

58th International Winter Meeting on Nuclear Physics, 20-24 January 2020, Bormio (Italy)

Status of the B-Meson Flavor Anomalies

Matthias Neubert

PRISMA+ Cluster of Excellence Johannes Gutenberg University Mainz

UNIVERSITÄT MAI

Tensions in the Standard Model?

- * B-meson flavor anomalies:
 - Among the most interesting tensions we have in particle physics
 - Potential to revolutionize our field and help us to unravel the next layer of fundamental physics
 - ... if present hints are confirmed by future data!

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

Beyond the SM

Beyond the SM

- * No solution yet to the hierarchy problem
- * No answers yet to other big questions:
 - Nature of Dark Matter?
 - Origin of matter-antimatter asymmetry?
 - Explanation of flavor puzzle?
 - Dark energy / cosmological constant & strong CP problem
- While the field waits for clues, remarkable things are happening in the flavor sector!

B-meson flavor anomalies

 Intriguing hints of anomalies in B decays entered stage starting in 2012 (R_D, R_{D*}; P₅'& BRs; R_K, R_{K*})

$$\begin{split} R_{D^{(*)}} &= \frac{\Gamma(\bar{B} \to D^{(*)} \tau \bar{\nu})}{\Gamma(\bar{B} \to D^{(*)} \ell \bar{\nu})}; \quad \ell = e, \mu \\ R_{K^{(*)}} &= \frac{\Gamma(\bar{B} \to \bar{K}^{(*)} \mu^+ \mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)} e^+ e^-)} \end{split}$$

- * If true, they would be hugely important for the future development of high-energy particle physics at large!
- * In fact, their importance cannot be overstated ...

B-meson flavor anomalies

 … because they would give a clear target for future searches at energy frontier!

B-meson flavor anomalies: Violations of lepton universality?

Flavor anomalies: R_D & R_D*

* A totally unexpected signal of new physics in tree-level, CKM-favored, semileptonic decays of B mesons:

Recent update from Belle (03/19)

Flavor anomalies: R_D & R_D*

- New world average still shows a tension; hints at smaller new-physics effects
- May be good news, since effect was (and still is) in a way much too large

* Expect in case of tree-level new physics: v^2

$$\frac{v^2}{\Lambda^2} \sim \text{at most few \%}$$

Flavor anomalies: P5' & BRs

- * Various hints of new physics in decays $\bar{B} \rightarrow K^* \ell^+ \ell^-$
- Being rare, loop-mediated FCNC processes, these are prime observables to probe BSM effects

Inden Flavor anomalies: P5' & BRs

Flavor anomalies: P5' & BRs

- * Several angular observables measured as functions of q²
- * Some, like P₅', are optimized to be insensitive to hadronic uncertainties: [Descotes-Genon, Matias, Ramon, Virto 2012]

M. Neubert — B-Meson Flavor Anomalies

Bormio 2020

Flavor anomalies: R_K & R_K*

 Some scenarios explaining these anomalies in angular observables predicted a departure from SM in ratios: [Altmannshofer, Gori, Pospelov, Yavin 2014]

$$R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)} \mu^+ \mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)} e^+ e^-)}$$

- Quite surprisingly, such deviations were later observed at LHCb!
- * "Smoking gun" observables, but present hints below $3\sigma!$

Flavor anomalies: R_K & R_K*

Recent LHCB update on RK

- * Original LHCb result (2.6 σ): $R_K = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$
- New result including data until 2016 (2.5σ):

 $R_K = 0.846 \,{}^{+\,0.060}_{-\,0.054} \,{}^{+\,0.016}_{-\,0.014}$

* And there is more: promising news from Belle ...

Belle enters the game of Red & & Belle enters the same of Red & &

+<u>⊐</u>.0.0 +<u>⊐</u>. **¥** 0.4

0.2

-0.2

• 0.0 • 0.4

0.2

-0.2

M. Neubert — B-Meson Flavor Anomalies

Bormio 2020

B-flavor anomalies: Status

- * Lots of reasons to be excited!
 - Two different sets of anomalies of very different taste
 - Several seen by more than one experiment
 - In case of $b \rightarrow s\ell^+\ell^-$ several observables deviate from SM predictions, and deviations appear to fit a simple pattern
- All combined, perhaps the most compelling hint for physics beyond the SM we have seen in modern particle physics experiments

Who ordered that?

- * Unexpectedly large new-physics effect!
- * No apparent connection to big questions of our field!
- * Is it good for something else?

