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QCD WITH ISOSPIN

[Physical motivation, numerical advantages,

analytical results for the phase diagram]



A nonzero isospin density nj = n, — nq describes an asymmetry between
the densities of up and down quarks

- ) )
e hence between the densities of protons and neutrons 00 00

e hence between the densities of 77 and 7= W@ W@
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e hence between the densities of protons and neutrons 00 00

e hence between the densities of 77 and 7= W@ W@

The n; < 0 case is relevant for
e the initial state of heavy ion collisions

e imbalance between produced charged pions

e structure of cold neutron stars

e very low proton fraction




Isospin chemical potential

QCD with three flavors of fermions in the grand canonical ensemble.
Quark chemical potentials conjugated quantities to quark densities

_ BB HB HB

+ i, Hd = — 3 -, Ns—?—/ﬁs

Hu="3

e Consider zero baryon number and strangeness, but nonzero isospin

ug =0, pns =0, M= Hu = —[id

e One can then define a pion chemical potential pr = py — fta = 24
to which corresponds the isospin density nj = n, — nq

e Systems with n; # 0 can be simulated with standard Monte Carlo
importance sampling techniques using 1; €R that couples to 5= 3!

& Alford, Kapustin, Wilczek (1999)



QCD at finite isospin density
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QCD at finite isospin chemical potential w; has no fermion sign problem and can be studied on the
lattice. We solve this theory analytically in two limits: at low w;, where chiral perturbation theory is
applicable, and at asymptotically high u;, where perturbative QCD works. At low isospin density the
ground state is a pion condensate, whereas at high density it is a Fermi liquid with Cooper pairing.
The pairs carry the same quantum numbers as the pion. This leads us to conjecture that the transition
from hadron to quark matter is smooth, which passes several tests. Our results imply a nontrivial phase
diagram in the space of temperature and chemical potentials of isospin and baryon number.

& Son, Stephanov (2001)

Non trivial phase diagram drawn on the basis of analytical computations

n
e the nj — 0 limit +— Chiral Perturbation Theory

e the n; — oo limit +— Perturbative QCD


http://inspirehep.net/record/527756

QCD at finite isospin density - The “analytical phase diagram”

() #0

ma /2 |11
In the limit n, — 0, i.e. |u/| < m, xPT applies

e 7 lightest hadrons coupling to 1;: YPT describes their effective dynamics
o At T =0, iy > p,c = my/2, sufficient energy to create 7t

e A Bose-Einstein condensate (BEC) is formed

Hadronic/BEC phase transition predicted, by xPT, to be second order
(O(2) universality class)



QCD at finite isospin density - The “analytical phase diagram”

M /2 |t
In the limit n; — oo, i.e. || > Agcp p-QCD applies
e Attractive gluon interaction forms pseudoscalar u — d Cooper-pairs

e BEC/BCS phse transition expected to be analytic crossover (same
symmetry breaking pattern)

e At asymptotically large 11/, decoupling of the gluonic sector and first-order
deconfinement phase transition



THE PHASE DIAGRAM OF QCD WITH
ISOSPIN ON THE LATTICE

& Brandt, Endrédi, Schmalzbauer (2018)

[Symmetry breaking patterns, Pion BEC,

Pionic source ), lattice setup |


https://inspirehep.net/record/1644793

n;-QCD on the lattice - Symmetry breaking patterns

o SUy(2) x Uy(1) flavor symmetry group for QCD with light quark matrix
Maudlyoxeo = Tu(Ou + iA) T+ mugl, = (u,d)"
o At w #0 — Mug = Mudl,,—r—o + 1773

SUy(2) x Uy(1) — U~ (1) x Uy(1)

e Spontaneous breaking with pion

condensate (1571 2¢)
— Appearance of Goldstone mode

Yys T2 Tt



n;-QCD on the lattice - Symmetry breaking patterns
e SUy(2) x Uy(1) flavor symmetry group for QCD with light quark matrix
Maudlyoxeo = Tu(Ou + iA) T+ mugl, = (u,d)"
oAt #0,AF0 — Mug = Mud|,,_y—o + H17aT3 + iIXT

5U\/(2) X U\/(l) — U-,-3(1) X Uv(].) — I X Uv(l)

e Spontaneous breaking with pion

condensate (1571 2¢)
— Appearance of Goldstone mode

e Explicit breaking via pionic source A,
— pseudo-Goldstone boson

_ (A necessary trigger for spontaneous
V1Y breaking at finite V and |.R. regulator)



n;-QCD on the lattice - Setup

e Light quark matrix in the basis of up and down quarks v = (u,d) "

