

New Physics with Coherent Neutrino-Nucleus Scattering

Raimund Strauss

Technical University of Munich Bormio Winter Meeting, 21.01.2020

• Elastic <u>coherent</u> scattering off nuclei

• Elastic <u>coherent</u> scattering off nuclei

• Elastic <u>coherent</u> scattering off nuclei

• Weak neutral current process

 $\sigma \propto N^2$ neutron number cross-sectio

What to do with Coherent Elastic Neutrino-Nucleus Scattering ?

What to do with CEvNS?

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

Advantages of CEvNS:

- Cross-sections orders of magnitude larger
- Equal response to all known neutrino flavours
- Response to neutrinos of all energies (threshold-less)
- Known (target) material dependence

Experiments and applications of CEvNS:

- Spallation-source neutrinos
- Supernova bursts
- Reactor neutrinos
- Solar neutrinos
- Terrestrial neutrinos

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

Advantages of CEvNS:

- Cross-sections orders of magnitude larger
- Equal response to all known neutrino flavours
- Response to neutrinos of all energies (threshold-less)
- Known (target) material dependence

Experiments and applications of CEvNS:

- Spallation-source neutrinos
- Supernova bursts
- Reactor neutrinos
- Solar neutrinos
- Terrestrial neutrinos

- high E v's
- timing
- backgrounds!

Results of COHERENT 2017

Akimov et al., Science **357**, 1123–1126 (2017) 15 September 2017

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

Advantages of CEvNS:

- Cross-sections orders of magnitude larger
- Equal response to all known neutrino flavours
- Response to neutrinos of all energies (threshold-less)
- Known (target) material dependence

Experiments and applications of CEvNS:

- Spallation-source neutrinos
- Supernova bursts
- Reactor neutrinos
- Solar neutrinos
- Terrestrial neutrinos

CEvNS at Reactors

Reactor antineutrino spectrum

Recoil spectrum in detector from CEvNS

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

Advantages of CEvNS:

- Cross-sections orders of magnitude larger
- Equal response to all known neutrino flavours
- Response to neutrinos of all energies (threshold-less)
- Known (target) material dependence

Experiments and applications of CEvNS:

- Spallation-source neutrinos
- Supernova bursts
- Reactor neutrinos
- Solar neutrinos
- Terrestrial neutrinos

CEvNS Physics Potential

From E. Lisi, Neutrino2018 Opening Talk

Neutrino Non-Standard Interactions

Raimund Strauss (Bormio Winter Meeting)

Neutrino Non-Standard Interactions

Raimund Strauss (Bormio Winter Meeting)

Weinberg Angle

$$\begin{split} \left(\frac{d\sigma}{dE}\right)_{\nu_{\alpha}A} &= \frac{G_F^2 M}{\pi} F^2(2ME) \left[1 - \frac{ME}{2k^2}\right] \times \\ \left\{ [Z(g_V^p + 2\varepsilon_{\alpha\alpha}^{uV} + \varepsilon_{\alpha\alpha}^{dV}) + N(g_V^n + \varepsilon_{\alpha\alpha}^{uV} + 2\varepsilon_{\alpha\alpha}^{dV})]^2 \right. \end{split}$$
With $g_V^p &= \left(\frac{1}{2} - 2\sin^2\theta_W\right)$ and $g_V^n = -\frac{1}{2}$

First determination of the Weinberg angle at q = 1MeV/c after 6 weeks of measurement with 10g!

Plot adopted from: B.C. Canas, Phys.Lett. B 761 (2016) 450-455

Coherence valid for neutrino energies < 20 MeV (e.g. for CsI)

