG} = \xi_0(3/5)E_F$

$$E_{UG} = 12.6 \left(\frac{n}{n_s}\right)^{2/3} \mathrm{MeV}$$

The unitary gas refers to fermions interacting via a pairwise short-range s-wave interaction with an infinite scattering length and zero range. Cold atom experiments show a universal behavior with the Bertsch parameter $\xi_0 \simeq 0.37$.

NL3 STOS,TM1 Δ Excluded 100 ΤΜΑ Δ ΝΙρδ 80 LS220 △ KVOR (MeV) FSUgold TKHS 60 KVR 🗆 DD2. DD,D³C,DD-F IUFSU SFHo 40 GCR (S^{LB} MKVOR 20 u,=1 SFHx Allowed Tews, Lattimer, Ohnishi & Kolomeitsev (2017 0 24 26 28 30 32 34 36 38 40 S_v (MeV) $S_v \ge 28.6 \text{ MeV}; L \ge 25.3 \text{ MeV}; p_0(n_s) \ge 1.35 \text{ MeV fm}^{-3}; R_{1.4} \ge 9.7 \text{ km}$

Nuclear Experimental Constraints

J. M. Lattimer

Theoretical and Experimental Constraints

- H Chiral Lagrangian
- G: Quantum Monte Carlo
- neutron matter calculations from Hebeler et al. (2012) unitary gas constraints from $\sum_{v=1}^{\infty}$ Tews et al. (2017)
- Combined experimental constraints are compatible with unitary gas bounds.
- Neutron matter calculations are compatible with both.

The Radius – Pressure Correlation

Theoretical and Experimental Constraint Summary

$$R_{1.4} = (9.52 \pm 0.49) \left(rac{p_s}{
m MeV \ fm^{-3}}
ight)^{1/4} \ {
m km}$$
 $p_s \simeq n_s L/3$

 $\begin{array}{l} 30 \ \mathrm{MeV} \lesssim L \lesssim 70 \ \mathrm{MeV}: \\ 10.9 \ \mathrm{km} \lesssim R_{1.4} \lesssim 13.1 \ \mathrm{km} \end{array}$

Causality and $M_{max} \gtrsim 2.0 M_{\odot}$: $R_{1.4} \gtrsim 8.2 \text{ km}$ Imposing the unitary gas conjecture: $R_{1.4} \gtrsim 9.7 \text{ km}$

伺い イヨン イヨン

Measuring Neutron Star Masses and Radii

- ▶ Pulsar timing can accurately ($\gtrsim 0.0001 M_{\odot}$) measure masses. Most are between $1.2M_{\odot}$ and $1.5M_{\odot}$; lowest is $1.174 \pm 0.004 M_{\odot}$, highest are $2.14^{+0.10}_{-0.09} M_{\odot}$ and $2.01 \pm 0.04 M_{\odot}$. Higher estimates have large uncertainties.
- Thermal and bursting observations of X-rays yield radii, but uncertain to a few km.
 - Quiescent sources in globular clusters
 - Thermonuclear explosions on accreting neutron stars in binaries
 - Pulse profile modeling of hot spots on rapidly rotating neutron stars (NICER experiment)
- Gravitational waves from merging neutron stars measure masses and tidal deformabilites.

GW170817 suggests $R = 11 \pm 1$ km

GW170817

- LIGO-Virgo (LVC) detected a signal consistent with a BNS merger, followed 1.7 s later by a weak sGRB.
- ▶ 16600 orbits observed over 165 s.
- $\mathcal{M} = 1.187 \pm 0.001 \ M_{\odot}$
- $M_{\rm T,min} = 2^{6/5} \mathcal{M} = 2.726 M_{\odot}$
- $E_{\rm GW} > 0.025 M_{\odot} c^2$
- $D_L = 40 \pm 10$ Mpc
- ▶ 75 < Ã < 560 (90%)</p>
- $M_{
 m ejecta} \sim 0.06 \pm 0.02 ~M_{\odot}$
- Blue ejecta: $\sim 0.01 M_{\odot}$
- Red ejecta: \sim 0.05 M_{\odot}
- Possible r-process production
- Ejecta + GRB: $M_{max} \lesssim 2.2 M_{\odot}$

Properties of Known Double Neutron Star Binaries

Binary Pulsar Decay Time Distribution

16% have $\tau_{GW} <$ 60 Myrs.

