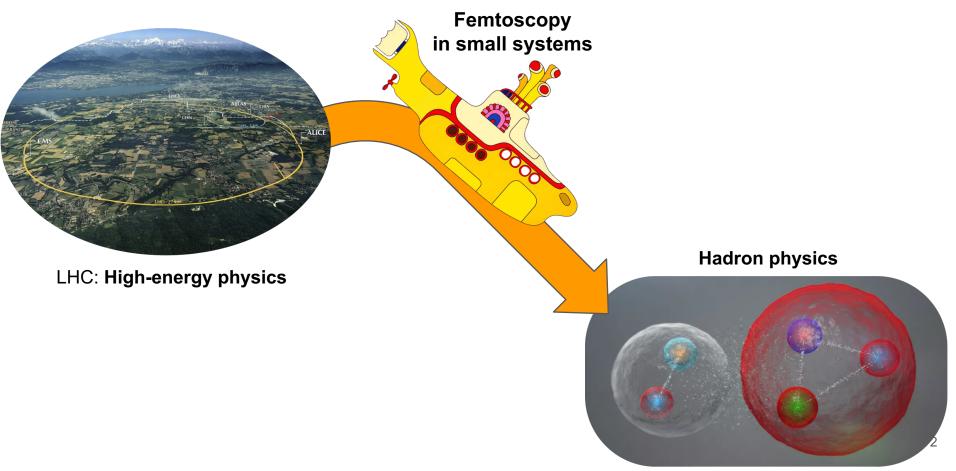
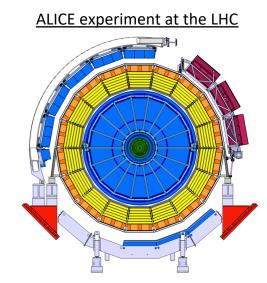


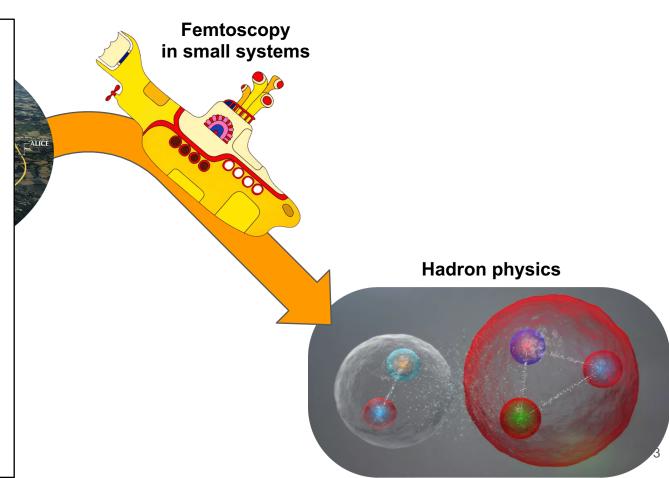
A brand new approach to constrain hadronhadron interactions using femtoscopy in ALICE


V.Mantovani Sarti on behalf of ALICE Collaboration
Technische Universität München

BORMIO Winter Workshop 2020


Outline

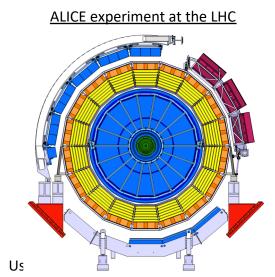
Outline



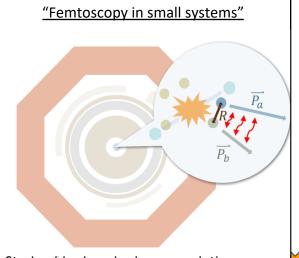
Used datasets:

- **pp** 13 TeV: 15·10⁸ MB events
- **pp** 13 TeV: 1·10⁹ High-Mult events

Tracking and PID:


- Inner Tracking System (ITS)
- Time Projection Chamber (TPC)
- Time Of Flight (TOF)

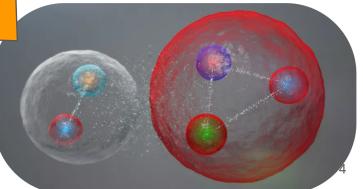
ТΙΠ


Outline

- **pp** 13 TeV: 15·10⁸ MB events
- **pp** 13 TeV: 15·10⁸ High-Mult events
- **p-Pb** 5.02 TeV: 6.0·10⁸ MB events

Tracking and PID:

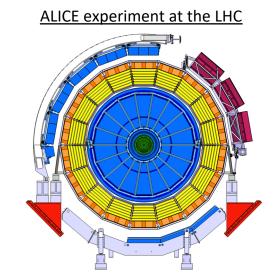
- Inner Tracking System (ITS)
- Time Projection Chamber (TPC)
- Time Of Flight (TOF)



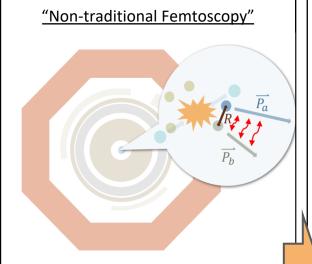
Study of <u>hadron-hadron correlations</u> of pairs from small sources: p-p, **p-K**+/-, p- Λ , Λ - Λ , p- Σ ⁰, p- Ξ -, **p-\Omega**-

Reconstruction of hyperons

- Λ→pπ (BR ~ 64%)
- $\Sigma^0 \rightarrow \Lambda \gamma$ (BR ~ 100%)
- $\Xi \rightarrow \Lambda \pi$ (BR ~ 100%)
- Ω→ΛK (BR ~ 68%)


Hadron physics

Outline



Used datasets:

- **pp** 13 TeV: 15·10⁸ MB events
- pp 13 TeV: 15·108 High-Mult events
- **p-Pb** 5.02 TeV: 6.0·10⁸ MB events

Tracking and PID:

- Inner Tracking System (ITS)
- Time Projection Chamber (TPC)
- Time Of Flight (TOF)

Study of <u>hadron-hadron correlations</u> of pairs from small sources:

p-p, **p-K**+/-, p- Λ , Λ - Λ , p- Σ ⁰, p- Ξ -, **p-\Omega**-

Reconstruction of hyperons

- Λ→pπ (BR ~ 64%)
- Σ⁰→Λγ (BR ~ 100%)
- Ξ \rightarrow Λπ (BR ~ 100%)
- Ω→ΛK (BR ~ 68%)

Hadron physics

- Study the interaction of hadrons with strange content.
- Experimental difficult with strange particle beams: Scattering data, hypernuclei, search for bound states, exotic atoms, etc.
- Models are constrained by <u>data with</u> limited precision
- Femtoscopy with ALICE: delivers precise data in the low momentum range region not accessible with other approaches, access to exotic pairs

Two interesting examples of femtoscopy in small systems

p-K femtoscopy

- <u>Fundamental ingredient in the strangeness sector of low energy hadron physics</u>
- Λ(1405) ⇒ ONLY accepted MOLECULAR STATE
- Models are constrained by the (rather imprecise) scattering data above threshold and by SIDDHARTA data at threshold
- Extrapolations below threshold differs for models describing the scattering data.

