systematic studies of beam normal single-spin asymmetries at MAMI

Michaela Thiel

on behalf of the A1 collaboration Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

58th International Winter Meeting

being more precise: boon and bane

elastic electron scattering

elastic electron scattering

beam normal single-spin asymmetry A_n:

arises from interference of one- and two-photon exchange De Rújula et al., Nucl. Phys. B35, 365 (1971)

allows access of imaginary part of 2γ exchange amplitude

theoretical treatment of A_n

consider contributions of elastic (scales as Z) AND inelastic intermediate states (scales as A/Z)

dispersion integral over intermediate excited states

theoretical treatment of A_n

consider contributions of elastic (scales as Z) AND inelastic intermediate states (scales as A/Z)

dispersion integral over intermediate excited states

focus on very low four-momentum transfer: leading order ~ C_o·log(Q²/m²) Gorchtein and Horowitz, Phys. Rev. C77, 044606 (2008)

C_o contains energy dependence

can be calculated exactly!

exact calculation ... room for improvements

the whole nuclear chart in a small band

the whole nuclear chart in a small band

compare apples with oranges?

compare apples with oranges?

disentangle Q², E and A dependencies!

experimental access to A_n

elastic electron-nucleus scattering

experimental access to A_n

elastic electron-nucleus scattering

experimental access to A_n

elastic electron-nucleus scattering

$$A_n = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \approx 10^{-6} - 10^{-5}$$

experimental challenges

HIGH beam current

- +HIGH polarization
- +HIGH cross section

experimental challenges

HIGH beam current

- +HIGH polarization
- +HIGH cross section

reasonable long measuring time

requirements:
outstanding beam (polarization & stability)
outstanding polarimetry
"right" target material
low noise electronics

the stage

Mainz Microtron up to E = 1.6 GeV

 HIGH

 resolution

 σ_E < 0.1 MeV</td>

 reliability

 85% (7000 h/a)

 polarization

 up to 80% @ 40µA

the "right" target material

the "right" target material

choice of kinematics

study Q² dependence

the "right" target material

 $T_{sub} = 3600^{\circ}C$ $\Delta E = 4.4 \text{ MeV}$

Si 14 En 1,9 Silicium [Ne] 3s²3p² +IV, -IV 28,085 28.084 - 28.086

 $T_{melt} = 1410^{\circ}C$ $\Delta E = 1.8 \text{ MeV}$

 $T_{melt} = 1850^{\circ}C$ $\Delta E = 1.8 \text{ MeV}$

study A dependence

magnetic spectrometers

magnetic spectrometers

magnetic spectrometers

A_ndet A

Andet B

magnetic spectrometers

A_ndet A

A_ndet B

false asymmetries

beam related sources:

current

energy position and angle

non-beam related sources: ground noise gate length fluctuations electrical cross talk

false asymmetries

beam related sources:

current

energy position and angle

non-beam related sources: ground noise gate length fluctuations electrical cross talk

stabilization system needed!

results - Q² dependence

results - A dependence

results - A dependence

results - A dependence

conclusions

"PHYSICS IS REALLY NOTHING MORE THAN A SEARCH FOR ULTIMATE SIMPLICITY, BUT SO FAR ALL WE HAVE IS A KIND OF ELEGANT MESSINESS."

conclusions

"PHYSICS IS REALLY NOTHING MORE THAN A SEARCH FOR ULTIMATE SIMPLICITY, BUT SO FAR ALL WE HAVE IS A KIND OF ELEGANT MESSINESS."

BILL BRYSON, A SHORT HISTORY OF NEARLY EVERYTHING 16/17

next steps

measure energy dependence (¹²C)

measure

Compton Slope (≥ ¹²C)

"PHYSICS IS REALLY NOTHING MORE THAN A SEARCH FOR ULTIMATE SIMPLICITY, BUT SO FAR ALL WE HAVE IS A KIND OF ELEGANT MESSINESS."

BILL BRYSON, A SHORT HISTORY OF NEARLY EVERYTHING

polarimetry measure v

THE TOOLS:

Mott: horizontal transverse @ source

Møller: longitudinal @ target

polarimetry measure

THE METHOD:

- MAXIMIZE longitudinal polarization @ target
- MAXIMIZE horizontal transverse component @ source
- MINIMIZE longitudinal and transverse component @ source and target

For details see: B.S. Schlimme et al., NIM A 850 (2017) 54-60