Mg =70, + iA) L+ mug L + pyyats + iAysm
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n;-QCD on the lattice - Setup

e Light quark matrix in the basis of up and down quarks v = (u,d) "
Mg =70, + iA) L+ mug L + pyyats + iAysm

e Unphysical symmetry breaking term in M4 couples to the charged pion
field 7+

Sud = Sud(A = 0) + An™, 7% = Pivsmat) = ysd — dysu.

e QCD with Nf =2 + 1 improved dynamical staggered quarks with physical
quark masses at various T, py, A

Z= /DU e 5" (det M ug)M/* (det M,)H/4 U, = exp(iaA,)



n-QCD on the lattice - Breaking of U, (1) symmetry

e Spontaneous and explicit, by A, breaking of the U.(1) symmetry at u; # 0
completely analogous to the spontaneous and explicit, by m,4, breaking of
the SU.(2) ® SUgr(2) chiral symmetry at p; =0

Pion condensation

breaking pattern

U-(1) » @
1 Geldstones
<z/_),}/57.2w> condensates
A5 Q  (SXPlct breaking,
plw(”l)+mud‘2(0) ( Banks-Casher

e While in nature myg > 0, A is unphysical:

Chiral symmetry breaking

SUL(2) ® SUR(2) = SUy(2)

the limit A — 0 must be taken!



RESULTS

[Approximate order parameters,

phase diagram in the i, — T plane]



n;-QCD on the lattice - Observables

e The pion condensate and quark condensate obtainable from Z, via
differentiation and measurable with noisy-estimator techniques

< i> T Olog Z T ir A
i = — = —
vV oA 2V D (uy) + mug|? + N2
TologZ T D(p) + mug
Re tr
<¢w> V 8m ud 2\/ |m(u/)+mud|2+)\2

then becoming, after appropriate multiplicative/additive renormalization,

Myg - -
Tgp = ot (P07, = (P)g) +1
o Mmyd +
ZT" - m‘%fﬂ? <7T >T,p.,
Ny—1
e The renormalized Polyakov loop P,(T, ) =Z-( & > Tr H U(n)
Ny,Ny,nz

T./T
with Z = (prls=g;) . and T, = 162 MeV, hence P, = 1



n;-QCD result - Continuum limit and the i, — T phase diagram

Pion condensate

e BEC phase boundary, u (T),
by onset of ¥

o 1;(T,a), 4" order polynomial
in (T — Tp) with a—dependent
coefficients and Tg = 140 MeV

PP PN BRI B vy
150 155 160 165
T (MeV)

Quark condensate

e Chiral crossover Tp,c(pr), by
the inflection points of 7, (T)

o Toc(ps,a), even-in-p
polynomial, including data up
to p.c(0) = m; /2

mL

140 £ N=6 & N=10 77 cont. limit
[ BN=8 & N=12 § Ref. [6]
130 |-
I YUY AN S ST S (ST SRR
0 0.2 0.4 0.6

W/ m,



n;-QCD result - Continuum limit and the i, — T phase diagram

"

pion e Y =0 uptopu =120 MeV, for
condensation / T Z 160 MeV

7

L chiral Crossover

o Toc(ju=0) = 159(4) MeV

e Small downward curvature Tpe(fir)

T (MeV)
N
o

0.2 0.4
w/ m,

e BEC boundary at pijc=m;/2 up to T~140MeV, very flat at larger 1,
e Two “transition” lines meet at iy, = 70(5) MeV in a pseudo-triple point

e Chiral symmetry restoration and BEC boundary coincide for 11 > 1t/ pt



SIGNATURES OF THE BCS PHASE AT
HIGH 1

[Complex Dirac spectrum]



QCD at finite isospin density -

e Prediction of a superfluid state of u and d Cooper pairs (BCS phase) at
very high-y1y and T = 0, plausibly connected via crossover to the BEC
phase at p; > mﬂ-/2 & Son, Stephanov (2001) & Adhikari, Andersen, Kneschke (2018)

P, = 1008060402 n=6 | e Deconfinement transition
160 ZZZZ7y, 227 - connecting continuously to
= ';;;f////////;j;/////// ] BEC-BCS crossover in the
§ o !/////,///// ‘ NEIN h (T, ) phase diagram
- 3 ' + _ e Large Polyakov loops P.