$p-\Omega^{-}$ femtoscopy

- Experimental study on the <u>interaction between a</u> proton and a multi-strange baryon
- Lattice QCD simulations and meson-exchange models predict an N- Ω interaction attractive at all distances
 - ightarrow leading to the possible existence of a N Ω DI-BARYON
- No Ω beams, no hypernuclei...
 - \rightarrow for p- Ω interaction femtoscopy is the only experimental method!

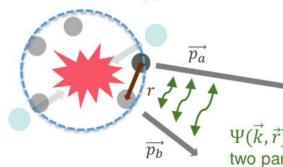
Femtoscopy as a tool to study H-H interactions

Based on the correlation function

$$C(k^*) = \frac{P(\overrightarrow{p_a}, \overrightarrow{p_b})}{P(\overrightarrow{p_a})P(\overrightarrow{p_b})}$$

k* = reduced relative momentum with $\ \overrightarrow{p_a^*} + \overrightarrow{p_b^*} = 0$

Theoretically formulated:


(M.Lisa, S. Pratt et al Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402)

$$C(k^*) = \int \frac{S(r) \left| \Psi(\vec{k}^*, \vec{r}) \right|^2 d^3r \xrightarrow{k^* \to \infty} 1$$

Source

Relative wave function:
Sensitivity to the interaction potential

Source function $S(\vec{r})$

Study the C(k*) of hadron-hadron pairs in pp collisions ⇒ small particle source (~1 fm)

two particle wave function

「heor、

Femtoscopy as a tool to study H-H interactions

Based on the correlation function

$$C(k^*) = \frac{P(\overline{p_a}, \overline{p_b})}{P(\overline{p_a})P(\overline{p_b})}$$

k* = reduced relative momentum with

$$\overrightarrow{p_a^*} + \overrightarrow{p_b^*} = 0$$

Theoretically formulated:

(M.Lisa, S. Pratt et al Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402)

$$C(k^*) = \int S(r) |\Psi(\vec{k}^*, \vec{r})|^2 d^3r \xrightarrow{k^* \to \infty} 1$$

Source

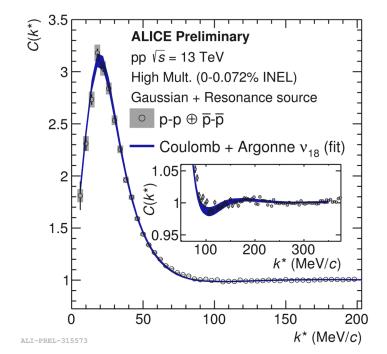
Relative wave function:

Sensitivity to the interaction potential

$$C(k^*) = \mathcal{N} \frac{N_{Same}(k^*)}{N_{Mixed}(k^*)}$$

Generally, the experimental correlation function accounts also for contributions coming from feed-downs, misidentifications and detector.

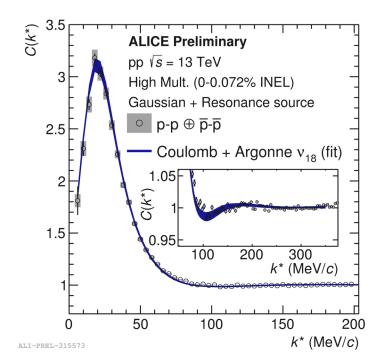
(ALICE Coll. Phys. Rev. C 99, 024001 (2019))



Setting the **source**

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs

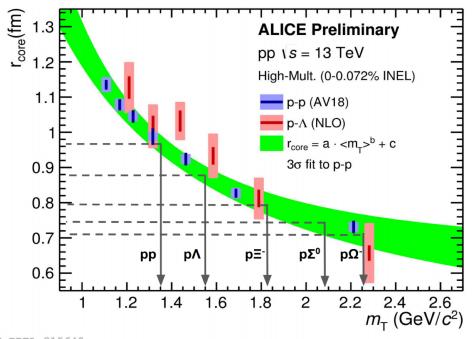
The characteristics of the source are **determined from femtoscopic analysis of the p-p correlation**: Assume a p-p known interaction \rightarrow determination of the source size


Setting the source: collective effects & resonances

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs

The characteristics of the source are **determined from femtoscopic analysis of the p-p correlation: p-p** as a **benchmark** since interaction is well known → determination of the source size

 Consider <m_T> dependence of the source due to possible collective effects


• Effect of strong short-lived resonances computed for all hadrons

Setting the source: collective effects & resonances

For p- Ω in pp High-Multiplicity events:

The p- Ω^- source (Gaussian + resonances) is **determined given the pair** < m_T >:

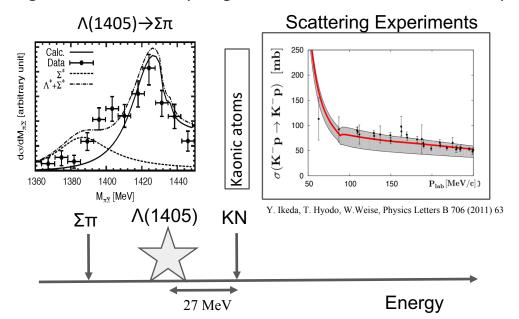
p-Ω⁻:
$$r_{core}$$
= 0.73 ± 0.05 fm

For p-K in Minimum-Bias pp collisions:

Gaussian source, with the radius fixed from the simultaneous fit to p-p, p- Λ and Λ - Λ femtoscopic data:

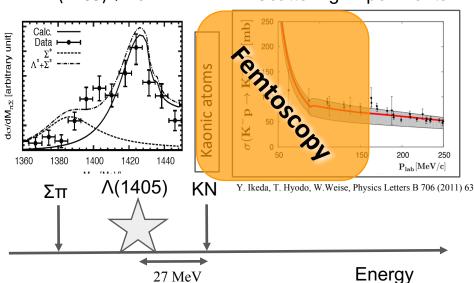
$$r_{13TeV} = 1.18 \pm 0.05 \text{ fm}$$

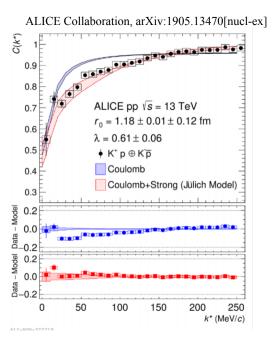
ALICE Collaboration, Phys.Rev. C99 (2019) no.2, 024001,arXiv:1805.12455 [nucl-ex]


ALI-PREL-31564

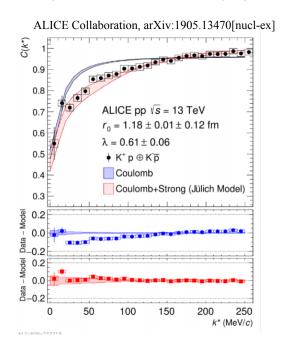
K-p femtoscopy: The $\overline{K}N$ interaction

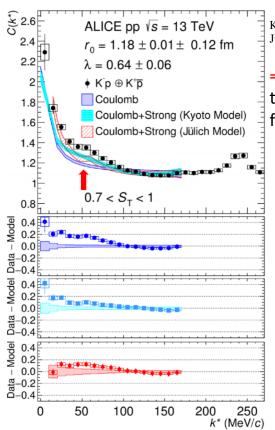
- K⁺p interaction is well established
- K-p features a strong attraction
 - \Rightarrow appearance of the $\Lambda(1405)$ below threshold
 - Λ(1405): antiKN-Σπ molecular state
- K-p scattering data and kaonic hydrogen data used to constrain the amplitude below threshold