2% have $\tau_{GW} < 15$ Myrs.

These relatively short timescales support the idea that mergers are the primary *r*-process source.

Binary Merger Gravitational Waveform Models

There are 13 parameters in third PN order $(v/c)^6$ models which include finite-size effects. LVC17 used a 13-parameter model; De et al. (2018) used a 9-10 parameter model.

- Sky location (2) EM data
- Distance (1) EM data
- Inclination (1)
- Coalescence time (1)
- Coalescence phase (1)
- Polarization (1)
- Component masses (2)
- Spin parameters (2)
- Tidal deformabilities (2) correlated with masses

Extrinsic

Intrinsic

Tidal Deformability

The tidal deformability λ is the ratio of the induced dipole moment Q_{ii} to the external tidal field E_{ii} , $Q_{ii} \equiv -\lambda E_{ii}$. We use the dimensionless quantity 0.10 $\Lambda = \frac{\lambda c^{10}}{G^4 M^5} \equiv \frac{2}{3} k_2 \left(\frac{Rc^2}{GM}\right)^5$ 0.08 0.06 k_2 is the dimensionless Love number. 0.04 0.02

0.0

For a neutron star binary, the mass-weighted $\tilde{\Lambda}$ is the relevant parameter:

Postnikov. Prakash & Lattimer (2010) ...
$$\beta$$

0.1 0.2 0.3 0.4 β
 $q = M_2/M_1 \le 1$

$$ilde{\Lambda} = rac{16}{13} rac{(1+12q)\Lambda_1 + (12+q)q^4\Lambda_2}{(1+q)^5}$$

The Effect of Tides

J. M. Lattimer

A is Highly Correlated With M and R

• $\Lambda = a\beta^{-6}$ Zhao & Lattimer (2018) $\beta = GM/Rc^2$ 0.010 $M_{max} > 2.01 M_{\odot}$ 0.009 $a = 0.0086 \pm 0.0011$ for 0.008 $M = 1.35 \pm 0.25 \ M_{\odot}$ R (km) 0.007 • 9.80 ື •10.23 \blacktriangleright If $R_1 \simeq R_2 \simeq R_{1.4}$ 10.66 0.006 1.10 it follows that 0.005 $\Lambda_2 \simeq q^{-6} \Lambda_1$. •13.69 0.004 •14.12 relevant masses 0.003 1.0 2.0 2.5 1.5 $M (M_{\odot})$

< 注→ < 注→

Binary Deformability and the Radius

1.0

km

1.2

 $\blacktriangleright \tilde{\Lambda} = a' (R_{1,4}c^2/G\mathcal{M})^6$ $a' = 0.0035 \pm 0.0006$ for

- $11.5 \pm 0.3 \ \frac{M}{M_{\odot}} \left(\frac{\tilde{\Lambda}}{800} \right)^{1/6}$ km
- ▶ For GW170817: $\left(\frac{\tilde{\Lambda}}{800}\right)$

$$\textit{R}_{1.4} = 13.4 \pm 0.1$$

1.4

J. M. Lattimer

Inferences About the Equation of State from Gravitational Wa

1.6

 $\mathcal{M}(M_{o})$

1.8

2.0

2.2

Re-Analysis of GW170817 (De et al. 2018)

- De18 takes advantage of the precisely-known electromagnetic source position (Soares-Santos et al. 2017).
- ► Uses existing knowledge of H₀ and the redshift of NGC 4993 to fix the distance (Cantiello et al. 2017).
- Assumes both neutron stars have the same equation of state, which implies Λ₁ ≃ q⁶Λ₂.
- Baseline model effectively has 9 instead of 13 parameters.
- Explores variations of mass, spin and deformability priors.
- Low-frequency cutoff taken to be 20 Hz, not 30 Hz as in LVC17, doubling the number of analyzed orbits.

