Exotic Decays of Atomic Nuclei

Marek Pfützner

NUCLEAR PHYSICS DIVISION University of Warsaw

58th International Winter Meeting on Nuclear Physics January 20 to 24, 2020 Bormio, Italy

Plan

Introduction:

chart of nuclides, exotic nuclei, exotic decays

- OTPC nuclear photography
- Two-proton radioactivity ⁴⁵Fe, ⁴⁸Ni, ⁵⁴Zn
- Emission of β-delayed particles ³¹Ar, ²⁷S, ⁶He, ¹¹Be
- Summary

Projectile fragmentation

Key features:

- full identification of single ions in-flight
- fast transport for short half-lives
- energy high enough to implant into detector arrays

β -delayed particle emission

➤ Far from stability Q-values are large → many delayed-particle emissions are open

Neutron halos \rightarrow charged particles

Gamma spectroscopy → Pandemonium effect!

- Strong beta transitions to highly excited states are suppressed by kinematics and appear as weak radiation channels
- Low-energy delayed protons may be of interest to astrophysics

2p radioactivity

> Expected for even-Z nuclei beyond the proton drip-line

M. Pfützner, 58 International Winter Meeting on Nuclear Physics , Bormio, January 2020

2p radioactivity with Si detectors

Implantation into Si array – good measurement of energy, but protons not resolved!

The Warsaw OTPC

Time projection chamber with optical readout (OTPC) (W. Dominik)

Combination of the CCD image with the PMT waveform allows to fully reconstruct the track in three dimensions

M. Pfützner, 58 International Winter Meeting on Nuclear Physics , Bormio, January 2020

2p decay of ⁴⁵Fe

> OTPC @ A1900 (NSCL/MSU), 2007: ⁵⁸Ni at 161 MeV/u + ^{nat}Ni → ⁴⁵Fe

Full reconstruction in 3D was possible

K. Miernik et al., PRL 99 (07) 192501

M. Pfützner, 58 International Winter Meeting on Nuclear Physics , Bormio, January 2020

p-p momentum correlations for ⁴⁵Fe

- Proton-proton momentum correlations measured for ⁴⁵Fe are complex and indicate a genuine 3-body phenomenon
- Good agreement with the 3-body model of Grigorenko et al.
- According to the model, the correlation picture depends on the structure of the initial state

Miernik et al., PRL 99 (07) 192501 Grigorenko et al., PLB 677 (2009) 30

2p decay of ⁴⁸Ni

> OTPC @ A1900 (NSCL/MSU), 2011: ⁵⁸Ni at 161 MeV/u + ^{nat}Ni \rightarrow ⁴⁸Ni

1.0

CCD

2p decay of ⁵⁴Zn

> Can we see the Z=28 shell closure in the p-p correlations?

Experiment at BigRIPS, RIKEN, April 2019

⁷⁸Kr @ 350 MeV/u + ${}^{9}Be \rightarrow {}^{54}Zn$

The beam intensity was great: 300 pnA but the cross section was found much smaller than expected

→ Only a few 2p decay events observed 😕

M. Pfützner, 58 International Winter Meeting on Nuclear Physics , Bormio, January 2020

β 3p in ³¹Ar?

PHYSICAL REVIEW C

VOLUME 45, NUMBER 1

JANUARY 1992

Decay modes of ³¹Ar and first observation of β -delayed three-proton radioactivity

D. Bazin,* R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

PHYSICAL REVIEW C

VOLUME 59, NUMBER 4

APRIL 1999

³¹Ar examined: New limit on the β -delayed three-proton branch

H. O. U. Fynbo,¹ L. Axelsson,² J. Äystö,³ M. J. G. Borge,⁴ L. M. Fraile,⁴ A. Honk A. Jokinen,³ B. Jonson,² I. Martel,^{5,†} I. Mukha,^{1,‡} T. Nilsson,^{2,§} G. Nyman,² M. Oin M. H. Smedberg,² O. Tengblad,⁴ F. Wenander,² and the ISOLDE

M. Pfützner, 58 International Winter Meeting on Nuclear Physics , Bormio, January 2020

³¹Ar at the FRS – "movie" mode

▶ GSI-FRS, August 2012, beam from the synchrotron – we cannot stop it upon trigger 😕

→ A new acquisition mode – a series of shorter expositions ("movie")