within BEC phase

120 \\ e Slow decrease of
1 1 1 1 1 ] TCCIeCODf‘(M’)



http://inspirehep.net/record/527756
http://http://inspirehep.net/record/1674331

QCD at finite isospin density -

e Prediction of a superfluid state of u and d Cooper pairs (BCS phase) at

very high-y1y and T = 0, plausibly connected via crossover to the BEC

phase at p; > mﬂ-/2 & Son, Stephanov (2001) & Adhikari, Andersen, Kneschke (2018)

T
Quark-gluon plasma phase
e Deconfinement transition
) connecting continuously to
Vo (1) % Uy (1) . BEC-BCS crossover in the
SUY (2) explicitly broken N (7—7 /’Ll) phase diagram
. e Large Polyakov loops P;
Uy (1 N L
v S within BEC phase

Urg (1) spontaneously broken NS

; e Slow decrease of
Tglecoan (/'LI)

SU(2) x Uy (1)

Hadronic phase BEC phase

/2 |21



http://inspirehep.net/record/527756
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Signatures of the BCS phase at large ;; from [J(y) spectrum

e For |u/| > Aqcp attractive channel between quarks near the Fermi surface
lead to diquark pairing of the BCS type

e Banks-Casher relation extensible to the case of complex Dirac eigenvalues
forQCD at T =0, p; #0

& Kanazawa, Wettig, Yamamoto (2013)
3 The [P(p1) spectral density
5 27

R
The BCS gap 3N(_‘ p(o)\_/

Jy/my=0.13

Im(v) [MeV]

—100

0 N <0
Re(v) [MeV]


https://inspirehep.net/search?p=find+eprint+1211.5332

Complex spectrum of the Dirac operator

[B(101)] thn = (V) W €T 8 [ B(—pa1)] = ()

chiral symmetry

up sector, down sector, — 1, Pn="50n

Complex eigenvalues v, € C

[B(1), B (11)] # 0, so left and right eigenvectors of [B(4) do not coincide

V eigenvalue v, in the up sector, complex conjugate v} in the down sector

Simulations at nonzero quark mass: instead of p(0), we look at
p(m+ i % 0) neglecting corrections at first.



Complex spectrum of [(y,) - Results, qualitatively

m/myz=0.51

100 6
5
50 i .
> 4 e Simulations are
() .
= 0 carried out away
— 3 . ..
= from the chiral limit
E 2 — extract p(myq)
-50
1

—100

/60 Q c)Q
Re(v) [MeV]

e 1 < m;/2: eigenvalues clustered along imaginary axis — p(muq) =0



Complex spectrum of [(y,) - Results, qualitatively

m/my=0.99

100
1.4
1.2
50 . .
s 1.0 e Simulations are
w .
= 0 0.8 carried out away
= from the chiral limit
I 0.6
= — extract p(myqg)
=50 0.4
0.2
-100 0.0

/60 Q 60
Re(v) [MeV]

e 1 < m;/2: eigenvalues clustered along imaginary axis — p(muq) =0

® (i > my/2: spectrum ‘wide’ enough to include m + i0 — p(myq) # 0



Complex spectrum of [(y,) - Results, qualitatively

Im(v) [MeV]

m/my=2.30

100 0.25
50 0.20
0.15

0
0.10

-50
0.05
-100 0.00

/50 Q 60

Re(v) [MeV]

e Simulations are
carried out away
from the chiral limit
— extract p(myq)

e 1 < m;/2: eigenvalues clustered along imaginary axis — p(myq) =0

e (i > m;/2: spectrum ‘wide’ enough to include m +i0 — p(m,y) # 0

e Higher-pi: eigenvalues drifting away from the real axis — p(myy) — 0



Complex spectrum of [(u,) - Results, quantitatively

N, = 24
T ~ 113 MeV
1 } T ~ 148 MeV ||
T ~ 155 MeV
— 08 } T ~ 162 MeV ||
> ﬂ ;
[
O, 0.6 } -
=5
< 04| i i
\i [ ]
0.2] i }
0 —=—smoe .t * : : o n =
| | | | | |




Complex spectrum of [(u,) - Results, quantitatively

e Match p;- and T- dependence of p(m,q) with the boundary of the BEC
phase and with the deconfinement crossover

