Astrophysics studies with stores exotic nuclei

Yuri A. Litvinov

58. International Winter Meeting on Nuclear Physics 20-24 January 2020 Bormio, Italy

Where and how was gold cooked?

Where and how was gold cooked?

Physics at Storage Rings

Storage rings stay for: Single-particle sensitivity Broad-band measurements High atomic charge states High resolving power

Physics with Storage Rings

100

150

500

2000

Nuclear Physics

- Nuclear structure through transfer reactions
- Long-lived isomeric states
- Atomic effects on nuclear half-lives
- Half-life measurements of ⁷Be
- Nuclear effects on atomic decay rates
- Exotic decay modes (NEEC/NEET, unbound states, ...)
- Di-electronic recombination on exotic nuclei
- Purification of secondary beams from contaminants
- Nuclear magnetic moments
- Neutron-induced reactions
- **Capture reactions for p-process**

Atomic Physics

Precision x-ray spectroscopy Super-Critical fields Electron-lon collisions Atomic lifetimes Nuclear effects on atomic decay rates Photoionization Di-electronic recombination on exotic nuclei Electron spectroscopy / electron scattering Atom/Molecule fragmentation Ion-molecule interactions Laser induced recombination

HELMHOLTZ

. . . .

Secondary Beams of Short-Lived Nuclei

Exotic (radioactive) nuclides in high atomic charge states stored for an extended period of time

> Radioactive ion beam facilities High kinetic energies

Ultra-high vacuum conditions

Paul Kienle 1931-2013

Fritz Bosch 1940-2016

Bound-State β-decay

Bound-State β -decay of ¹⁶³Dy

s process: slow neutron capture and β - decay near valley of β stability at $kT = 30 \text{ keV}; \rightarrow \text{high atomic charge state} \rightarrow \text{bound-state } \beta \text{ decay}$

 $T_{1/2}$ = 48 days

branchings caused by bound-state β decay

M. Jung et al., Phys. Rev. Lett. 69 (1992) 2164

| GEMEINSCHAFT

C

HELMHOLTZ 💶

Short-lived radioactivity – 1 My-100My

B. Meier et al.

erc

ASTRUm

Solar Neutrino Flux

HELMHOLTZ

SI

Lorandite TIAsS₂ Mineral

Age = 4.31(2) Ma

Pavicevic et al., NIM A 895 (2018) 62

Proposal for an experiment to be conducted at FRS/ESR **Measurement of the bound-state beta decay of bare** ²⁰⁵Tl ions Updated from previously accepted proposal E100

For the LOREX, NucCAR, SPARC and ILIMA Collaborations

Regarding the proposal "Measurement of the bound-state beta decay of bare ²⁰⁵Tl ions" (Proposal E121), the G-PAC recommends this proposal with **highest priority** (A) and that **21 shifts of main beam time** be allocated for this measurement.

24-30 March 2020

Nuclear reaction studies in a storage ring

ESR

High revolution frequency

→ high luminosity even with thin targets
Detection of ions via in-ring particle detectors
→ low background, high efficiency
Well-known charge-exchange rates
→ in-situ luminosity monitor
Ultra-thin windowless gas targets
→ excellent resolution
Applicable to radioactive nuclei

HELMHOLTZ G

Astrophysical Gamow Window

Normalization of Nuclear Cross Sections

Courtesy Jan Glorius

The Proof-Of-Concept 96 Ru(p, γ) 97 Rh (2008)

silicon detector data

- (p,γ) superimposed by other channels
- Geant4 simulation of each channel
 - disentangle different contributions
- clean extraction of (p,γ) signal

erc

ASTRUm

HELMHOLTZ 🖬 🖬 🏛

New in-vacuum particle detectors

How to reach the down into the Gamow window?

getting rid of detector pockets

- Double Sided Silicon Strip Detector (DSSSD)
 - ✓ x & y segmentation
 - $\checkmark\,$ 500 μm thickness (ions are stopped)
 - $\checkmark\,$ ultra thin dead layer of 0.3 μm
- compatible to UHV conditions
 - ✓ low outgassing rate
 - ✓ bakeable at T > 125°C

The new setup @ ESR

ESR Test Beam Time 2016 ¹²⁴Xe(p,γ)¹²⁵Cs

- test experiment for new setup:
 - ¹²⁴Xe: technically simple, stable beam, high intensity
 - 10-100 mbarn cross section expected for proton capture @ 7 MeV/u

Courtesy Jan Glorius

¹²⁴Xe(p,g)¹²⁵Cs Experiment at the ESR

HELMHOLTZ II II II

erc ASTRUm

¹²⁴Xe(p,g)¹²⁵Cs Experiment at the ESR

HELMHOLTZ II II II

¹²⁴Xe(p,γ) - Results

Courtesy Jan Glorius

ASTRUm

HELMHOLTZ II II II

Future measurements

Regarding the proposal "Measurements of proton-induced reaction rates on radioactive isotopes for the astrophysical p process" (Proposal E127), the G-PAC recommends this proposal with **highest priority (A)** and that **15 shifts of main beam time** be allocated for this measurement.

17-22 March 2020

51

HELMHOLTZ

Storage ring facilities at 🖪 🚍 👖

Experimental Storage Ring (ESR)

In operation since 1990 Circumference = 108.3 m Vacuum = 10^{-10} — 10^{-12} mbar Electron, stochastic cooling Energy range = 4 – 400 MeV/u Slow and fast extraction

CRYRING (transported from Stockholm University)

Planned start of operation (stable ions) – 2016 Planned start of operation (exotic nuclei) – 2017 Circumference = 54.15 m Vacuum = 10^{-11} — 10^{-12} mbar Electron cooling Energy range = ~0.1 - 15 MeV/u Slow and fast extraction

The CRYRING facility

- CRYRING is a dedicated low-energy storage ring
 - > all GSI beams available between ~100 keV/u and ~15 MeV/u
 - Ionger beam lifetimes for highly charged ions at low energies
- first commissioning phase is finished
- CRYRING is the ideal machine for
- astrophysical reaction studies

Courtesy Jan Glorius

FAIR: SPARC/APPA Facilities

Ion Beam Facilities / Trapping & Storage

Stored and Cooled Worldwide Highly-Charged lons (e.g. U⁹²⁺) and Exotic Nuclei From Rest to Relativistic Energies (up to 4.9 GeV/u) **Unique**! 10⁴ Cooling: The Key for Precision HESR 10³ ∆p/p ~ 10**-5** ron cooled beam beam intensity (arb. units) 10² ESR 10¹ CRYRIN ⁰01 Beam Energy (Me//n) ^{10⁻¹}01 Beam Energy (Me//n) 10⁰ -0.91 1.00 0.88 0.94 0.97 1.06 1.09 f / f. From Single lons to Highest Intensities 10⁻² seconds ¹⁹²Pb⁸¹⁺ HITRAP 30 e⁻ capture 0.80 ling time / ¹⁹² TI⁸¹⁺ 0.77 Q_{ec} = 3.37MeV 90 0.67 10⁻⁵ 0.62 0.57 0.52 150 0.48 0.44 10⁻⁶ 127300 127400 127500 127600 127700 127800 127900 128000 128100 frequency / Hz erc MHOLTZ **ASTRUm** GEMEINSCHAFT

Thank you!

We are supported by:

European Research Council Established by the European Commission

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Bundesministerium für Bildung und Forschung

HELMHOLTZ II II II

erc

Heavy Ion Research Facility in Lanzhou (HIRFL)

BigRIPS + R3 Setup in RIKEN

General description – Main components