β 3p in ³¹Ar

> β 3p decay channel of ³¹Ar confirmed 18.38 17.36 by ISOLDE using Si Cube **3p** 2p 7.43 ²⁸Si ²⁹P lp 3 Counts / 40 keV 30_C ³¹Cl 2 → Very small branching corresponds to 1 about 30% of total GT strength $\mathbf{Q_{3p}} (\mathbf{MeV})^{\frac{6}{7}}$ 3 8 9 4 5 Koldste et al., PRC 89 (2014) 064315

 \rightarrow The estimated β 3p branching: 0.08(4)%

³¹Ar

15.04

7.50

5.90

-13.16-12.85-12.31

All cases of β 3p

NSCL 2007 Miernik et al., PRC 76, 041304(R) (2007)

What next?

⁴³Cr NSCL 2007 Pomorski et al., PRC 83 (2011) 014306

³¹Ar GSI 2012 Lis et al., PRC 91, 064309 (2015)

²³Si Texas A&M 2017

Ciemny et al., to be published

M. Pfützner, 58 International Winter Meeting on Nuclear Physics , Bormio, January 2020

Experiment at Dubna

Experiment at ACCULINNA (Dubna), November 2015 Fragmentation of ³²S @ 51 MeV/nucleon

New decay scheme of ²⁷S

Probing the 2n halo of ⁶He

 \blacktriangleright ⁶He decays into $\alpha + d$ with a very low branching

"Bunch" mode for ⁶He @ISOLDE

- Experiment at ISOLDE, August 2012
- Bunches of about 10⁴ ions of ⁶He accelerated by REX-ISOLDE to 3 MeV/u were implanted into the OTPC.
- After implantation, an exposure of 650 ms was started to see the decays.
- Clear images of decay events with α + d tracks were recorded.

A CCD image showing a bunch of implanted ⁶He ions (red) and a ⁶He $\rightarrow \alpha + d$ decay (green)

The spectrum of α + *d*

A difficult case: ¹¹Be β p?

- In halo nucleus
- The $\beta^{-}\alpha$ emission observed
- > The β -p decay possible but never seen

 $Q_p = 281$ keV, the predicted branching: $b_p < 10^{-6}$

M.P. & K. Riisager, PRC 97, 042501(R) (2018)

¹¹Be!

The best case to search for nuclear neutron dark decay is ¹¹Be!

The appearance of ¹⁰Be atoms in a sample of collected ¹¹Be (ISOLDE) was found by the AMS technique $\rightarrow b_p (^{11}Be) = 8.3(9) \times 10^{-6}$ Riisager at al., Phys. Lett. B 732 (2014) 305

A claim from TRIUMF: $b_p ({}^{11}\text{Be}) = 13(3) \times 10^{-6}$ Ayyad at al., PRL 123 (2019) 082501

> However, the reanalysis of ISOLDE/AMS experiment $\rightarrow b_p (^{11}\text{Be}) < 2.2 \times 10^{-6}$

Riisager et al. arXiv: 8 Jan 2020

¹¹Be @ ISOLDE

- ▶ Experiment at ISOLDE, 2018 → bunch and movie modes combined
- Bunches of about 10⁴ ions of ¹¹Be accelerated by HIE-ISOLDE to 7.5 MeV/ implanted into the OTPC every 1 min.
- After implantation: 252 frames of 33 ms (13 s) + 47 s break
- about 1.4 M frames recorded featuring about 1.5 M $\beta\alpha$ events

$\beta\alpha$ decay of ¹¹Be

 Relatively strong βα branch (3.5%) provides normalization but is a possible source of low-energy background

 \rightarrow The α spectrum is not known below 500 keV

Evidence for βp

- > We do see evidence for βp from ¹¹Be
- → The main difficulty: it is hard to distinguish ^{•••} α + ⁷Li from p + ¹⁰Be below 200 keV

Summary

• The OTPC detector is a simple and efficient tool to search for rare decays (like multiparticle) and to investigate particle decays obscured by beta background.

 It can provide precise branching ratios and angular correlations. Low energies can be reconstructed but with worse energy resolution than with Si detectors – complementarity!

2p correlations measured for ⁴⁵Fe indicate non trivial 3-body character.
Correlations needed for ⁴⁸Ni and ⁵⁴Zn.
Can we see the Z=28 shell closure in the 2p decay data?

Thank you!