De18 find that including $\Lambda - M$ correlations

- \blacktriangleright establishes a lower 90% confidence bound to $\tilde{\Lambda}$ (which is above the causal minimum value), and
- reduces the upper 90% confidence bound to $\tilde{\Lambda}$ by 30%.

68%, 80%, 90% and 95% Confidence Bounds

J. M. Lattimer Inferences About the Equation of State from Gravitational Wa

J. M. Lattimer Inferences About the Equation of State from Gravitational Wa

M - R With UG and Uniform R Priors

J. M. Lattimer Inferences About the Equation of State from Gravitational Wa

個 と く ヨ と く ヨ と …

M - R With No $\Lambda - M$ Correlations

J. M. Lattimer Infere

Maximum Mass Constraint From GW170817

- Pulsar observations imply non-rotating $M_{max} \gtrsim 2M_{\odot}$.
- \blacktriangleright Remnant differential rotation uniformizes within \sim 0.1s.
- ▶ Inspiralling mass $M_T = Mq^{-3/5}(1+q)^{6/5}$ is 2.73 M_{\odot} (q = 1) to 2.78 M_{\odot} (q = 0.7), smaller than $M_{max,d}$.
- Maximally uniformly rotating stars have $M_{max,u} = \xi M_{max}$ with 1.17 $\lesssim \xi \lesssim$ 1.21. Hypermassive stars, with $M_T > M_{max,u}$, promptly collapse to a BH.
- ► Supermassive stars, with M_{max} ≤ M_T ≤ M_{max,u}, are metastable but have much longer lifetimes. Such a remnant pumps too much energy into the ejecta to be consistent with observations.
- ► Taking into account gravitational binding energy, the condition $M_T > M_{max,u}$ implies $M_{max} \le 2.25 M_{\odot}$.

同下 イヨト イヨト 二日

Neutron Star Interior Composition ExploreR (NICER)

Reveal stellar structure through lightcurve modeling, long-term timing, and pulsation searches

Lightcurve modeling constrains the compactness (*M*/*R*) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...

J. M. Lattimer Inferences About the Equation of State from Gravitational Way

... while phase-resolved spectroscopy promises a direct constraint of radius *R*.

NASA

J. M. Lattimer

NICER Results For PSR J0030+0451

Comparison of GW and NICER Results

J. M. Lattimer

Composite of GW and NICER Results

J. M. Lattimer

Inferences About the Equation of State from Gravitational Wa

LVC O3 Detections To Date (9 Months)

28 binary black hole systems, of which 1 is marginal.

4-5 binary neutron star systems, of which 2 are marginal.

- GW191213 (201 \pm 81 Mpc, FAR = $3.5 \cdot 10^{-8}$)
- GW190425 (156 \pm 41 Mpc, FAR = 4.5 \cdot 10⁻¹³, BHNS ?)
- ► GW190510 (1331 ± 341 Mpc, FAR = 8.8 · 10⁻¹⁰)
- ► GW190901 (241 ± 79 Mpc, FAR = 7.0 · 10⁻⁹)
- ► GW190910 (241 ± 89 Mpc, FAR = 3.6 · 10⁻⁸)
- 4-5 black hole-neutron star systems, of which 1 is marginal.
 - GW190426c (377 \pm 100 Mpc, FAR = $1.9 \cdot 10^{-8}$)
 - ▶ GW190814bv (267 ± 52 Mpc, FAR=2.0 · 10⁻³³)
 - ► GW190910d (632 ± 186 Mpc, FAR = 3.7 · 10⁻⁹)
 - ► GW191205 (385 ± 164 Mpc, FAR 1.2 · 10⁻⁸)

Summary

- GW170817 provided R and EOS information compatible with expectations from nuclear theory, experiment and other astrophysical observations, considering existing systematic uncertainties.
- ► GW170817 also hints that M_{max} is not far above the minimum provided by pulsar timing.
- NICER provides consistent radius information from pulse-profile models of rapidly rotating X-ray pulsars.
- Future GW measurements will be additive since BNS sources should be similar.