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I “Standard Model” of Heavy-Ion Collision :
I Pre-Equilibrium
I Initial Condition
I Collective Evolution (deconfined phase)
I Hadronization
I Collective Evolution (confined phase)
I Freeze-Out (chemical/kinetic)
I Free Streaming

I A probe for many interesting aspects of physics
I Out-of-Equilibrium Physics
I The initial state models
I QCD Transport Coefficients, η/s, . . .
I QCD Phase Transition
I QCD e.o.s.
I Chiral Anomaly in QCD Matter (?!)

I
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Single Particle Distribution

p(φ) Single Particle Distribution

φ1

φ2

φM

···

···
ε2, ε3, . . . p(φ) ∝ 1 +

∞∑
n=1

2 vn cos [n(φ−ψn)]

The coefficient vnei nψn is called nth order Flow Harmonic.

I It depends on the initial state parameters, transport coefficients (η/s, ζ, . . .),
thermodynamic EOS, nucleus wave function fluctuation, . . .

The physics is encoded in vnei nψn .
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Event-By-Event Fluctuation

p(1)(φ)

ε
(1)
n , v(1)

n

p(2)(φ)

ε
(2)
n , v(2)

n

p(3)(φ)

ε
(3)
n , v(3)

n

· · · · · · · · ·

pi(ε1, ε2, ε3, . . . , φ1 − φ2, φ2 − φ3, . . .),
Collective Evolution−−−−−−−−−−−→ pf (v1, v2, v3, . . . , ψ1 − ψ2, ψ2 − ψ3, . . .)

We use cumulants to study these p.d.f.’s!

I An example: 1D ordinary p.d.f. close to Gaussian:

γ1 < 0 γ1 = 0 γ1 > 0skewness:
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Generalized Symmetric Cumulants

Cumulants of Flow Fluctuations

I Considering only one flow amplitude: p(vn)
[Borghini, Dinh, Ollitrault, ’00, ’01]

cn{2}, cn{4}, · · ·

I Considering two flows: p(vn, vm)
Symmetric Cumulants:
[Bilandzic, Christensen, Gulbrandsen, Hansen, Zhou, ’13]

SC(n,m) = 〈v2
n v2

m〉 − 〈v2
n〉〈v2

m〉

I Considering multi flows: p(vk, vl, vm, . . .)
Generalized Symmetric Cumulants:
[Mordasini, Bilandzic, Karakoc, SFT, arXiv:1901.06968v2

[nucl-ex]]

[ALICE Collab., PRL 117, 182301 (2016) ]

I Example for three harmonics:
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Generalized Symmetric Cumulants

Generalized Symmetric Cumulant, Realistic Monte Carlo

I iEBE-VISHNU event generator [Shen , Qiu, Song,

Bernhard, Bass, Heinz, ’14] / PbPb collision at√
sNN = 2.76 TeV

I MC-Glauber for initial state
I Solving 2+1 causal hydrodynamic equations /

Cooper-Frye prescription for freeze-out. Fixed
η/s = 0.08.

I

NSC(k, l,m) =
SC(k, l,m)

〈v2
k〉〈v

2
l 〉〈v2

m〉
,

NSCε(k, l,m) =
SC(k, l,m)

〈ε2
k〉〈ε

2
l 〉〈ε2

m〉
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Centrality percentile
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C
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)

(a)

MC-Glauber

VISHNU

[Mordasini, Bilandzic, Karakoc, SFT,

[ arXiv:1901.06968v2 [nucl-ex]]

The observable is sensitive to the hydrodynamic evolution.
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Flow in Large and Small Systems

QGP droplet in pp Collision?

Four-Particle Correlation Sign Puzzle in pp Collision

One fluid may or may not rule them all

vn{2} ≡ (cn{2})1/2

[Wellerland, Romatschke,’17]
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Flow in Large and Small Systems

QGP droplet in pp Collision?

Hydrodynamic Evolution in pp Collisions

How small can a QCD Droplet be?

We pursue the following strategy: introducing a model which is

I simple enough to monitor an event evolution anatomy
I contains essential features to explain the real data
I Instead of numerical computation for hydrodynamic equation, we employ an analytical

hydrodynamic solution which is called Gubser flow [Gubser, ’10, Gubser, Yarom, ’10, Staig, Shuryak,

’11].

Initiated at τ = cte

τ

x y

Initiated at τ T = cte
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Flow in Large and Small Systems

QGP droplet in pp Collision?

Smallest QCD Droplet

I After Cooper-Frye Freeze-Out:

v2 ' k2(rrms, dN/dyp) ε2

I Translate total transverse energy into

multiplicity:

dN/dyp ≥ ncrit
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Flow in Large and Small Systems

QGP droplet in pp Collision?

Model/Data Comparison

Simple and Rather Generic Initial State Model:

I The ellipticity fluctuation is independent of the size fluctuation. We consider a Gaussian
plus correction.