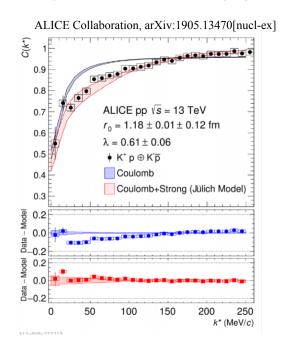

K-p femtoscopy: The $\overline{K}N$ interaction

- K⁺p interaction is well established
- K-p features a strong attraction
 - o appearance of the Λ(1405) below threshold
 - Λ (1405): antiKN-Σπ molecular state
- K⁻p scattering data and kaonic hydrogen data used to constrain the amplitude below threshold $\Lambda(1405) \rightarrow \Sigma \pi$ Scattering Experiments

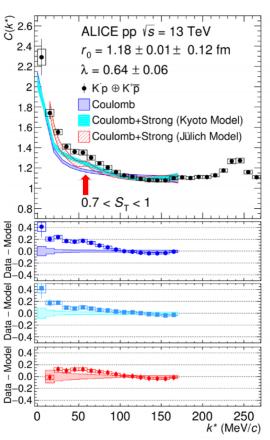



- K⁺p correlation used as a benchmark to study K⁻p
- Sphericity $S_T > 0.7$ selection removes mini-jet background

- K⁺p correlation used as a benchmark to study K⁻p
- Sphericity S_T > 0.7 selection removes mini-jet background



Kyoto Model: Phys. Rev. C93 no. 1, (2016) 015201 Jülich Model: Nucl. Phys. A981 (2019)

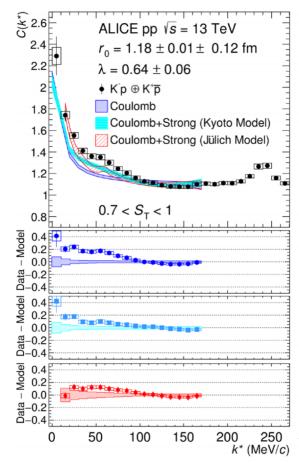

⇒ Bump close to the K⁰n threshold → (58 MeV/c in CM frame)

- K⁺p correlation used as a benchmark to study K⁻p
- Sphericity S_T > 0.7 selection removes mini-jet background

Kyoto Model: Phys. Rev. C93 no. 1, (2016) 015201 Jülich Model: Nucl. Phys. A981 (2019)

⇒ Bump close to the K⁰n threshold → (58 MeV/c in CM frame)

First experimental evidence of the opening of the K⁰n isospin breaking channel


Coupled channel effect

$$M(K^-p) + 5 \operatorname{MeV} = M(n\bar{K}^0)$$

$$\hline \begin{array}{c|c} \mathbf{n} & \mathbf{p} \\ \hline \bar{K}^0 & K^- \end{array}$$

Blue bands

Coulomb potential only

Light blue bands (Kyoto Model: Phys. Rev. C93 no. 1, (2016) 015201)

Chiral Kyoto model with approximate boundary conditions:

- K⁻–K⁰ mass difference not considered (isospin averaged masses)
- $\Sigma \pi$ and $\Lambda \pi$ coupled channels neglected (outgoing B.C not fully implemented)

Red bands (Jülich Model: Nucl. Phys. A981 (2019))

Jülich strong potential, meson exchange model

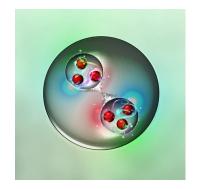
- Recently updated to reproduce the SIDDHARTA results at threshold
- Includes the K^--K^0 mass difference and coupled channels (KN- $\pi\Sigma$ - $\pi\Lambda$)

The correlation functions at low k* cannot be reproduced by any of the considered potentials

New Chiral Kyoto model calculation available with CC included (Y. Kamiya et al. arXiv:1911.01041) ⇒ Work in progress!

ALICE Collaboration, arXiv:1905.13470[nucl-ex]

p-Ω- femtoscopy results in pp HM 13 TeV

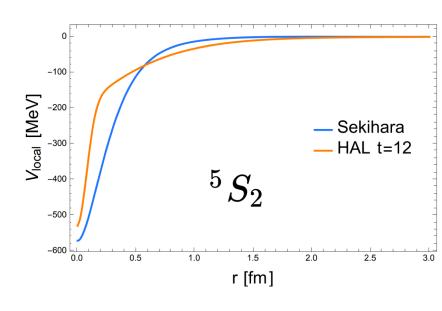

Experimental study on the interaction between a proton and a multi-strange baryon

- Ω^{-} is a hyperon with quark content: sss

Use the most recent datasets to <u>test recent models</u> of the p- Ω interaction:

- Lattice QCD (HAL Collaboration) predicts very attractive p- Ω interaction at all distances
- Meson exchange (Sekihara model)

 \rightarrow Open the door for a **N** Ω di-baryon

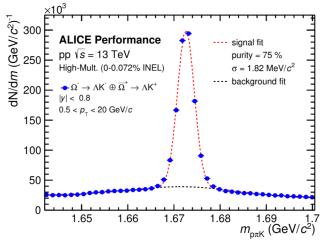


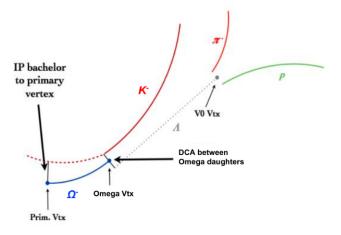
Comparison with models: $p-\Omega^-$ interaction potentials

 \rightarrow

- Lattice HAL-QCD potential with physical quark masses (5S2 channel)
 - o $m_{\pi} = 146 \text{ MeV}/c^2$
 - o $m_{\kappa} = 525 \text{ MeV}/c^2$
 - T. Iritani et al., arXiv:1810.03416
- Sekihara: Meson-exchange model (5S2 channel)
 - Short range attractive interaction fitted to HAL-QCD scattering parameters
 - Includes inelastic channels (strong decays into XE) small contributions in the S-wave interaction
 - T. Sekihara et al., Phys. Rev. C 98, 015205 (2018)

Model	pΩ ⁻ binding energy (strong interaction only) (+1 MeV with Coulomb)		
HAL-QCD	1.54 MeV		
Sekihara	0.1 MeV		


 \rightarrow Models provide so far only 5S_2 channel (weight ${}^5\!\!$)



Data analysis: Ω⁻ reconstruction

- Identified by its decay: $\Omega^{-} \rightarrow \Lambda K^{-} \rightarrow (p\pi^{-})K^{-}$
- Total of $1.2 \cdot 10^6$ selected ($\Omega^- + \Omega^+$) candidates:
 - $0.6 \cdot 10^6 \text{ p-}\Omega \bigoplus \text{p-}\Omega + \text{ pairs}$
 - 11.10^3 pairs at k*<300 MeV/c
 - 700 pairs at k*<100 MeV/c
- Purity of the preliminary sample 75%

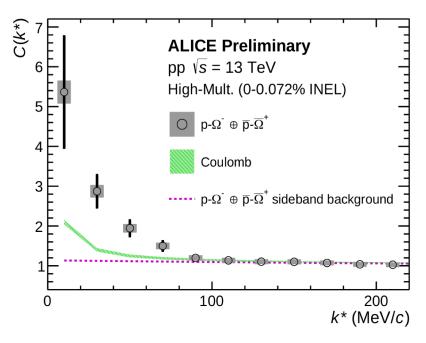
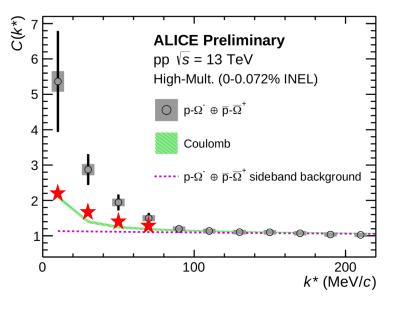


Fig. 2: Sketch of the Ω^- decay and identification.

