Design and performance of KISS read-out-electronics in HADES*

TECHNISCHE UNIVERSITÄT DARMSTADT

KISS = Keep it small and simple

Adrian Rost¹ ¹Institut für Kernphysik, TU Darmstadt, Germany

for the HADES collaboration

*Supported by the DFG through GRK 2128 and VH-NG-823

Content

- Motivation for the HADES ECAL upgrade
- First KISS application:
 →ECAL read-out electronics
- First ECAL beam time results
- Second KISS application:
 →UFSD detectors for HADES
- Summary and outlook

The HADES at SIS18 of GSI: <u>High-Acceptance Dielectron Spectrometer</u>

The ECAL upgrade in HADES

For SIS18 at GSI and SIS100 at FAIR

- 978 modules of lead glass + photomultiplier
- Polar angle coverage: 12° 45°
- Novel read-out electronics concept

Motivation:

- Measurements of π⁰ and η via γγ-decay channel
 → E_{kin} = 2 11A GeV no measurements exist
- Spectroscopy of $\Lambda(1405)$ and $\Sigma(1385)$
- Measurement of a₁ spectral function
- Better electron/pion suppression for large momenta (p>400 MeV/c)

ECAL for HADES

Detector modules:

- Cherenkov lead glass modules from OPAL end cap calorimeter (163 modules x 6 sectors = 978; each 16 kg)
- Module dimensions: 9.4 x 9.4 x 60 cm³
- Energy resolution: ~ 5%/ \sqrt{E} , E in GeV

PMT read-out:

- EMI 9903KB (1.5") (WA98 hadron calorimeter)
 ~600 PMT's
- Hamamatsu R6091 (3")

Digitizing board:

HADES Trigger and Readout Board v3 (TRBv3)

with PaDiWa-AMPS front-end

The ECAL read-out scheme

TRB3 platform FPGA TDC and multi purpose DAQ

Time precision 8 ps RMS

C. Ugur et al. "A novel approach for pulse width measurements with a high precision (8 ps RMS) TDC in an FPGA", *JINST*, vol. 11, no. 01, p. C01046, 2016.

Single edge & ToT measurements

50 MHz hit rate per channel

4 FPGAs with 260 TDC channels

Usable in large systems & stand alone

Only **48 V** and GbE needed to take data

Internal trigger system and slow control

Expandable by several Add-Ons and FEEs

(developed at GSI, see: http://trb.gsi.de/)

KISS charge and time measurement principle: Modified Wilkinson ADC

KISS = Keep it small and simple

- Input signal is integrated with a capacitor
- Capacitor is discharged using a constant current source triggered by the input signal

→ Measure ToT of integrated signal ~ charge
 → Measure leading edge of fast signal ~ timing

Signal discrimination with the help of an FPGA

FPGA

PaDiWa-AMPS2 QDC and TDC frontend board for HADES ECAL

TECHNISCHE UNIVERSITÄT DARMSTADT

Key facts:

- Front-end for the TRB3 family
- Charge-to-width conversion and FPGAdiscriminator
- 8 MMCX input channels
- 1 Lattice MachXO3-4000 FPGA
- 0201 package size

Performance:

- Time precision: ~ 19 ps
- Relative charge resolution: < 0.5 % (for pulser signals >1 V)
- Dynamic range: ~ 150
- Max. rate capability: ~ 100 kHz
- Power consumption: 1.5 W

Precision of the charge measurement and calorimeter resolution

- Relative charge precision was measured in the laboratory
 → for charges > 0.5 nA*s it is <0.5 %
- Calorimeter resolution was tested with secondary photons at the MAMI facility in Mainz
 - \rightarrow ~5.50%/sqrt([GeV])

TECHNISCHE UNIVERSITÄT

DARMSTADT

Time precision for pulser measurements

HADES cave in September 2017

HADES cave in October 2018

Installation of read-out electronics

Read-out of **one** ECAL sector: **21x** PADIWA-AMPS2 boards **6x** TRB3sc → TDCs **1x** TRB3sc Hub → data transport

HADES Ag+Ag 1.58A GeV beam time in March 2019

HADES run statistics: Read-out rate: 10 kHz Data stored: 359.32 TB

ECAL configuration:

Two upper sectors: 3 inch PMTs Two lower sectors: 1.5 inch PMTs

TECHNISCHE UNIVERSITÄT

DARMSTADT

Ongoing work: Time walk correction & Calibration of ECAL

 Time-walk correction with the help of the RPC detector which is located 10 cm in front of ECAL

Ongoing work: Energy calibration

- Energy calibration of ECAL with electrons measured by the HADES tracking system
- Preliminary energy resolution is: 6.6%/√E[GeV]

Ongoing work: Reconstruction of the π^0 **meson**

- Reconstruction of decay channel: $\pi^0 \rightarrow \gamma \gamma$
- All possible combinations of the identified photons (black histogram)
- Mixed-event combinatorial background (blue histogram)
- Signal after background subtraction (red histogram) are indicated
- → A clear π⁰ peak is visible on top of the combinatorial background

Another TRB read-out application: Time of flight measurement in HADES

ToF = $T_{TOF} - T_{START} \rightarrow \sigma_{TOF} = \sqrt{\sigma_{TOF}^2 + \sigma_{T_START}^2}$ β = ToF/ path c

TECHNISCHE UNIVERSITÄT

DARMSTADT

Ongoing R&D in HADES

Ultra Fast Silicon Detectors (UFSD) (N. Cartiglia et al., arXiv:1312.1080)

- Very active developments in the ATLAS and CMS collaborations (Italy: INFD &FBK)
- 30 ps time precision \rightarrow excellent timing detector
- implanting an extra doping layer to achieve controlled charge multiplication
- Same principle as APD, but with much lower gain
- Cheap

Issues:

- Read-out → TRB platform
- Radiation hardness \rightarrow tested with n: 6*10¹⁵ cm⁻²

Kramberger, G. et al. Nucl. Instrum. Meth. A891 (2018) 68 77

 \rightarrow Sensor at GSI for tests \rightarrow Beam tests planed at COSY (FZ Jülich) and S-DALINAC (TU Darmstadt)

Efield Traditional silicon sensors

TRB3 bases read-out scheme of UFSD

NINO

- UFSD Prototype detector at GSI is read out by two discriminator systems:
 - → Padiwa discriminator (see trb.gsi.de)
 - → NINO ASIC (see F. Anghinolfi et al., "NINO: an ultrafast low-power front-end amplifier discriminator for the time-of-flight detector in the ALICE experiment," in *IEEE Transactions on Nuclear Science*, vol. 51, no. 5, pp. 1974-1978, Oct. 2004.)

TECHNISCHE

UNIVERSITÄT DARMSTADT

Evaluation of the time precision with 1.95 GeV protons at COSY (FZ Jülich)

TECHNISCHE UNIVERSITÄT

DARMSTADT

Summary and outlook

- KISS read-out concept for ECAL
 - \rightarrow Successful operation during a HADES beam time
 - \rightarrow Detector calibration and data analysis is ongoing \rightarrow stay tuned!
- KISS read-out concept for UFSD
 - \rightarrow First results are promising with time precisions of ~ 56 ps
 - \rightarrow Further test will follow \rightarrow new sensors & new read-out electronics

Thank you for your attention!!!

Further HADES talks: Petr Chudoba (Monday), Christoph Blume (Friday)