I We model the the initial size fluctuates by a Gaussian distribution.
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The model can explain −v2{4}4 ≡ c2{4} < 0 with correct sign!
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Flow in Large and Small Systems

Summary and Outlook

Summary and Outlook

I We introduced Generalized Symmetric Cumulants to study the genuine correlation
between three different harmonics and showed showed the prediction of iEBE-VISHNU for
the generalized SC.

I By using a hydrodynamic model based on Gubser flow, we could describe the observed
four-particle correlations with correct sign.

Outlook
I Generalized Symmetric Cumulants from ALICE experiment.
I Extension of the Gubser flow based hydrodynamic model to triangular flow and beyond.

Grazie!
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Non-Bessel-Gaussianity of Flow Distribution

Generalized Symmetric Cumulant, Realistic Monte Carlo
I iEBE-VISHNU [Shen , Qiu, Song, Bernhard, Bass, Heinz, ’14]
I EKRT [Niemi, Eskola, Paatelainen,’16]

I In order to compare the initial and final states, we define normalized generalized
symmetric cumulants:

NSC(k, l,m) =
SC(k, l,m)
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2
l 〉〈v2

m〉
, NSC(k, l,m) =

SC(k, l,m)

〈ε2
k〉〈ε

2
l 〉〈ε2

m〉

v2 ' k2ε2

v3 ' k3ε3

v4 ' k4ε4 + k′4ε
2
2

I SC(2, 3) < 0 → v2 and v3 are anti-correlated.
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[Thanks to Cindy Mordasini]
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Non-Bessel-Gaussianity of Flow Distribution
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Non-Bessel-Gaussianity of Flow Distribution

Symmetry-Plane Correlation
[M. Lesch, A. Bilandzic, SFT, in progress]
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Non-Bessel-Gaussianity of Flow Distribution

Hydrodynamization Surface

Hydrodynamics can be applied to a 1+1D systems from τ T ∼ 1.

I In reality (Gubser flow) the temperature at the tail is
typically (definitely) lower than the other parts of the
energy density.

I Gubser flow is initiated at τ T = cte.
I rrms ≥ rcrit

I rcrit = (4π/3)1/2 γ2ε
−1/2
tot

Initiated at τ = cte

τ

x y
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Non-Bessel-Gaussianity of Flow Distribution

Simple and Rather Generic Initial State Model

I Assumption 1: The ellipticity fluctuation is independent of the size fluctuation.

I Assumption 2: The average ellipticity is equal to zero, ε̄2 ≡
〈 〉

many events
= 0

I Using Radial-Gram-Charlier expansion, we model the ellipticity fluctuation as
[Abbasi,Allahbakhshi,Davody,SFT ’17] [Mehrabpour,SFT, ’18]

p(ε2) =
ε2

σ2
ε

exp

[
−
ε2

2

2σ2
ε

][
1 +

Γε2
2

L2(ε2
2/2σ2

ε)−
Γε4
6

L3(ε2
2/2σ2

ε) + · · ·
]

I We model the the initial size fluctuates by a Gaussian distribution

p(rrms) =
rrms

σ2
r

exp
[
−

r2
rms

2σ2
r

]
.

The width of the distribution: 〈r2
rms〉 = πσ2

r /2 = 2σinel
NN (
√

s)/14.3 [Heinz, Moreland,’11].

The value of σinel
NN (
√

s) has been measured by [TOTEM Collaboration, ’17].

Seyed Farid Taghavi (TUM) Non-Bessel-Gaussianity of Flow Distribution 17-22 March 2019 5 / 6



Non-Bessel-Gaussianity of Flow Distribution

Simple and Rather Generic Initial State Model
I Assumption 1: The ellipticity fluctuation is independent of the size fluctuation.

I Assumption 2: The average ellipticity is equal to zero, ε̄2 ≡
〈 〉

many events
= 0

I Using Radial-Gram-Charlier expansion, we model the ellipticity fluctuation as
[Abbasi,Allahbakhshi,Davody,SFT ’17] [Mehrabpour,SFT, ’18]

p(ε2) =
ε2

σ2
ε

exp

[
−
ε2

2

2σ2
ε

][
1 +

Γε2
2

L2(ε2
2/2σ2

ε)−
Γε4
6

L3(ε2
2/2σ2

ε) + · · ·
]

I We model the the initial size fluctuates by a Gaussian distribution

p(rrms) =
rrms

σ2
r

exp
[
−

r2
rms

2σ2
r

]
.

The width of the distribution: 〈r2
rms〉 = πσ2

r /2 = 2σinel
NN (
√

s)/14.3 [Heinz, Moreland,’11].

The value of σinel
NN (
√

s) has been measured by [TOTEM Collaboration, ’17].

Seyed Farid Taghavi (TUM) Non-Bessel-Gaussianity of Flow Distribution 17-22 March 2019 5 / 6



Non-Bessel-Gaussianity of Flow Distribution

Simple and Rather Generic Initial State Model
I Assumption 1: The ellipticity fluctuation is independent of the size fluctuation.