T T I T

081 o7 ~ 148 MeV []
E n7T ~ 155 MeV
0.6 .
5 ¢
S . ]
=
3
S .
S 02f § 2
. .
[ °
[ . ®
0 = neumi® L o o |
| | | 1 | |
0 0.5 1 15 2 2.5



Complex spectrum of [(u,) - Results, quantitatively

e Match p;- and T- dependence of p(m,q) with the boundary of the BEC
phase and with the deconfinement crossover

o ~ 148 MeV [ 081 o7 ~ 148 MoV

osf |
! % uT ~ 155 MeV } w7 ~ 155 MeV
06F | . 06r |
- .
% ' i °‘>
S ! %% &
<] ! : O o4 3
=~ 04 . + 1 =
< ' £
= ‘ E ]
= ' e S 02f % % g
0.2} @i{ n i 5
: % .
@: O oo u mlf - -
0 i | | 1 i | Il | 1
0 0.1 0.2 0.3 0.6 0.8 1 12 14




Complex spectrum of [(y,) - Conclusions, outlook

04l T ~ 113 MeV
X ) } =T ~ 124 MeV'
L5 T ~ 136 MeV ||
31 1 — _ T ~ 142 MeV
= ‘ T ~ 148 MeV
E o 1 i P =T ~ 155 MeV [|
[ % i = . oT ~ 162 MeV/
L i LI | < 05f 1
L]
= . P
OF mm = = 0
0 05 1 15 2 0 05 1 15 2
i /my nr/ms
1072
-—
N, : 16
aN, ;24
6l o N, :32 ||

p(mua) [GeV?)

. .
17 1.8 1.9 2
i /ma



Complex spectrum of [(y,) - Conclusions, outlook

T ~ 113 MeV
_ { T ~ 124 MeV
L5 T ~ 136 MeV ||
— T ~ 142 MeV
B T ~ 148 MeV
S 1 i i oT ~ 155 MeV
=) . oT ~ 162 MeV
< 0sf
P
0
0 0.5 1 5 2
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Complex spectrum of [(y,) - Conclusions, outlook

*T ~ 113 MeV

B § =T ~ 124 MeV
15 T ~ 136 MeV ||
& T ~ 142 MeV
=z T ~ 148 MeV
S 1 i P o ~ 155 MeV |
= ' oT ~ 162 MeV.
> < 05)
ik
0
| .
0 0.5 1 15 2
pr/me

V — 0 a— 0



Complex spectrum of [(y,) - Conclusions, outlook

A— 0 I —0

V — 0 a— 0



Complex spectrum of [(y,) - Conclusions, outlook

Ju/my = 0.51

e Extrapolated spectral density p(myq)
sensitive to the BEC boundary!

Im(v) [MeV]

& ° «®

Re(v) [MeV]

o
T Re(v) [MeV]

Quark-gluon plasma phase 08

Typeeemnnee

BCS phase

SUv(2) x Uy (1)

BEC phase pitfms

mefz o]



Complex spectrum of [(y,) - Conclusions, outlook

Ju/my = 0.99

g

e Extrapolated spectral density p(myq) ) -
sensitive to the BEC boundary! ; , o
: 0s
o R ||,
e Sensitivity to the BEC-BCS crossover? T e —
A # 0 at high-;? -
More systematic analysis ongoing ;
(V = 00,a— 0,\ = 0) : -
" 2
;
. . E . s
B 0 05 1 /‘ 2
S| Hadronic pi BEC phase pr/m:

mefz o]



Complex spectrum of [(y,) - Conclusions, outlook

Ju/my = 0.99

e Extrapolated spectral density p(myq)
sensitive to the BEC boundary!

Im(v) [MeV]

& ° «®

e Sensitivity to the BEC-BCS crossover? e ev) —
A 0 at high-p?
More systematic analysis ongoing ;
(V= o0,a—0,\—0) £

0 ° <
Re(v) [MeV]

e Desired generalization of Banks-Casher - E
relation away from T =0 and B hi
|,ul| > Nocp limits




Thank you for your attention!