Model-independent analyses

* Effective weak Hamiltonian for $b \rightarrow s\ell^+\ell^-$ transitions, including both SM and NP effects:

$$\mathcal{H}_{\text{eff}}^{\text{NP}} = -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \left(C_7^{bs} O_7^{bs} + C_7'^{bs} O_7'^{bs} + \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} \left(C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \right) \right) + \text{h.c.}$$
with:

$$O_{9}^{bs\ell\ell} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad O_{9}^{\prime bs\ell\ell} = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell) O_{10}^{bs\ell\ell} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \qquad O_{10}^{\prime bs\ell\ell} = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

- * Excellent fits obtained with only 1-2 NP contributions!
- * Analogous Hamiltonian can be written for $b \to c \, \ell^- \bar{\nu}$

Model-independent analyses

From global fit to $b \rightarrow s\ell^+\ell^-$ observables: *

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9 <i>σ</i>
$C_9^{\prime b s \mu \mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6 <i>σ</i>

Aebischer, Altmannshofer, Guadagnoli, Reboud, Stangl, Straub 1903.10434

	$\mathcal{C}_7^{\mathrm{NP}}$		$\mathcal{C}_{9\mu}^{ m NP}$		$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	${\cal C}_{10'\mu}$	
Best fit	+0.01	(-1.10		+0.15	+0.02	+0.36	-0.16	6D fit
1σ	[-0.01, +0.05]	[-1	.28, -0.9	0]	[-0.00, +0.36]	[-0.00, +0.05]	[-0.14, +0.87]	[-0.39, +0.13]	pull 5
2σ	[-0.03, +0.06]	[-1	.44, -0.6	8]	[-0.12, +0.56]	[-0.02, +0.06]	[-0.49, +1.23]	[-0.58, +0.33]	Puii. 5.

 1σ

Algueró, Capdevila, Crivellin, Descotes-Genon, Masjuan, Matias, Virto 1903.09578

Bormio 2020

Model-independent analyses

* Global fits to data assuming NP for muons only, e.g.:

Aebischer, Altmannshofer, Guadagnoli, Reboud, Stangl, Straub 1903.10434

Bormio 2020

Model building: Mediators

 Several (but not all) models aim at explaining all anomalies, sometimes along with (g-2)_μ (optimistic ^(ω))

[Bhattacharya, Datta, London, Shivashankara 2014; Alonso, Grinstein, Martin Camalich 2015; Greljo, Isidori, Marzocca 2015; Calibbi, Crivellin, Ota 2015; Bauer, MN 2015; Fajfer, Kosnik 2915; Barbieri, Isidori 2015; Das, Hati, Kumar, Mahajan 2016; Boucenna, Celis, Fuentes-Martin, Vicente, Virto 2016; Becirevic, Kosnik, Sumensari, Zukanovich Funchal 2016; Becirevic, Fajfer, Kosnic, Sumensari 2016; Hiller, Loose, Schoenwald 2016; Bhattacharya, Datta, Guevin, London, Watanabe 2016; Buttazzo, Greljo, Isidori, Marzocca 2016; Barbieri, Murphy, Senia 2016; Bordone, Isidori, Trifinopoulos 2017; Crivellin, Müller, Ota 2017; Megias, Quiros, Salas 2017; Cai, Gargalionis, Schmidt, Volkas 2017; ...]

- * R_D and R_{D*} require tree-level NP near TeV scale
- * Rare decays $b \rightarrow s\ell^+\ell^-$ (R_K, R_{K*}, P₅', ...) require suppressed NP contributions
- * If common origin: suppression either dynamically or by means of a symmetry

Model building: Mediators

* New colorless bosons, e.g. Z' coupled to $(L_{\mu}-L_{\tau})$:

[Altmannshofer, Gori, Pospelov, Yavin 2014]

- Z' mass in low TeV range, heavy vector-like quarks ~ tens of TeV
- Can explain P₅' and predicted LFU violation in R_K and R_{K*}
- But tree-level contribution to
 B-meson mixing is problematic

* Scalar/vector leptoquarks, e.g.:

- Can explain both R_{D(*)} and R_{K(*)} at tree-level
- Requires huge hierarchy in flavor couplings (flavor symmetry?)
- Constraints from B mixing and B \rightarrow K^(*) $\nu\nu$, B \rightarrow K^(*) $\tau^{+}\tau^{-}$

Model building: Mediators

 $\langle \phi \rangle$

 $\langle \phi \rangle$

* New colorless bosons, e.g. Z' coupled to $(L_{\mu}-L_{\tau})$:

[Altmannshofer, Gori, Pospelov, Yavin 2014]

- Z' mass in low TeV range, heavy vector-like quarks ~ tens of TeV
- Can explain P₅' and predicted LFU violation in R_K and R_{K*}
- But tree-level contribution to
 B-meson mixing is problematic

* Scalar SU(2)_L singlet LQ ($= \tilde{b}_R$):

[Bauer, MN 2015; Cai, Gargalionis, Schmidt, Volkas 2017]

- Explains $R_{D(*)}$ at tree-level but $R_{K(*)}$ at one-loop level, like SM
- CKM-like hierarchy in coupling parameters

SL

Emergence of a bigger picture?

