Coherent pion photoproduction on spin-zero nuclei

Slava Tsaran

Institute of Nuclear Physics, University of Mainz

January 23, 2020

Nuclear Experimental Constraints

J. M. Lattimer Inferences About the Equation of State from Gravitational Wa

Photoproduction is a tool so study neutron distribution

Slava Tsaran (JGU)

CREX Workshop, March 17-19, 2013 Thomas Jefferson National Accelerator Facility

Spin independent parts of the π^0 photoproduction amplitudes on 2° and 1° are the same

We can measure nucleon distribution!

 π^0 photoproduction + proton dist. data \Longrightarrow access to neutron skin

$$\begin{split} \langle \mathbf{k}', -\mathbf{k}' | \hat{U}_{opt}^{1st}(E) | \mathbf{k}, -\mathbf{k} \rangle &= \alpha A \int d\boldsymbol{\xi} d\boldsymbol{\xi}_{A-1} d\boldsymbol{\xi}'_{A-1} \frac{d\mathbf{p}}{(2\pi)^3} e^{i\mathbf{k}' \cdot (\boldsymbol{\xi} - \boldsymbol{\xi}'_{A-1}/A)} e^{-i\mathbf{k} \cdot (\boldsymbol{\xi} - \boldsymbol{\xi}_{A-1}/A)} \times \\ e^{i(\mathbf{p}_1 - \mathbf{q}/2) \cdot (\boldsymbol{\xi} - \boldsymbol{\xi}'_{A-1})} e^{-i(\mathbf{p}_1 + \mathbf{q}/2) \cdot (\boldsymbol{\xi} - \boldsymbol{\xi}_{A-1})} \operatorname{Tr} \left[\rho(\boldsymbol{\xi}'_{A-1}, \boldsymbol{\xi}_{A-1}) t(W; \mathbf{k}', \mathbf{p} - \mathbf{q}/2; \mathbf{k}, \mathbf{p} + \mathbf{q}/2) \right], \\ \hat{U} &= \sum \hat{n} + \sum_{i} \sum \hat{n} \hat{G} \hat{P}_{0} \hat{\tau} + \sum_{i} \sum \hat{G} \hat{G} \hat{P}_{0} \hat{\tau} + \sum_{i} \hat{G} \hat{P}_{0} \hat{\tau}_{i} \hat{G} \hat{P}_{0} \hat{\tau}_{i} + \sum_{i} \hat{G} \hat{P}_{0} \hat{\tau}_{i} \hat{G} \hat{P}_{0} \hat{\tau}_{i} + \sum_{i} \hat{G} \hat{P}_{0} \hat{\tau}_{i} \hat{T} + \sum_{i} \hat{T} \hat{T} + \sum_{i} \hat{T} + \hat{T$$

Elastic scattering amplitude is needed to describe photoproduction

Plane wave impulse approximation:

$$V_{\gamma\pi}^{\lambda} = p_A \rho(q) F_2 \left[\hat{k}_{\gamma} imes \hat{k}_{\pi}
ight] \cdot \boldsymbol{\varepsilon}_{\lambda}$$

ho(q) - nuclear mass form factor F_2 - MAID2007 CGLN amplitude (spin-independent)

D. Drechsel *et al.*, Nuclear Physics A **660**, 423 (1999)

Final state interaction (FSI)

Medium effects: Δ self-energy Σ_{Δ}

Slava Tsaran (JGU)

Scattering is the key to photoproduction

Elementary amplitudes are building blocks

 $\Delta(1232)$ is driving both scattering and photoproduction

 Δ propagator is modified in nuclear medium:

$$G_{\Delta} = \frac{1}{(W - m_{\Delta} + i\Gamma_{\Delta}/2)}$$

$$\Downarrow$$

$$G_{\Delta} = \frac{1}{(W - m_{\Delta} + i\Gamma_{\Delta}/2 - \Sigma_{\Delta})}$$

Can we use the same Σ_{Δ} for both processes?

Slava Tsaran (JGU)

The Klein-Gordon equation for π :

$$(-\boldsymbol{\nabla}^2+m_\pi^2)\Phi(\mathbf{r})+\boldsymbol{U}\Phi(\mathbf{r})=\omega^2\Phi(\mathbf{r})$$

The optical potential $U = U_{1st} + U_{2nd}$ is complex end energy dependent

 $Im[U] < 0 \implies$ pion flux is decreasing

 $\Sigma_{\Delta} = \operatorname{Re} \Sigma_{\Delta} + i \operatorname{Im} \Sigma_{\Delta} = \operatorname{const}$

Multi-energy fit to $\pi^{\pm} - {}^{12}$ C total, reaction and differential elastic cross sections