Chemical potential & positivity of the measure

PHYSICAL REVIEW D, VOLUME 59, 054502

Imaginary chemical potential and finite fermion density on the lattice

Mark Alford, Anton Kapustin, and Frank Wilczek
School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540
(Received 7 August 1998; published 29 January 1999)

Standard lattice fermion algorithms run into the well-known sign problem with a real chemical potential. In
this paper we investigate the possibility of using an imaginary chemical potential and argue that it has
advantages over other methods, particularly for probing the physics at finite temperature as well as density. As
a feasibility study, we present numerical results for the partition function of the two-dimensional Hubbard
model with an imaginary chemical potential. We also note that systems with a net imbalance of isospin may be
simulated using a real chemical potential that couples to 73 without suffering from the sign problem.

& Alford, Kapustin, Wilczek (1999)

Systems with n; # 0 can be simulated with standard Monte Carlo impor-

tance sampling techniques using j;; €R that couples to /3= %!



Chemical potential & positivity of the measure

Consider N flavors of fermions 1, with Lg = 1) M(¢) 1), and bosons ¢.
In the Euclidean formulation and after fermion fields are integrated out

(det M(¢))M e28()
/'D(Z5 O[¢] fD(,‘b d t M ¢))Nf e—5e(9)

pdfe (det M(9))% € RY

Once the theory is discretized on a lattice, one would like to estimate
(O) by employing importance sampling techniques.
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Chemical potential & positivity of the measure

Consider N flavors of fermions 1, with Lg = 1) M(¢) 1), and bosons ¢.
In the Euclidean formulation and after fermion fields are integrated out

(det M(¢))M e28()
/'D(Z5 O[¢] fD(,‘b d t M ¢))Nf e—5e(9)

pdfe (det M(9))% € RY

The sign problem forces us to restrict ourselves to cases where (det M) € R*!I
POSITIVITY <— even number of flavors each with det M € R
REALITY «<— 3 P invertible, such that MT = PMP~1

In two-flavor QCD with finite density of isospin and L(u), Dirac operator
for one flavor with chemical potential y, satisfying L(p)" = y5L(—u)7s

M(p)= (L(OM) L(E,U)) , detM(u)=|detL(p)]? >0, P= <$5 ,}(I)S>

& Alford, Kapustin, Wilczek (1999)



n-QCD on the lattice - No sign problem

e In our partition function Z = [ DU, e BSe" (det M ,9)Y/* (det M)Y/4

[ P(pr) + myq s B .
MUd_< —A1s IZ)(—M/)-qud)’ Ms=D(0) + m,

e det M, € RT due to the standard 7s-hermiticity relation 175 Mns = M|
with 75 = 78 @AY = (—1)™ 40 equivalent of s is the local
staggered spin-flavor structure

e det M,y € RT due to

D(pr)ns +nsP(pr) =0

_ T
nsw(lul)ns _ w(iul)'l‘ } e 175 Mud 571 = Mud

and

B(p1) + Mug A

'y = BM 4B = ( “x (B() + mug]!

) ) B = dlag(13n5)



Signatures of the BCS phase from the complex Dirac spectrum

e Banks-Casher relation extensible to the case of complex Dirac eigenvalues
for QCD at zero-temperature, nonzero isospin chemical potential
e The necessary condition for the derivation is the positivity of the fermionic
measure (— QCD inequalities — exclusion of symmetry breaking patterns)
e For |ui| > Nqcp attractive channel between quarks near the Fermi surface
lead to diquark pairing of the BCS type

e The density of the complex Dirac eigenvalues at the origin is proportional
to the BCS gap squared
273

=—p(0
3N p(0)

& Kanazawa, Wettig, Yamamoto (2013)

AZ

e A is the BCS gap
e p(v) is a 2d spectral density

e BC relations derived considering Z(M) as function of the quark mass
matrix M

e in the fundamental n;-QCD theory. Suitable derivatives/limits yield p(0)
e in the corresponding effective theory. Suitable derivatives/limits yield A?


https://inspirehep.net/search?p=find+eprint+1211.5332

Complex spectrum of [(y,) - Measurement & analysis

Measurement
e Spectrum measured with [ISEEZE (Scalable Library for Eigenvalue Problem

Computations), set up to obtain, via the Krylov-Schur method, ~150
complex eigenvalues of [J(y) (the closest, in modulo to the origin).

Analysis
e Spectral density p(v) extrapolated to m,q, by

e Using kernel density estimation (KDE) as a non-parametric way to estimate

Y the multivariate probability density function from the measured spectrum.



	QCD with isospin
	The phase diagram of QCD with isospin on the lattice
	Signatures of the BCS phase at high I
	Results
	Appendix

	anm0: 