Results: $p-\Omega^{-}$ correlation function in pp HM

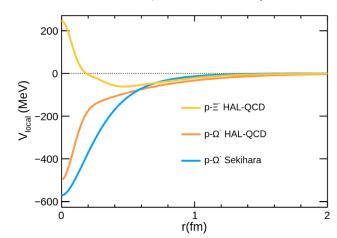
"Coulomb only" scenario discarded by ALICE data (> 6σ)

showing the attractive character of the strong interaction


$$r_{\text{source}} = 0.73 \text{ fm (+resonances)}$$

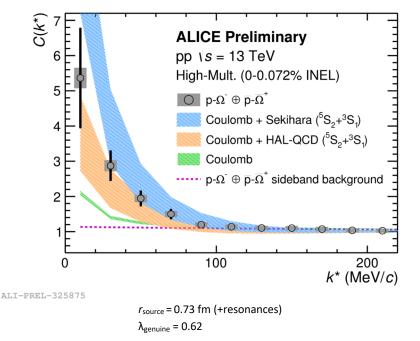
$$\lambda_{\text{genuine}} = 0.62$$

Sensitivity to short ranges: $p-\Omega^{-}$ and $p-\Xi^{-}$



"Coulomb only" scenario discarded by ALICE data (> 6σ) showing the attractive character of the strong interaction

 $r_{\text{source}} = 0.73 \text{ fm (+resonances)}$ $\lambda_{\text{genuine}} = 0.62$


p-Xi correlation function (ALICE Coll. Phys.Rev.Lett. 123 (2019))

Results: $p-\Omega^{-}$ correlation function in pp HM

- "Coulomb only" scenario discarded by ALICE data (> 6 σ) showing the attractive character of the strong interaction
- Precision of ALICE data exceeds the current theoretical predictions
- Theoretical models predict similar binding energies ⇒ C(k*) shows very different behaviour
- Sensitivity to the different shapes of interacting potential, also at short distances

Outlook

ALICE and the femtoscopy method deliver **precise data** to test hadron-hadron interactions at distances lower than 1 fm

The comparison of the ALICE data in small systems with the expectation from the models is **very** sensitive to the shape of the strong potential.

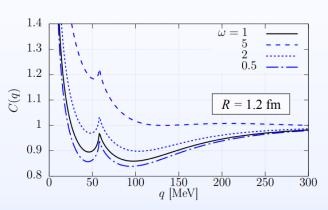
- → Femtoscopic data substitutes/complement the scattering data, hypernuclei and other approaches.
 - → The precision in some of the studied channels exceed the model.

RUN3/4 will provide the possibility of carrying out new studies and investigate 3-body interactions.

Our femtoscopic results so far:

- Investigation of the p- Σ^0 interaction via femtoscopy in pp collisions (ALICE Coll. nucl-ex/1910.14407)
- Scattering studies with low-energy kaon-proton femtoscopy in proton-proton collisions at the LHC (ALICE Coll. nuclex/1905.13470)
- First Observation of an Attractive Interaction between a Proton and a Cascade Baryon (ALICE Coll. Phys.Rev.Lett. 123 (2019) no.11, 112002)
- Study of the Λ - Λ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC (ALICE Coll. Phys.Lett. B797 (2019) 134822)
- p-p, $p-\Lambda$ and $\Lambda-\Lambda$ correlations studied via femtoscopy in pp reactions at $\sqrt{s} = 7$ TeV (ALICE Coll. Phys.Rev. C99 (2019) no.2, 024001)

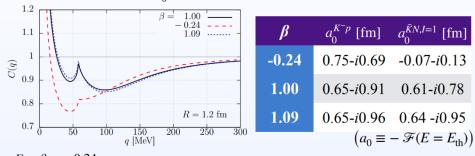
Additional slides


Femtoscopic data constraints: Model tuning

- Y. Kamiya at FemTUM Workshop, Munich, October 2019
 - Update of the Kyoto model: coupled-channel effect and interaction dependence

• Channel weight dependence of K^-p correlation

$$C_{i}(\mathbf{q}) = \int d^{3}\mathbf{r} \ S_{i}(\mathbf{r}) \left[\| \varphi^{C,\text{full}}(\mathbf{r},\mathbf{q}) \|^{2} - \| j_{0}^{C}(qr) \|^{2} + \| \chi_{i}^{C,(-)}(r,q) \|^{2} \right] + \sum_{i \neq i} \omega_{j} d^{3}\mathbf{r} \ S_{j}(\mathbf{r}) \| \chi_{j}^{C,(-)}(r,q) \|^{2} \right]$$

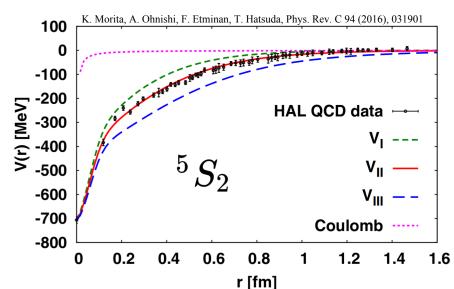

• Vary the source weight of the $\pi\Sigma$ channel:

• Increase $\omega_{\pi\Sigma} = >$ • weaken dip at $q \sim 40 \text{ MeV}$ • weaken cusp

Interaction dependence of $\bar{K}N$ correlation

- $I = 0 \ \bar{K}N$ interaction <== strongly constrained by the SIDDHARTA constraint
- $I = 1 \ \bar{K}N$ interaction is not well known ==> vary $V_{\bar{K}N-\bar{K}N}^{I=1} \to \beta V_{\bar{K}N-\bar{K}N}^{I=1}$
- SIDDHARTA constraint on $a_0^{K^-p} ==>$ Varied region of β as $-0.24 < \beta < 1.09$

- For $\beta = -0.24$,
 - Remarkable suppression around $\bar{K}^0 n$ threshold ($q \simeq 58 \text{ MeV}$)
 - Moderate cusp structure


Lattice HAL-QCD potential with heavy quarks

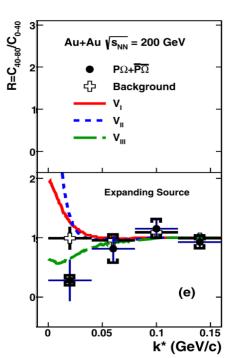
- Based on Lattice calculations with heavy quark masses
 - o $m_{\pi} = 875 \text{ MeV}/c^2$
 - o $m_K = 916 \text{ MeV}/c^2$
- Used in the STAR p Ω analysis in Au-Au collisions at $\sqrt{s_{NN}} = 200 \text{GeV}$
- Lattice calculations fitted by an attractive Gaussian core + an attractive tail, varying the range parameter at long distance (b_5)
 - V_{II}: best fit to Lattice calculations
 - V_I / V_{III}: weaker / stronger attraction

$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) (e^{-b_5 r}/r)^2$$

Binding energy (E_b) , scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton- Ω potentials [24].

