Trends and strategies in the evolution of High Energy Physics
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WLCG computing

Run 1 and Run 2 of the Large Hadron Collider (LHC) at CERN produced huge volumes of data whose analysis will continue to deliver large numbers of physics results. To make this possible, the LHC experiments
have been relying on services of the Worldwide LHC Computing Grid (WLCG).

At present, the LHC experiments are preparing for Run 3 of the LHC which will bring significantly higher luminosity and therefore yet higher volumes of data, which will even be exceeded in the era of the High
Luminosity LHC (HL-LHC), starting with Run 4.

While during Run 1 and Run 2 the LHC experiments were the only ones to produce and analyze scientific data at a scale of hundreds of PetaBytes, the situation is gradually changing. Projects like DUNE in the USA,
Belle Il in Japan and SKA in Australia and South Africa will also be producing huge volumes of data and plan to make significant use of WLCG services to store and process their data. The LHC experiments will not
necessarily remain the biggest scientific data producers in the future.

In this contribution we will present an overview of trends and strategies used by the LHC experiments to adapt their data processing models to future compute and storage resources available within WLCG and to the
use of commercial clouds and High Performance Computing (HPC) facilities, while at the same time building collaborations with related big-data projects in order to share and evolve WLCG services together.
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Worldwide LHC Computing Grid (WLCG) Facts about WLCG (Jan 2020):

- 169 sites

- 42 countries

- ~0.7 million CPU cores

- ~0.6 ExaByte of disk storage
- ~0.8 ExaByte of tape storage
- > 2 million jobs per day

- 1TB ~10-100 CHF

- 1 core ~ 100 CHF

HW lifetime: 3-5 years 13 TeV
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The scale of the computing challenge for LHC necessitated an organized and formal structure. A federated distributed system, the
Worldwide LHC Computing Grid, was built to integrate pledged resources and make them easily usable.

The past 15 years of WLCG operation, from initial prototyping through to the significant requirements of Run 2, show that the
community is very capable of building an adaptable and performant service. The WLCG and its stakeholders have continually delivered
to the needs of the LHC during that time, so as to maximize the physics possibilities within a realistic and affordable budget envelope.
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However, in the HL-LHC era the situation could be very different, unless there are some significant changes .
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14 TeV center of mass energy - 6000 primary tracks per event Ultimate HL-LHC IuineﬁBsity projection
Simultaneous events (Pileup) increases from ~60 to 140-200 updated with optimistic availability following Run 2
Big challenges exist to meet the computing requirements for Run4.
The current resource provisioning model is not sufficient.
Technology and architecture changes are essential: $/resource unit is not a continuous and monotonic function, there may well be surprises.
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HL-LHC - Run 4: ATLAS and CMS resource challenges. ATLAS: CPU projections for Run 4. ATLAS: Disk storage proiections for Run 4. o _ . o
With respect to 2019 pledges, they need: “flat budget” assumption is identified risk ' Je Bro) In general, it is necessary to continue modernizing our applications

“flat budget” assumption is identified risk i
22x more CPU power, 13x more disk capacity and 15x more tapes. g P to take advantage of hardware evolution.

Currently recognized strategies and work packages to deliver solutions which would match the compute/storage requirements with available resources, see below.
Due to continuous, fast and unpredictable technology developments, the strategies will need to keep adapting to new circumstances. An example would be the use of
commercial clouds and HPC resources, which still was unrealistic not so long ago.
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35 | 2015, Po-Pb, YSyy = 5.02 TeV LoXOE : the TCO, viz. where and when clouds are more cost-effective than in-house resources.
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ALICE: Speed up tracking from GPU usage + from algorithmic improvements +tuning on CPU * Generators: become more complicated with increasing pile-up, better performance
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All sites lgidd « Collaboration with compute intensive experiments beyond LHC (Belle I, DUNE, FAIR,
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Special cloud SKA, ...) should be beneficial: different projects/sciences €-> same infrastructure.
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900k special HPC

ESCAPE (European Science Cluster of Astronomy and

300k Particle physics ESFRI research infrastructures):

ESCAPE EU funded initiative. Prototyping new compute

Infrastructure for Exascale science projects.
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Up to 25% of resources currently used by LHC experiments comes from non-Grid facilities:
Cloud Computing, High Performance Computing, HLT farms.