Second-order pion-nucleus optical potential

 $U_{1\mathrm{st}}(\boldsymbol{k}',\boldsymbol{k})=t_0(\boldsymbol{k}',\boldsymbol{k})\rho(\boldsymbol{q})$

$$\begin{split} U_{2nd}(\mathbf{k}',\mathbf{k}) &= -\int \frac{\mathrm{d}\mathbf{k}''}{(2\pi)^3} G_0(\mathbf{k}'') \left[t_0(\mathbf{k}',\mathbf{k}'') t_0(\mathbf{k}'',\mathbf{k}) C(\mathbf{k}'-\mathbf{k}'',\mathbf{k}''-\mathbf{k}) \right. \\ &\left. + 2t_1(\mathbf{k}',\mathbf{k}'') t_1(\mathbf{k}'',\mathbf{k}) D(\mathbf{k}'-\mathbf{k}'',\mathbf{k}''-\mathbf{k}) \right] \end{split}$$

Correlation functions in the momentum space:

$$D(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}) = \int \mathrm{d}\boldsymbol{r}_{1} \, \mathrm{d}\boldsymbol{r}_{2} \, e^{-i(\boldsymbol{q}_{1} \cdot \boldsymbol{r}_{1} + \boldsymbol{q}_{2} \cdot \boldsymbol{r}_{2})} \rho_{\mathsf{ex}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2});$$

$$C(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}) = \int \mathrm{d}\boldsymbol{r}_{1} \, \mathrm{d}\boldsymbol{r}_{2} \, e^{-i(\boldsymbol{q}_{1} \cdot \boldsymbol{r}_{1} + \boldsymbol{q}_{2} \cdot \boldsymbol{r}_{2})} C(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}),$$

$$\rho_{\mathsf{ex}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) = \rho_{2}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) - \rho(\boldsymbol{r}_{1})\rho(\boldsymbol{r}_{2}) \qquad C(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) = \rho_{\mathsf{ex}}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) - \frac{1}{4}\rho(\boldsymbol{r}_{1})\rho(\boldsymbol{r}_{2})$$

The second order part restores Pauli blocking

$$U_{2nd}(\mathbf{k}', \mathbf{k}) = -\int \frac{d\mathbf{k}''}{(2\pi)^3} G_0(\mathbf{k}'') \left[t_0(\mathbf{k}', \mathbf{k}'') t_0(\mathbf{k}'', \mathbf{k}) C(\mathbf{k}' - \mathbf{k}'', \mathbf{k}'' - \mathbf{k}) \right] \\ + 2t_1(\mathbf{k}', \mathbf{k}'') t_1(\mathbf{k}'', \mathbf{k}) D(\mathbf{k}' - \mathbf{k}'', \mathbf{k}'' - \mathbf{k})$$

Harmonic oscillator shell model for *D* and *C* :

Relativistic Δ -isobar model

 P_{33} wave : in nuclear medium $m_{\Delta} \longrightarrow m_{\Delta} + \Sigma_{\Delta}$. $\mathsf{S}_{11}, \mathsf{S}_{31}, \mathsf{P}_{11}, \mathsf{P}_{31}, \mathsf{P}_{13}$ partial waves from **SAID**

Slava Tsaran (JGU)

Fit to $T_{\mathsf{lab}} = 80 - 180 \text{ MeV } \pi^{\pm} \text{-}^{12}\text{C}$ scattering data

Coherent π^0 photoproduction on ${}^{12}C$

Coherent π^0 photoproduction on ${}^{12}C$

- Medium effects in π^{\pm} scattering and π^{0} photoproduction described by introducing phenomenological Δ self-energy Σ_{Δ}
- Derived optical potential provides adequate fits for $T_{\rm lab}=80-180~{\rm MeV}$ scattering
- The full photoproduction amplitude modified by Σ_Δ (from the scattering fit) is consistent with the data
- production of charged pion followed by charge exchange on a second nucleon causes a significant shift in the cross section
- Exploration: sensitivities of the model theoretical error estimate
- Extension: application to heavy nuclei, e.g. ${
 m ^{40}Ca}$, ${
 m ^{48}Ca}$, ${
 m ^{208}Pb}$

- Medium effects in π^{\pm} scattering and π^{0} photoproduction described by introducing phenomenological Δ self-energy Σ_{Δ}
- Derived optical potential provides adequate fits for $T_{\rm lab}=80-180~{\rm MeV}$ scattering
- The full photoproduction amplitude modified by Σ_Δ (from the scattering fit) is consistent with the data
- production of charged pion followed by charge exchange on a second nucleon causes a significant shift in the cross section
- Exploration: sensitivities of the model theoretical error estimate
- Extension: application to heavy nuclei, e.g. ${
 m ^{40}Ca}$, ${
 m ^{48}Ca}$, ${
 m ^{208}Pb}$

Thank you for your attention!