Spin-2 p Ω potentials	V_I	V_{II}	V_{III}
E _b (MeV)	_	6.3	26.9
$\mathbf{a_0}$ (fm)	-1.12	5.79	1.29
r _{eff} (fm)	1.16	0.96	0.65

F. Etminan et al.(HAL QCD Collaboration), Nucl. Phys. A928,89(2014)



Previously available experimental data: STAR

• Study of the p- Ω correlation function in Au-Au collisions at $Vs_{NN} = 200 GeV$

STAR Collaboration. Phys. Lett. B790 (2019) 490-497

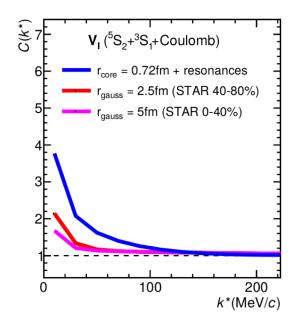
- Observable: ratio of the correlation function peripheral/central collisions.
- Comparison with Lattice QCD calculations (with large masses)

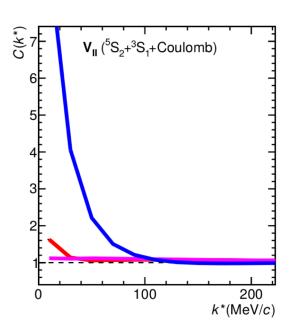
 Test different fits to Lattice QCD data (delivering three different binding energies of the NΩ):

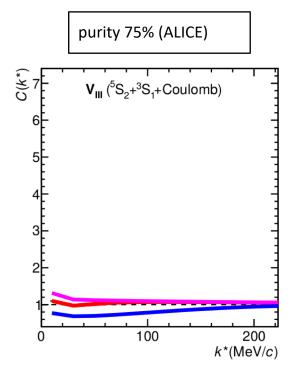
Binding energy $(\mathbf{E_b})$, scattering length $(\mathbf{a_0})$ and effective range $(\mathbf{r_{eff}})$ for the Spin-2 proton- Ω potentials [24].

o (en /	•		$\overline{}$
Spin-2 p Ω potentials	V_I	V_{II}	V_{III}
E _b (MeV)	-	6.3	26.9
$\mathbf{a_0}$ (fm)	-1.12	5.79	1.29
$\mathbf{r}_{\mathbf{eff}}$ (fm)	1.16	0.96	0.65
			$\overline{}$

[24] K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901

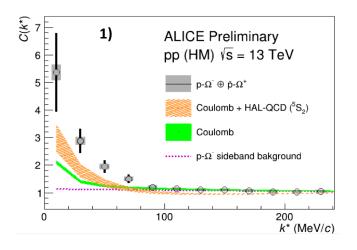

STAR data favor V_{III} , with $E_b = 27 \text{ MeV}$



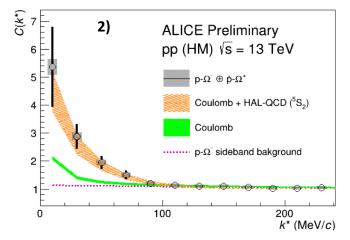


Sensitivity of ALICE and STAR data

- Expected correlation function from heavy quark Lattice QCD potentials
- Smaller radius source offers the ideal conditions to test the models
- **Better purity** of ALICE data increases the **sensitivity** of the test

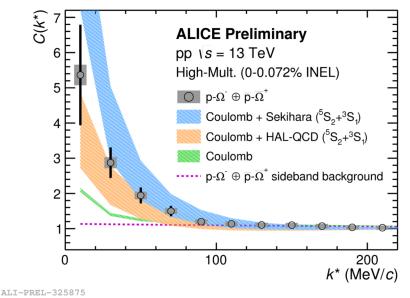


Model evaluation

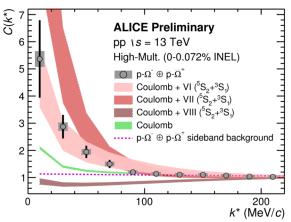

Calculations provide the potential shape for the 5S_2 channel (weight $\frac{1}{2}$). Currently, no model for the other channel in S-wave interaction, 3S_1 (weight $\frac{1}{2}$). Requires coupled channel treatment.

Assume <u>two different (~extreme) scenarios</u>:

- **1.-** Complete absorption for distances $r < r_0$. K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901 $r_0 = 2$ fm, chosen from the condition $|V(^5S_2)| < |V(Coulomb)|$ for $r > r_0$
- 2.- Complete elastic with a similar attraction as ⁵S₂



Results: $p-\Omega^{-}$ correlation function in pp HM



 $r_{\text{source}} = 0.73 \text{ fm (+resonances)}$ $\lambda_{\text{genuine}} = 0.62$ "Coulomb only" scenario discarded by ALICE data (> 6 σ) showing the attractive character of the interaction

Precision of ALICE data exceeds the theoretical predictions

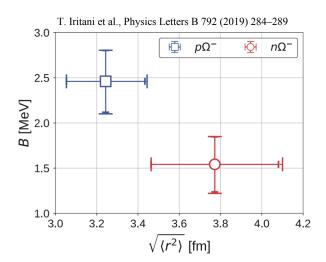
Comparison with the model favoured by STAR data STAR Coll. Phys. Lett. B790 (2019) 490-497

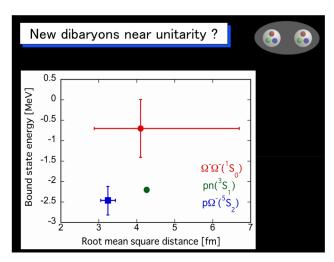
 V_{III} : Ad-hoc fit to previous HAL-QCD calculations with non-physical quark masses with p Ω dibaryon $E_h = 27$ MeV

$p-\Omega^- \oplus \overline{p-\Omega^+}$ correlation function

- $0.6x10^6 \text{ p-}\Omega^- \oplus \text{p-}\Omega^+ \text{ pairs}$
- ~700 pairs at k* < 100 MeV/c
- Strong enhancement of the correlation function: the "Coulomb only" scenario is discarded by a χ^2 comparison to the data, n_{σ} ~6
- λ parameters:

Pair	λ [%]
$p-\Omega^-$	61.5
$p_{\Lambda}\!\!-\!\!\Omega^-$	8.3
$p_{\Sigma^+}\!\!-\!\!\Omega^-$	3.8
$\tilde{p}\!\!-\!\!\Omega^-$	1.5
$p\!\!-\!\! ilde{\Omega^-}$	20.5
p_{Λ} – $ ilde{\Omega^-}$	2.8
$p_{\Sigma^+}\!\!-\!\! ilde{\Omega^-}$	1.3
$ ilde{ ilde{p}}$ $- ilde{ ilde{\Omega}}^-$	0.5

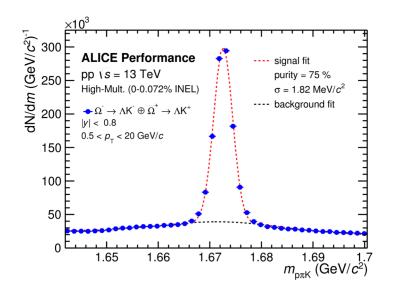

Lattice QCD prediction

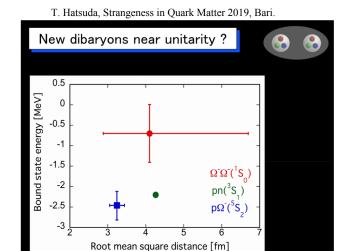

In recent years calculations of baryon-baryon interactions became possible near the physical quark masses. Mainly due to development of advanced techniques such as the HAL QCD method.