Coherence valid for neutrino energies < 20 MeV (e.g. for CsI)

$$\frac{d\sigma_{\nu-\mathcal{N}}}{dT}(E,T) \simeq \frac{G_F^2 M}{4\pi} \left(1 - \frac{MT}{2E^2}\right) [NF_N(q^2) - \epsilon ZF_Z(q^2)]^2$$

from J. Rhyne

Coherence valid for neutrino energies < 20 MeV (e.g. for CsI)

from J. Rhyne

 $\frac{d\sigma_{\nu-\mathcal{N}}}{dT}(E,T) \simeq \frac{G_F^2 M}{4\pi} \left(1 - \frac{MT}{2E^2}\right) [NF_N(q^2) - \epsilon ZF_N(q^2)]^2$

neutron Form factor

Coherence valid for neutrino energies < 20 MeV (e.g. for Csl)

from J. Rhyne

$$\frac{d\sigma_{\nu-\mathcal{N}}}{dT}(E,T) \simeq \frac{G_F^2 M}{4\pi} \left(1 - \frac{MT}{2E^2}\right) [NF_N(q^2) - \epsilon \sum_{\nu=1}^{\infty} (q^2)]^2$$
neutron Form factor

Neutron RMS Radius with CEvNS

Phys. Rev. Lett. 120 071501, arXiv:1710.02730

Neutron RMS Radius with CEvNS

Phys. Rev. Lett. 120 071501, arXiv:1710.02730

Raimund Strauss (Bormio Winter Meeting)

Cross-Disciplinary: Dark Matter Search

Current experimental limits on Dark Matter Spin-independent cross section [pb] CRESST-III 2017 10⁻⁵ Dark Side 2018 10⁻¹⁰ Solar neutrinos "neutrino floor" XENON 1t DARWIN 2018 10^{3} 10⁰ 10² 10¹ Dark Matter Particle Mass [GeV/c²]

Coherent scattering of solar neutrinos as **ultimate background** for Dark Matter searches ?

or

Study **solar neutrinos** with direct Dark Matter experiments ?

Precise knowledge of coherent neutrino scattering cross-section and Form factors required by independent experiments!

CEvNS Experiments Worldwide

Map courtesy M. Vivier, CEA

NUCLEUS Collaboration

- 6 institutions
- 40 members

NUCLEUS Potential

NUCLEUS Potential

Neutrino signal rate Counts / [kg keV day] 104 Detection potential with 10g detector 10³ 7 10² • 6 5 10¹ Z [σ] background 4 range 3 Background level 2 1 / keV kg d 10 10 / keV kg d Recoil ener 1 100 / keV kg d 1000 / keV kg d NU-CLEUS 10¹ Time [d] 10^2 prototype $E_R \approx 20 eV$

The NUCLEUS Detector Concept

Gram-Scale Cryogenic Calorimeters

The NUCLEUS Detector Concept

Gram-Scale Cryogenic Calorimeters

The NUCLEUS Detector Concept

The first prototype

NUCLEUS 10g detector

Technology for neutrino detection demonstrated

RS et al., Phys. Rev. D 96, 022009 (2017)

- World-best energy threshold for nuclear recoils, E_{th} = (19.7±0.8) eV ٠
- Low systematics precise knowledge of energy scale no quenching •

The CHOOZ Nuclear Power Plant

- Full access to inner zone of power plant
- Support from on-site personnel
- Background measurements done
- Convention (CEA-EDF) for NU-CLEUS in preparation

The CHOOZ Nuclear Power Plant

- Full access to inner zone of power plant
- Support from on-site personnel
- Background measurements done
- Convention (CEA-EDF) for NU-CLEUS in preparation

"Very Near Site" - VNS

New experimental site in a 24m² room in an administrative building

- In-between the two 4.25 GWth reactor cores
- Expected nu-flux: 10¹² (s cm²)⁻¹
- Muon rate measurements on-site: overburden of 3 m.w.e
- Extensive simulation campaign

G. Angloher et al. (NUCLEUS Collaboration), arXiv:1905.10258 accepted by EPJ-C

Status&Future of NUCLEUS

Proof-of-principle
 Reactor site
 Collaboration

Status&Future of NUCLEUS

Application of NU-CLEUS Technology

Mobile cryogenic detector

Use neutrinos to monitor nuclear reactors

Surveillance of power plants world-wide

Nuclear non-proliferation

e.g. Phys. Rev. Lett. 113, 042503 (2014)