I Assumption 2: The average ellipticity is equal to zero, ε̄2 ≡
〈 〉

many events
= 0

I Using Radial-Gram-Charlier expansion, we model the ellipticity fluctuation as
[Abbasi,Allahbakhshi,Davody,SFT ’17] [Mehrabpour,SFT, ’18]

p(ε2) =
ε2

σ2
ε

exp

[
−
ε2

2

2σ2
ε

][
1 +

Γε2
2

L2(ε2
2/2σ2

ε)−
Γε4
6

L3(ε2
2/2σ2

ε) + · · ·
]

I We model the the initial size fluctuates by a Gaussian distribution

p(rrms) =
rrms

σ2
r

exp
[
−

r2
rms

2σ2
r

]
.

The width of the distribution: 〈r2
rms〉 = πσ2

r /2 = 2σinel
NN (
√

s)/14.3 [Heinz, Moreland,’11].

The value of σinel
NN (
√

s) has been measured by [TOTEM Collaboration, ’17].

Seyed Farid Taghavi (TUM) Non-Bessel-Gaussianity of Flow Distribution 17-22 March 2019 5 / 6



Non-Bessel-Gaussianity of Flow Distribution

Simple and Rather Generic Initial State Model
I Assumption 1: The ellipticity fluctuation is independent of the size fluctuation.

I Assumption 2: The average ellipticity is equal to zero, ε̄2 ≡
〈 〉

many events
= 0

I Using Radial-Gram-Charlier expansion, we model the ellipticity fluctuation as
[Abbasi,Allahbakhshi,Davody,SFT ’17] [Mehrabpour,SFT, ’18]

p(ε2) =
ε2

σ2
ε

exp

[
−
ε2

2

2σ2
ε

][
1 +

Γε2
2

L2(ε2
2/2σ2

ε)−
Γε4
6

L3(ε2
2/2σ2

ε) + · · ·
]

I We model the the initial size fluctuates by a Gaussian distribution

p(rrms) =
rrms

σ2
r

exp
[
−

r2
rms

2σ2
r

]
.

The width of the distribution: 〈r2
rms〉 = πσ2

r /2 = 2σinel
NN (
√

s)/14.3 [Heinz, Moreland,’11].

The value of σinel
NN (
√

s) has been measured by [TOTEM Collaboration, ’17].

Seyed Farid Taghavi (TUM) Non-Bessel-Gaussianity of Flow Distribution 17-22 March 2019 5 / 6



Non-Bessel-Gaussianity of Flow Distribution

Simple and Rather Generic Initial State Model
I Assumption 1: The ellipticity fluctuation is independent of the size fluctuation.

I Assumption 2: The average ellipticity is equal to zero, ε̄2 ≡
〈 〉

many events
= 0

I Using Radial-Gram-Charlier expansion, we model the ellipticity fluctuation as
[Abbasi,Allahbakhshi,Davody,SFT ’17] [Mehrabpour,SFT, ’18]

p(ε2) =
ε2

σ2
ε

exp

[
−
ε2

2

2σ2
ε

][
1 +

Γε2
2

L2(ε2
2/2σ2

ε)−
Γε4
6

L3(ε2
2/2σ2

ε) + · · ·
]

I We model the the initial size fluctuates by a Gaussian distribution

p(rrms) =
rrms

σ2
r

exp
[
−

r2
rms

2σ2
r

]
.

The width of the distribution: 〈r2
rms〉 = πσ2

r /2 = 2σinel
NN (
√

s)/14.3 [Heinz, Moreland,’11].

The value of σinel
NN (
√

s) has been measured by [TOTEM Collaboration, ’17].

Seyed Farid Taghavi (TUM) Non-Bessel-Gaussianity of Flow Distribution 17-22 March 2019 5 / 6



Non-Bessel-Gaussianity of Flow Distribution

Flow Harmonics in pp Collisions

I The flow distribution is given by

pv(v2; ntot) =

∫
drrms

k2
pε(v2/k2) pr(rrms).

I The cumulants of pv(v2; ntot)

c2{2} = 2σ2
ε〈k2

2〉r,

c2{4} = 4σ4
ε

[
(2 + Γε2)〈k4

2〉r − 2〈k2
2〉

2
r

]
,

c2{6} = 8σ6
ε

[
(6 + 9Γε2 + Γε4)〈k6

2〉r

− 9(2 + Γε2)〈k2
2〉r〈k

4
2〉r + 12〈k2

2〉
3
r

]
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Flow Harmonics in pp Collisions

I The flow distribution is given by

pv(v2; ntot) =

∫
drrms

k2
pε(v2/k2) pr(rrms).

I The cumulants of pv(v2; ntot)

c2{2} = 2σ2
ε〈k2

2〉r,

c2{4} = 4σ4
ε

[
(2 + Γε2)〈k4

2〉r − 2〈k2
2〉

2
r

]
,

c2{6} = 8σ6
ε

[
(6 + 9Γε2 + Γε4)〈k6

2〉r

− 9(2 + Γε2)〈k2
2〉r〈k

4
2〉r + 12〈k2

2〉
3
r

]
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