Lattice QCD (HAL Collaboration) predicts very attractive p- Ω -interaction at all distances

 \rightarrow Open the door for a N Ω di-baryon

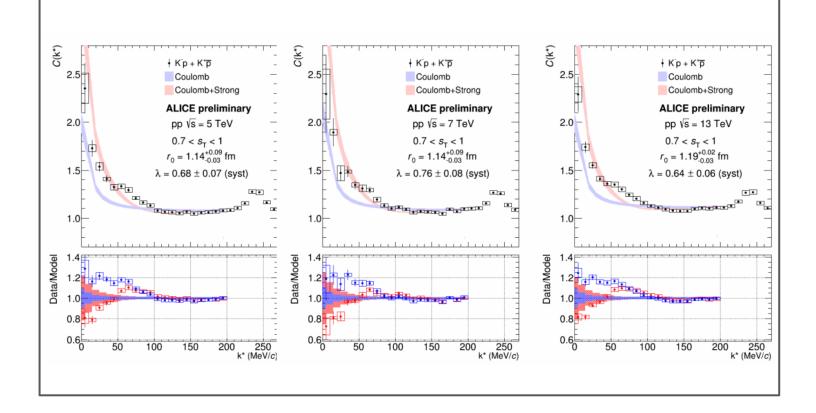
The N Ω system, with J=2, S=-3 would be a particularly interesting case since the Pauli blocking among valence quarks do not operate in this system \Rightarrow Absence of a repulsive core

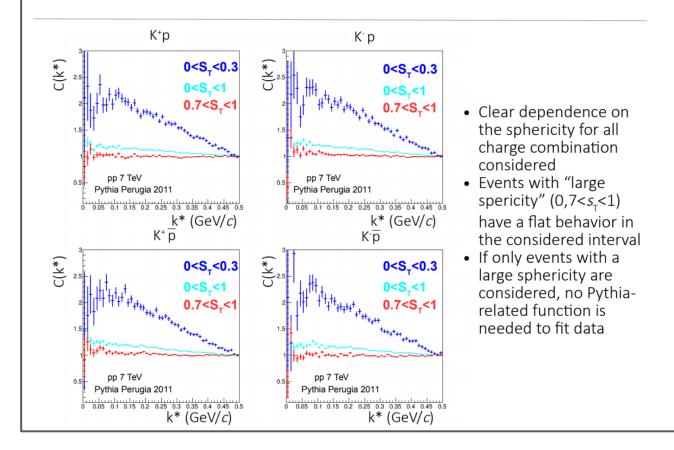

T. Hatsuda, Strangeness in Quark Matter 2019, Bari.

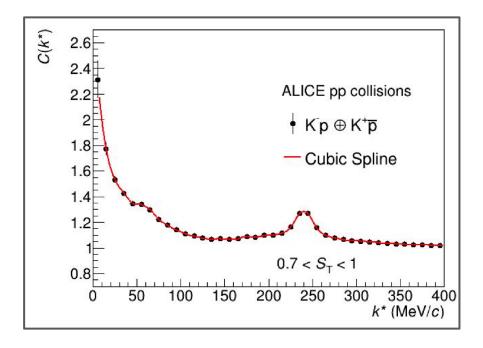


Data analysis: Ω⁻ reconstruction

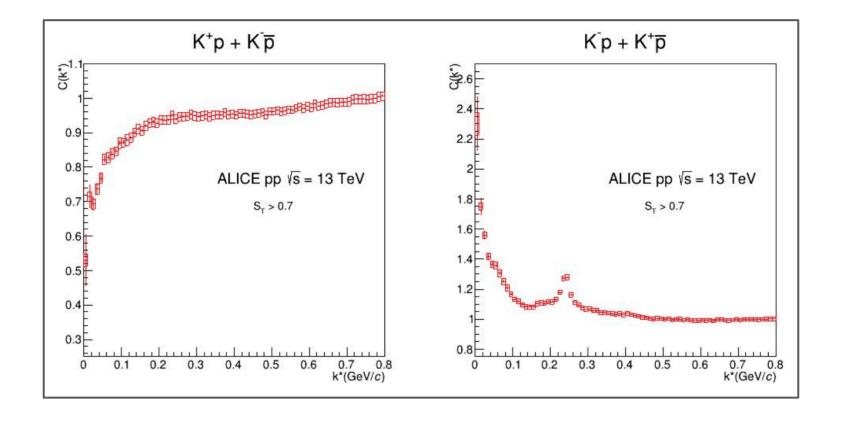
- Identified by its decay: $\Omega^{-} \rightarrow \Lambda K^{-} \rightarrow (p\pi^{-})K^{-}$
- Total of 1.2 \times 10⁶ selected ($\Omega^-+\Omega^+$) candidates:
 - $0.6 \times 10^6 \text{ p-}\Omega + \text{pairs}$ $\rightarrow 304 \Omega \Omega \text{ pairs}$
 - **11×10**³ pairs at k*<300 MeV/c
 - 700 pairs at k*<100 MeV/c
- Purity of the preliminary sample **75%**



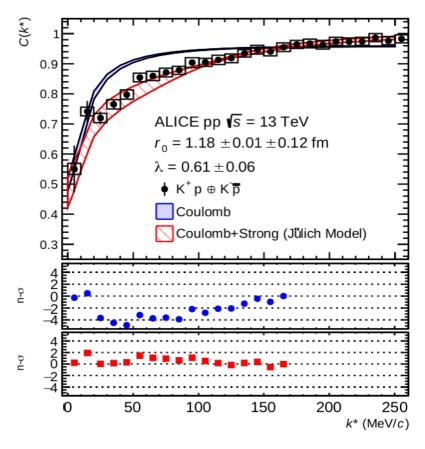

Updated results : K⁻p (Haidenbauer)

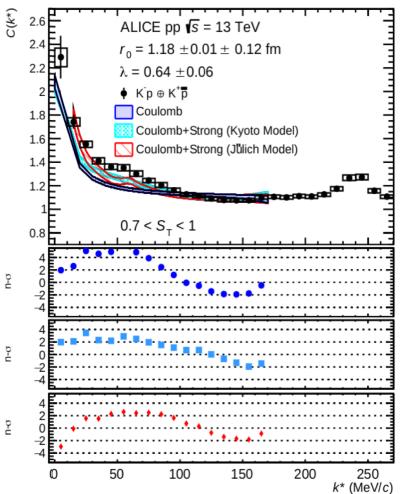


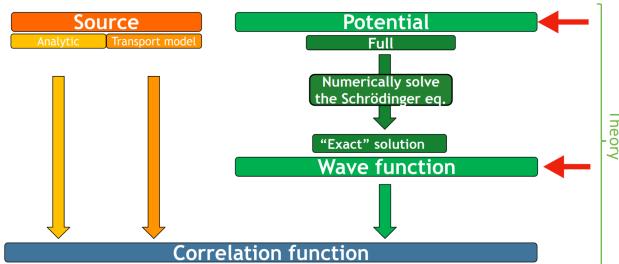
CF for different Sphericity- MC

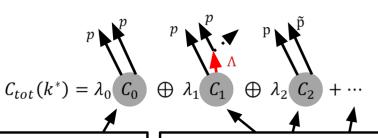


 $|4.4\sigma|$ has been observed, to be compared with a significance of 30σ for $\Lambda(1520)$









Provides a exact solution computing the correlation function from the model given a local potential or wave function form.