Nuclear Non-Proliferation

http://www.lefigaro.fr/assets/pdf/AIEA-neutrino.pdf

Fuel content modifies antineutrino spectrum

Conclusion

Coherent neutrino-nucleus scattering: Portal to new physics

> The COHERENT Experiment: First results from CEvNS

CEvNS at nuclear reactors: Explore low-energy and precision frontier

Mobile CEvNS detectors:

Reactor safety and non-proliferation of nuclear material

Workshop announcement:

MUNICH SEPT 16-18, 2020

BACKUP SLIDES

Worldwide CEvNS efforts: comparison

Experim	ent	v source	ν flux [cm ⁻² s ⁻¹]	Overburden [m w.e.]	Technology E _{th} + mass
COHERE	INT	Spallation Neutron Source, Oakridge (USA) Baseline ≈ 20 m	107	≈ 8	Multiple targets & detectors E _{th} ≥ O(keV) – M ≈ 40 kg
CONU	S	Brokdorf Power Plant (Germany), 3.9 GW _{th} Baseline = 17 m	2.2 x 10 ¹³	10 → 45	Ge ionization $E_{th} \ge 1 \text{ keV}_{NR} - M = 4 \text{ kg}$
CONNI	IE	Angra dos Reis Power Plant (Brazil) 3.8 GW _{th} Baseline = 30 m	7 x 10 ¹²	Surface	Si charged couple devices $E_{th} \approx 300 \text{ eV}_{NR} - M \approx 0.1 \text{ kg}$
TEXON	10	Kuo-Sheng Power Plant (Taiwan), 2.7 GW _{th} Baseline = 28 m	5 x 10 ¹²	30	Ge ionization CsI[TI] scintillation E _{th} ≥1 keV _{NR} – M≈ kg scale
v-GEN	N	Kalinin Power Plant (Russia), 3 GW _{th} Baseline = 10 m	5 x 10 ¹³	≈ 10	Ge ionization $E_{th} \ge 1 \text{ keV}_{NR} - M = 2 \text{ kg}$
RED-10	00	Kalinin Power Plant (Russia), 3 GW _{th} Baseline = 19 m	10 ¹³	≈ 10	Liquid Xe TPC E _{th} ≈ O(1 keV _{NR}) – M = 100 kg
MINE	R	TAMU research reactor (Texas), 1 MW _{th} Baseline = 2-10 m	4 x 10 ¹¹	15	Ge/Si CDMS techno. Aim at E _{th} ≈ 40 eV _{NR} – M ≈ 10 kg
v-CLEU	JS	Chooz (France) 2 x 4.25 GW _{th} @ VNS Baseline = 70-100 m	2 x 10 ¹²	≤ 4	CaWO ₄ ,Al ₂ O ₃ , Li ₂ WO ₄ cryo. cal. $E_{th} \approx 20 \text{ eV}_{NR} - M = 0.01 \rightarrow 1 \text{ kg}$
RICOCH	IET	Chooz (France) 2 x 4.25 GW _{th} @ NS ? [400 m] MIT research reactor 6 MW _{th} ? ILL research reactor 58 MW _{th} ? [10 m]	8 x 10 ¹⁰ 10 ¹¹ 9 x 10 ¹¹	120 ≈ 10 ≈ 10	Ge/Zn cryo. cal. $E_{th} \approx O(50 \text{ eV}_{NR}) - M \approx 0.5 \text{ kg}$

Courtesy M. Vivier

Raimund Strauss (Bormio Winter Meeting)

Protons on mercury target

- Most intense neutron beam in the world
- Cross-disciplinary science

— Proton beam

Neutrino production

- Pion production and stopping
- π^+ decay at rest
- μ⁺ decay at rest
- 0.08 v's / flavor / proton
- Isotropic production

Solar neutrinos with NU-CLEUS

Solar neutrinos with table-top experiment!

 \mathcal{V} -cleus 1kg will be sensitive to pp neutrinos!

Scaling law for calorimeters

Validation of model with existing devices!

 \rightarrow Predicitions for gram-scale detectors

News: Sensitivity Studies – Sterile Neutrinos

News: Sensitivity Studies – Sterile Neutrinos

Raimund Strauss (Bormio Winter Meeting)

News: Sensitivity Studies – Reactor physics

Raimund Strauss (Bormio Winter Meeting)