- * Required new particles in low TeV range, precisely where we (now) expect a solution to the hierarchy problem!
- Leptoquarks can arise from GUTs, neutrino mass models, [Popov, White 2016]
 SUSY models, or as pNGBs
- * E.g.: Composite Higgs models with partial fermion compositeness:
 * E.g.: Composite Higgs models with partial fermion
 * [Buttazzo, Greljo, Isidori, Marzocca 2016; Barbieri, Murphy, Senia 2016; ...]
 - Address hierarchy and flavor problems at ~10 TeV, light scalar leptoquarks (~ TeV) as pNGBs
 - Interesting challenges for model building!

Outlook

- * Future looks bright:
 - Many more data from LHCb and ATLAS/CMS; Belle 2 soon a strong competitor; rare kaon experiments
- Expect lots of new and surprising results and many high-precision measurements
- How exciting this is will depend on what we will find!

Conclusions

- If confirmed, the B-meson flavor anomalies would be the most important discovery in particle physics since discovery of the weak gauge bosons and the Higgs
 - Point to existence of new heavy particles in few-TeV range
 - Possibly, these might be connected to a fundamental theory of electroweak symmetry breaking and flavor
 - Strong physics case for future high-energy colliders
- * Independent confirmation of the flavor anomalies by Belle 2 is as crucial as refining current LHCb analyses

Backup Slides

Flavor anomalies: P5' & BRs

- * Several angular observables measured as functions of q²
- * Some, like P₅', are optimized to be insensitive to hadronic uncertainties: [Descotes-Genon, Matias, Ramon, Virto 2012]

Model building

- Interesting framework for addressing all anomalies: [Buttazzo, Greljo, Isidori, Marzocca 2017]
 - Assume that NP only couples to LHD quarks and leptons: $\mathcal{H}_{\rm NP} = [C_{\ell q}^{(1)}]_{ii23} (\bar{L}_{L}^{i} \gamma_{\mu} L_{L}^{i}) (\bar{Q}_{L}^{2} \gamma^{\mu} Q_{L}^{3}) + [C_{\ell q}^{(3)}]_{ii23} (\bar{L}_{L}^{i} \gamma_{\mu} \tau^{I} L_{L}^{i}) (\bar{Q}_{L}^{2} \gamma^{\mu} \tau^{I} Q_{L}^{3})$
 - Hypothesis that NP couples primarily to 3^{rd} generation fermions explains enhancement of $b \rightarrow c\tau \bar{\nu}$ over $b \rightarrow s\mu^+\mu^$ and absence of anomalies in K, π , τ decays [Glashow, Guadagnoli, Lane 2014]
 - Universal contribution to C₉ can be generated at loop level:

[Crivellin, Greub, Saturnino, Müller 2018]

Model building

* Provides a consistent description of all data:

Observable	1σ	2σ	\mathbf{SM}
$R_{K^*}^{[0.045,1.1]}$	$0.88^{+0.01}_{-0.01}$	[0.86, 0.90]	0.926 ± 0.004
$R_{K^*}^{[1.1,6.0]}$	$0.81 {}^{+0.04}_{-0.04}$	[0.73, 0.89]	0.9964 ± 0.0006
$R_{K^*}^{[0.1,8.0]}$	$0.83^{+0.04}_{-0.03}$	[0.77, 0.90]	0.995 ± 0.002
$R_{K^*}^{[15,19]}$	$0.79{}^{+0.04}_{-0.04}$	[0.71, 0.88]	0.99807 ± 0.00004
$R_K^{[1.0,6.0]}$	$0.80 {}^{+0.04}_{-0.04}$	[0.71, 0.88]	1.0008 ± 0.0003
$R_{\phi}^{[1.0,6.0]}$	$0.81 {}^{+0.04}_{-0.04}$	[0.73, 0.89]	0.9970 ± 0.0003
$\langle P'_5 \rangle^{[4.0,6.0]}$	$-0.58{}^{+0.13}_{-0.12}$	[-0.82, -0.33]	-0.763 ± 0.072
R_D	$0.34^{+0.01}_{-0.01}$	[0.32, 0.37]	0.303 ± 0.006
R_{D^*}	$0.29{}^{+0.01}_{-0.01}$	[0.27, 0.31]	0.255 ± 0.004
$\overline{\rm BR}(B_s \to \mu^+ \mu^-)$	$2.98{}^{+0.20}_{-0.19}\times10^{-9}$	$[2.60, 3.38] \times 10^{-9}$	$(3.67 \pm 0.16) \times 10^{-9}$
${\rm BR}(B^\pm\to K^\pm\tau^+\tau^-)$	$3.05^{+1.78}_{-1.06}\times10^{-5}$	$[1.01, 6.47] \times 10^{-5}$	$(1.66\pm 0.19)\times 10^{-7}$
$\overline{\rm BR}(B_s\to\tau^+\tau^-)$	$1.41^{+0.80}_{-0.47}\times10^{-4}$	$[0.52, 2.94] \times 10^{-4}$	$(7.78\pm 0.33)\times 10^{-7}$

Aebischer, Altmannshofer, Guadagnoli, Reboud, Stangl, Straub 1903.10434

M. Neubert — B-Meson Flavor Anomalies

Bormio 2020