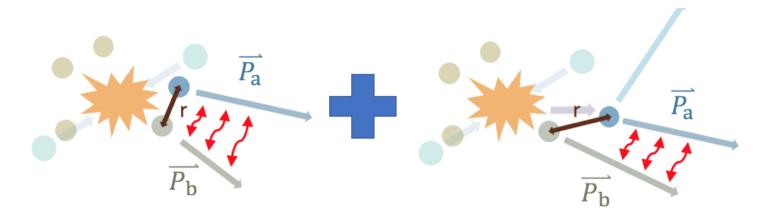
Decomposition of the correlation function

- Purities and contributions from weak decays determined from fits to experimental data
- Such residual correlations modelled (weak decays) or obtained from data (impurities)
- Resolution effects applied to the fit function Phys. Rev. C99 (2019) no.2, 024001

Correlation of interest

Contributions from impurities, secondaries etc.

Experiment

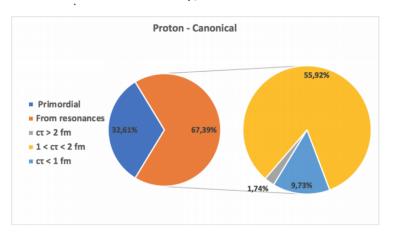

Effect of resonances in the source

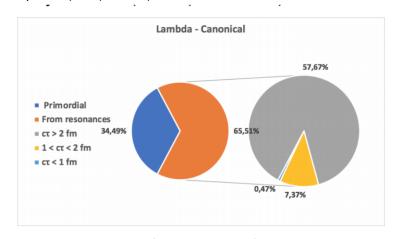
Resonances with $c\tau >> r_0$

- Decrease of the correlation strength
- Taken into account by the **λ parameters**

Resonances with $c\tau \sim r_0 \sim 1$ fm:

- Introduce an exponential tale
 - example: N*(Γ ~150-200 MeV), Δ (Γ ~150 MeV), etc
 - Specific exponential modulation to each pair due to different strong decaying resonances feeding to the different particle species





Details on resonances

Amount of resonances: Canonical approach of the statistical hadronization model (SHM)

- $T = 166 \text{ MeV } \& \gamma_s \sim 0.8$ (Private Comm Prof. F. Becattini, J. Phys. G38 (2011) 025002)

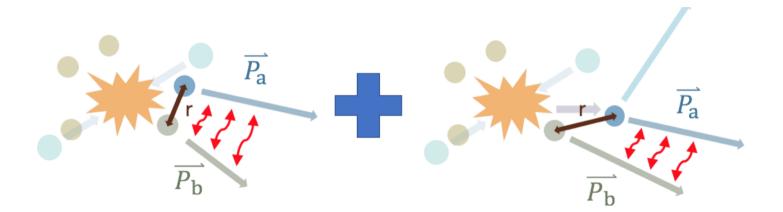
- For Ξ and no Ω contributions!
- Average mass and average cτ determined by the weighted average values of all resonances

Particle	$M_{\rm res}$ [MeV]	$ au_{ m res}$ [fm]
p	1361.52	1.65
Λ	1462.93	4.69
Σ^0	1581.73	4.28

Modelling the source including resonances

Gaussian Core

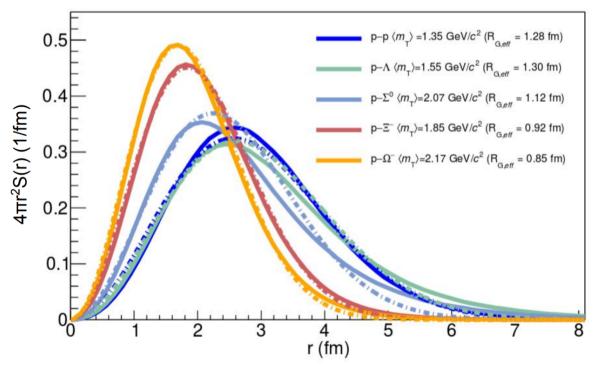
$$G(r, r_{core}) = \frac{2\sqrt{\pi}r^2}{r_{core}^3} \exp\left(\frac{r^2}{4r_{core}^2}\right)$$


Exponential resonance tail

$$E(r, M_{res}, \tau_{res}, p_{res}) = \frac{1}{s} \exp(-\frac{r}{s})$$

$$s = \beta \gamma \tau_{res} = \frac{p_{res}}{M_{res}} \tau_{res}$$

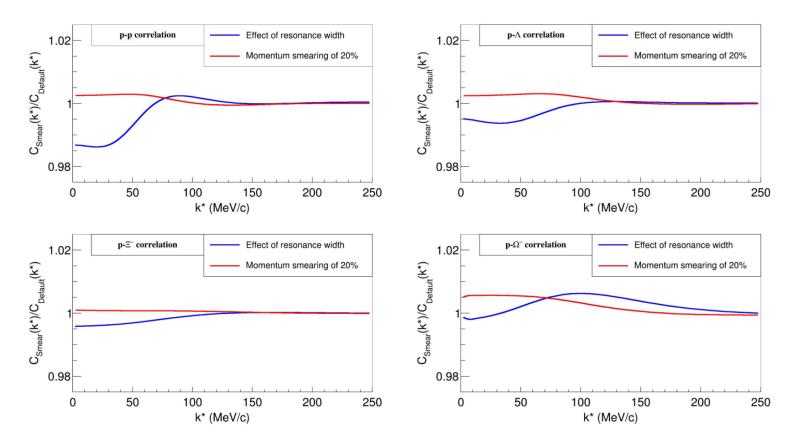
- Shared between particle pairs
- Scales as a function of m_T


- Specific modulation of each pair

Gaussian core + resonances

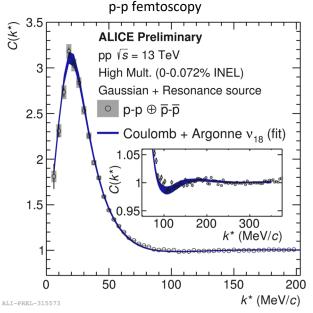
Solid line: Source distribution including the effect of resonances

