Latest results on the production of hadronic resonances with ALICE at the LHC

Neelima Agrawal* on behalf of the ALICE Collaboration

*University of Bologna and INFN (Italy)

58th International Winter Meeting on Nuclear Physics January 20 to 24, 2020 Bormio, Italy

Heavy-ion collision

Initial state

- ions travelling with velocity near the speed of light

Nuclei collide

- parton-parton scattering: a large amount of energy is deposited in a small volume of space

Partonic phase

- QGP ~ few fm/c

Hadronisation

- QGP to hadron gas

Chemical freeze-out

- inelastic collisions stop
- fixed chemical composition
- followed by hadron-resonance gas

Kinetic freeze-out (~10 fm/c)

no more collisionsfixed momentum distributions

Free hadrons

- experimental measurement

Hadronic phase of heavy-ion collisions

The phase between chemical and kinetic freeze-out can be probed with hadronic resonances (short lifetimes $\sim \tau$ of hadronic phase)

Elastic **re-scattering** of decay daughters smears out mass peak (case - II) Pseudo-elastic scattering through a resonance state (e.g. ρ) (case - III) → signal loss of original resonance

Re-generation by pseudo-elastic scattering through resonance state (case - I) (eg: Kp $\rightarrow \Lambda(1520) \rightarrow Kp$) \rightarrow signal gain

Hadronic phase of heavy-ion collisions

The phase **between chemical and kinetic freeze-out** can be probed with hadronic resonances (short lifetimes $\sim \tau$ of hadronic phase)

Final yield at kinetic freeze-out depends on

- chemical freeze out temperature (T_{ch}) : fixes initial yield
- time span between kinetic and chemical freezeout
- lifetime of resonance and scattering cross sections of decay daughters

resonance (excited state) yield can be compared to **long-lived particles** with **similar quark content** but different masses

resonance yields encode the **effects of interactions** in the **hadronic phase** created in heavy-ion collisions

Resonances in ALICE

Light flavoured hadronic resonances

- chemical composition u/d/s quarks

Resonance	ρ(770) ⁰	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530) ⁰	Ф(1020)
Lifetime (fm/c)	1.3	4.2	5.0 - 5.5	12.6	21.7	46.4
Quark cont.	$(uu+dd)/\sqrt{2}$	ds	uus/dds	uds	uss	ss
Decay	ππ	$K_{s^0}\pi$	Λπ	pК	$\Xi\pi$	KK
BR(%)	100	33.3	87	22.5	66.7	49.2

pp collisions √s = **2.76, 5, 7, 8, 13** TeV

p-Pb collisions √s_{NN} = **5.02, 8.16** TeV **Pb-Pb (Xe-Xe)** collisions √SNN = **2.76, 5.02, (5.44)** TeV

Plenty of *p*_T spectra: Heavy-ion collisions

• *p*_T-spectra

→get harder with increasing multiplicity/collision centrality for $p_T < 5 \text{ GeV}/c$ → similar shape across multiplicity/collision centrality for $p_T > 5 \text{ GeV}/c$

Plenty of *p*_T spectra: pp and p-Pb collisions

*p*_T-spectra

→get harder with increasing multiplicity/collision centrality for $p_{\rm T} < 5$ GeV/c

→ similar shape across multiplicity/collision centrality for $p_T > 5 \text{ GeV}/c$

→ qualitatively similar hardening in Pb-Pb, p-Pb and pp collision systems

arXiv:1910.14397

Integrated Yields - dN/dy

2000

0.5 p

-0.4

0.3

0.2

0.1

ALI-PREL-145011

- K* and φ: linear increases towards higher multiplicity
- K*: in agreement with prediction of EPOS3 model and Pythia8 without colour reconnection - charged particle normalised yield is independent to collision energy and system
- **φ: is slightly overestimated** with EPOS3 and underestimated by **DIPSY** model predictions
- Charge particle **multiplicity class determines** the resonance production independent of collision energy and system

Mean Transverse Momentum - (p_T)

Phys. Rev. C 99 (2019) 024609 arXiv:1910.14397 φ, K*: increases towards higher multiplicity
 consistent values in 2.76 and 5.02 TeV Pb-Pb collision data

Follows mass ordering

- indicative of radial flow in central
- violated in peripheral ($\phi > p$)
- ρ, Λ(1520): in agreement with EPOS3 (with UrQMD) and Blast Wave (π/K/p)
 EPOS3 fails to predict the data if UrQMD is off

Particle ratio

- Small collision system (pp, p-Pb)
 - φ/K, Λ(1520)/K, Ξ*0/Ξ ratios are independent of charged particle multiplicity
 - ρ/π, K*/K shows a hint of suppression (possible re-scattering effect?)

Heavy-lon collision system (Pb-Pb, Xe-Xe)

 - p/π, K*/K, Λ(1520)/Λ, (Ξ*⁰/Ξ) ratios are suppressed (slightly) with respect to pp, p-Pb and peripheral Pb-Pb: Dominance of re-scattering compared to re-generation

- φ/K no suppression suggest decay outside of medium, no significant re-scattering effect
 Phys. Rev. C 91 (2015) 024609

- trends qualitatively described by EPOS3+UrQMD model
- EPOS3 fails to predict the data if UrQMD is off

 Phys. Rev. C 91 (2015) 024609

 Phys. Rev. C 91 (2019) 024905

 arXiv:1910.14419
 10

 arXiv:1910.14397
 10

Strangeness production

Strangeness enhancement

- one of the first proposed QGP signatures (*Rafelski, PRL 48 (1982) 1066*)

- Strange particle production in pp relative to pions increases significantly with dN_{ch}/dη
 remarkable agreement with p-Pb
 smooth evolution from low multiplicity pp, p-Pb reached Pb-Pb values
- Phenomenon related to event multiplicity of the **final system**
- Strangeness-content hierarchy: not strange not enhanced!
 Ξ(dss) enhanced, Ω(sss) more enhanced
 - indicate that strangeness control the production rate rather than mass
- ALICE, Nature Phys. 13 (2017) 53.
 Evolution of φ (ss): behave as strangeness = 2 or 0? Phys. Lett. B 758 (2016) Phys. Lett. B 728 (2014)11

Strangeness production: φ-meson

- Ratio of φ (s = 0) to π (s = 0)
 - smooth increase from pp to p-Pb values and saturates in Pb-Pb
 - consistent with thermal model predictions
- Ratio of φ (s = 0) to K (s = 1)

- slight **increase in pp** which suggests to behave S > 1 particle

- Ratio of Ξ (s = 2) to φ (s = 0)
 - slight **increase in pp, p-Pb**, S < 2 particle
 - flat for multiplicity of Pb-Pb, S ~ 2 particle

Phys. Rev. C 91 (2015) 024609 Phys. Rev. C 91 (2019) 024905 arXiv:1910.14419 arXiv:1910.14397

φ behave as if it had effective strangeness 1 - 2 units

Nuclear Modification factor

partons produced by high Q² processes **lose their energy while traversing the medium**

suppression of high-pT production

- can be observed by comparing with pp results
- observable is nuclear modification factor (RAA)
- **R**_{AA} = 1 for hard processes in absence of nuclear medium effects

- confirmed in Pb-Pb collisions at LHC (direct $\boldsymbol{\gamma},$

$$R_{\rm AA} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{(1/N_{\rm evt}^{\rm AA}) d^2 N^{\rm AA}/dy dp_{\rm T}}{(1/N_{\rm evt}^{\rm pp})) d^2 N^{\rm pp}/dy dp_{\rm T}}$$

*p*_T > 8 GeV/*c* all light-flavoured hadrons (π[±], K[±], p), K^{*}, p and φ-meson are equally suppressed by a factor of 4-5

 W^{\pm}, Z^{0})

- not dependent on hadron species/properties like mass, quark content or baryon number

*p*_T < 8 GeV/*c* : Baryon-meson splitting

- K^* , ϕ are closer to other mesons than to baryons

- possible mass ordering among mesons

Transverse spherocity

- a new observable which reduces the bias in sphericity calculations for leading neutral particle in the collision, measured unweighted transverse spherocity
 significantly different yield among different sphericity classes
 - significantly different yield among different sphericity classes
 - K* and ϕ production is larger at low Pt for isotropic events as compared to jetty events
 - integrated yield of ϕ meson is maximum for isotropic events at 5.02 and 13 TeV pp collisions

Summary

A rich set of resonances measured by ALICE in various collisions system and energies

-observed hardening of p_T spectra, event multiplicity class determines the particle production independently of collision system and energy

Suppression for most short-lived resonances: ρ, K*, Λ(1520)

- in central Pb-Pb collisions with respect to pp, p-Pb and peripheral Pb-Pb

- suggests that re-scattering is dominant over regeneration

• No Suppression for longer lived Φ-meson

- suggest decay outside of medium and re-scattering effects not significant

- behave as a particle of effective strangeness 1-2 units

 Parton energy loss is independent of hadron species or properties

• Results support the existence of a hadronic phase

- lasting long enough to cause a significant reduction of the reconstructible yield of short lived resonances