Dashed line: Fit with an effective Gaussian


- Direct fit of the p-p correlation function yields similar radius

- Resonance contribution to Omega yield negligible.
- Modification of the gaussian core for p-Omega pairs coming only from resonances contribution to the proton yield

Effect on the source when smearing resonances

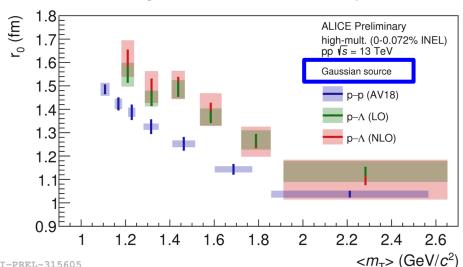


Setting the **source**

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs

The characteristics of the source are **determined from femtoscopic analysis of the p-p correlation**: Assume a p-p known interaction → determination of the source size

- Consider <m_T> dependence of the source due to collective effects:
 - Femtoscopic p-p fits performed differentially in <m_T> bins
 - \circ < m_T > dependence cross-checked with p- Λ analysis
- Effect of strong short-lived resonances computed for all hadrons
 - O Statistical hadronization model in the canonical approach Priv. comm. Prof. F. Becattini, J.Phys. G38 (2011) 025002

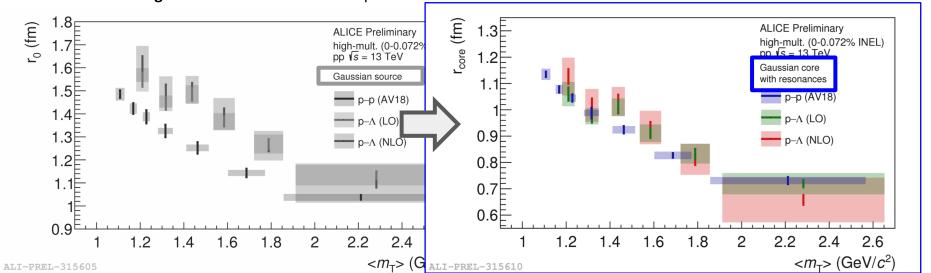


Setting the **source**

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs

The characteristics of the source are **determined from femtoscopic analysis of the p-p correlation**: Assume a p-p known interaction \rightarrow determination of the source size

- Consider <m_T> dependence of the source due to collective effects:
 - Femtoscopic p-p fits performed differentially in <m_T> bins
 - \circ < m_T > dependence cross-checked with p- Λ analysis
- Effect of strong short-lived resonances computed for all hadrons

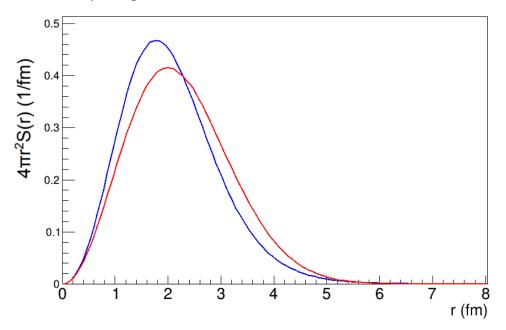

Setting the **source**

Ansatz: in small collision systems the source is similar for all baryon-baryon, baryon-meson pairs

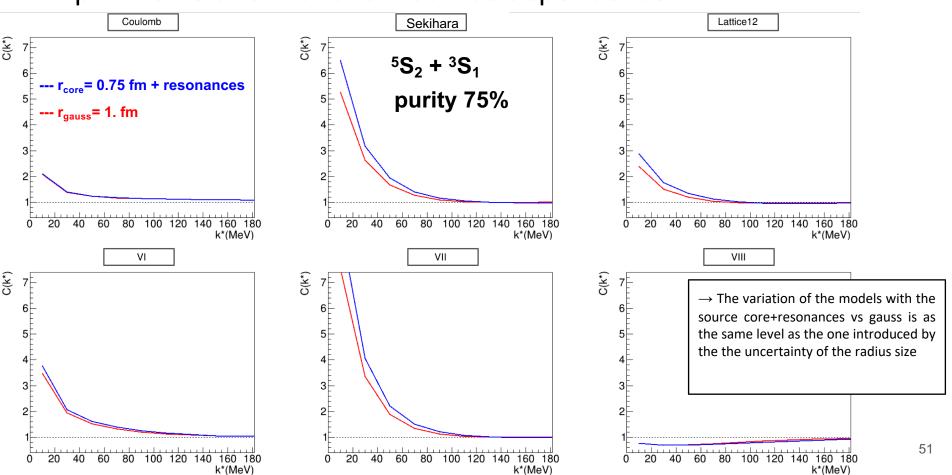
The characteristics of the source are **determined from femtoscopic analysis of the p-p correlation**: Assume a p-p known interaction \rightarrow determination of the source size

- Consider <m_T> dependence of the source due to collective effects:
 - Femtoscopic p-p fits performed differentially in <m_T> bins
 - o $\langle m_T \rangle$ dependence cross-checked with p- Λ analysis

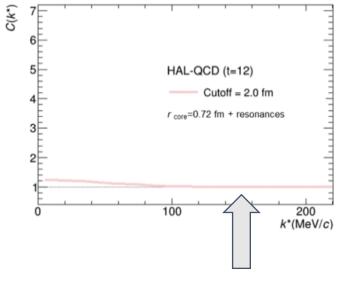
• Effect of strong short-lived resonances computed for all hadrons

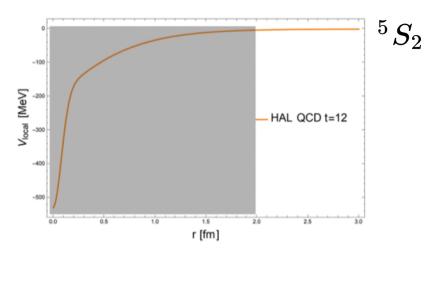


$p-\Omega^-$ Correlation function: source dependence


- Comparison of the C(k*) for the different models for different source assumptions
- Size of the source determined from p-p fitted radius vs <m_T>
 - core gaussian source + resonances effects
 - o pure gaussian source

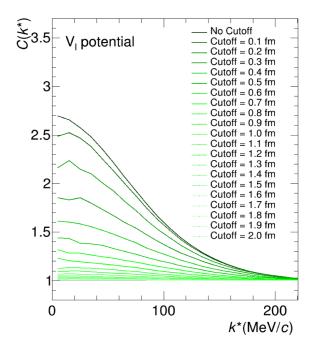
$p-\Omega^-$ Correlation function: source dependence

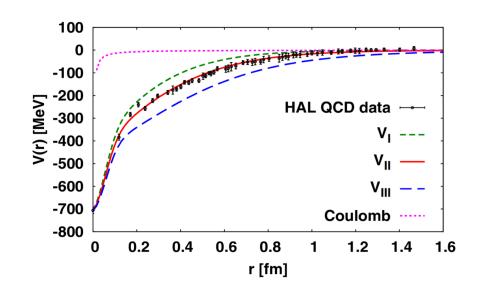




p- Ω - Correlation function (5S_2) with distance cutoff

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5$ fm


Precision of ALICE data ~5%



p- Ω - Correlation function (5S_2) with distance cutoff

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5 \text{ f}$
- For VI potential (no bound state) $C(k^*)$ always increases with decreasing r_{cutoff}

